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1. Modeling of acoustic, elastic, and electro-magnetic waves

Mathematical modeling of physical processes yields a system of partial differential equations that describes
the behavior of a system physically correct and allows for analytical and numerical predictions of the system
behavior. Here we start by shortly summarizing modeling principles which are illustrated for simple linear
models in one space dimension. Then this is specified for different types of wave equations.

1.1. Modeling in continuum mechanics

Describing a model in continuum mechanics is a complex process combining physical principles, parameters and
data. For a mathematical framework, we introduce the following terminology:

Geometric configuration

We select a domain in space  C RY (d € {1,2,3}) and a time interval I C R, and for the specification
of boundary conditions we select boundary parts I'y, C 9Q, k = 1,...,m, where m is the number of
components of the variables which describe the current state of the physical system.

Constituents

Which physical quantities determine the model?

Which quantities directly depend on these primary quantities?

For the mathematical formulation it is required to select a set of primary variables.

Parameters
Which material data are required for the model?
Which properties do these parameters have in order to be physically meaningful?

Balance relations

This collects relations between the physical quantities (and external sources) which are derived from
basic energetic or kinematic principles. These relations are independent of specific materials and appli-
cations.

Material laws
This collects relations between the physical quantities that have to be determined by measurements and
depend on the specific material and application.

External forces, boundary and initial data
The system behavior is controlled by the initial state at ¢ = 0, by external forces in the interior of the
space-time domain I x €, and by conditions on the boundary I x 9f).
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1.2. The wave equation in 1d

This formalism is now specified for the most simple wave model in 1d with constant coefficients. Therefore, we
assume that all quantities are sufficiently smooth, so that all derivatives and integrals are well-defined.

Configuration. We consider an interval €2 = (0, X)) C R in space and a time interval I = (0,7") C R for given
X, T >0.

Constituents. Here, we consider the simplified situation that material points in R? move up and down verti-
cally. The state of this physical system is then determined by the vertical displacement

uw: [0,T] x Q — R
describing the position of the material point (:1:, u(t, x)) € R? at time ¢, and the tension
o:[0,T]xQ —R

describing the forces between the points z € €. In this simplified 1d setting with vertical displacements the
tension corresponds to the shear stress in higher dimensions.

Depending on the primal variable u, we define the velocity v = dyu, the acceleration a = dyv = d?u, the strain
€ = d,u, and the strain rate Oy = J,v = 0,0:u.

Material parameters. This simple model only depends on the mass density p > 0 and the stiffness k > 0;
together, this defines ¢ = 1/k/p. We will see that ¢ is the wave speed which characterizes this model.

Balance of momentum. Depending on the velocity v and the mass density p we define the momentum pv.
Newton’s law states that the temporal change of the momentum in time equals the sum of all driving forces.
Here, without any external forces, this balance relation reads as follows:

forall 0 < x1 <xo < X and 0 < t1 < ty < T we have

/12 p(z) (v(ta, ©) — v(ty,x)) do = / : (o(t,z2) — o(t,x1)) dt.

1 t1

For smooth functions this yields

T to to T2
/ / p(x)ow(t, z) dtde = / / 0o (t,x)dx dt,
1 t1 t1 1

and since this holds for all 0 < z1 < 2 < X and 0 < t; < t3 < T, this holds point-wise, i.e.,

p(x)Op(t, x) = Oy0(t, ), (t,z) € (0,7) x (0,X). (1)

Material law. One observes that the tension o(t,z) only depends on the strain e(t,z) = J,u(t,z). This is
formulated as a material law: a material is by definition elastic, if a function ¥ exists such that o = X(9,u),
and it is linear elastic, if 0 = ke with stiffness k > 0. In a homogeneous material, the stiffness « is independent
of x € (0, X).

Boundary and initial data. The actual physical state at time ¢ of the system depends on its state at the
beginning ¢ = 0 and on constraints at the boundary. Here, assume that at ¢ = 0 the system is given by the
initial displacement u(0,z) = ug(z) and velocity v(0,z) = vo(x) for z € €, and we use homogeneous boundary
conditions u(t,0) = u(t,X) = 0 for ¢ € [0, T] corresponding to a string that is fixed at the endpoints.

Inserting v = dyu and € = J,u in (1) we obtain the second-order formulation of the wave equation

O2u(t, x) — 20u(t,x) = 0 for (t,x) € (0,T) x (0, X), (2a)
u(0,x) = up(x) forz € (0,X)att=0, (2b)

0wu(0, ) = vo(x) forx € (0,X)att=0, (2¢)

u(t,z) =0 for x € {0, X} and ¢t € (0,T). (2d)

Note that the same equation can be derived for a 1d wave with horizontal displacement, corresponding to an
actual position of the material point x 4+ u(x) € R.
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The solution of the linear wave equation in 1d in homogeneous media. The equation (2) with constant
wave speed ¢ > 0 can be solved explicitly. For given initial values (2b) and (2c) the solution is given within the
cone

C={(t,z) € (0,T) x (0,X):0<z—ct<az+ct<X}

by the d’Alembert formula

z+ct

(uo(x—ct)—l—uo(x—i-ct)—ki/ vo(€) d£) , (t,x)ecC.

x—ct

u(t,x) =

N =

Now we consider the solution in the bounded interval 2 = (0, X) of length X = 7 with homogeneous Dirichlet
boundary conditions (2d). The solution can be expanded into eigenmodes of the operator —d2u in H§(Q2)NH?(Q),
so that we obtain

u(t,x) = i (an cos(ent) + B, sin(cnt)) sin(nz) ,

where the coefficients are determined by the initial values (2b) and (2c). For the special example with initial
values ug(x) =1, vo(x) = 0 for x € (0,7), and wave speed ¢ = 1, we obtain the explicit Fourier representation

oo

u(t,x) = % Z 2n1+ T cos ((2n+1)t) sin ((2n + 1)z) = %(uo(x + 1)+ up(r — t)) , (3)
n=0

where the initial function ug is extended to the periodic function

1 ze(0,m)+27Z,
up(x) = 0 zenZ,
-1 ze(—m0)+27Z,

cf. Fig. 1. We observe that this solution solves the wave equation only in a weak sense since it is discontinuous
along linear characteristics « £ ¢t = const.

FIGURE 1. Weak solution u € Lz ((0,8) x (0, 7)) with initial values for u(0,-) = 1, d;u(0,-) = 0,
and homogeneous Dirichlet boundary values u(-,0) = u(-,7) = 0.
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1.3. Harmonic, anharmonic and viscous waves

Special solutions of the linear wave equation (2) can be derived by the ansatz
u(t,z) = exp(—iwt)a(z)
with a fixed frequency w € R. This yields in case of constant wave speed ¢ = \/k/p
OPu(t,x) — 20u(t,x) = — (w2a(a:) + czaia(x)> exp(—iwt) .
The equation w?a(x) + c?d2a(z) = 0 is solved by a(z) = ag exp(ikz) with k = w/c and ag € R, cf. Tab. 1.
TABLE 1. Characteristic quantities for harmonic waves u(t, z) = ag exp (i(kz — wt)).

wave number k angular frequency w frequency v =w/2m

wave speed c=w/k wave length A=c/v amplitude aq

Interaction with material: anharmonic waves. The harmonic wave with constant amplitude is an idealistic
model. This contradicts to observations: a wave traveling through material interacts with the particles in some
sense, so that the amplitude is decreasing in time. A simple ansatz are waves of the form

u(t, ) = a(t) exp (i(kz — wt)), a(t) = agexp(—7t) (4)

depending on wave number k, angular frequency w, and relaxation time 7 > 0. Then, we observe for (4) in case
of constant p and k

(pdf — kD u(z,t) = (p(T + iw)® + Kk )u(w,t), Opu(z,t) = —(7 + iw)u(z, t)
which yields with the angular frequency

w=+k*%/p+T2€R ()

a solution of the wave equation with attenuation
pOZu(t, x) — kO2u(t,x) + 27p dpu(t,x) = 0. (6)

In general, one observes that the wave speed depends on the frequency of the wave, i.e., the wave is dispersive.
For the case of constant parameters this is characterized by the dispersion relation w = w(k). In this example,
we find the dispersion relation (5) for the wave equation with attenuation (6). For the general description of
real media this approach is too simple and applies only for the wave propagation within a limited frequency
range, in particular since the relaxation time also depends on the frequency. For viscous waves suitable material
laws are constructed where the parameters can be determined from measurements of the dispersion relation at
sample frequencies which are relevant for the application. This is now demonstrated for a specific example.

A model for viscous waves. One approach to characterize waves with dispersion is to use a linear superpo-
sition of the constitutive law for a harmonic wave with several relations for anharmonic waves. In this ansatz
the material law for the stress is based on a decomposition o = o¢ + o1 + - - - + 0,- with Hooke’s law for oy, i.e.,

00 = KoE, (7a)

and several Maxwell bodies for o1, ..., 0, described by the relations
ﬁtaj +Tj_10'j:,‘£jat€, jzl,...ﬂ". (7b)
This model depends on the stiffness of the components kq, ..., x, and relaxation times 7y, ...,7.. Solving the

linear ODE (7b) with initial value 0;(0) = 0 and inserting d;c = 0,v yields

¢ 1
oj(t) = / Kj exp ( e (B 8))8£U(8) ds,
0 7j
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and together with (7a) we obtain the retarded material law

o(t) = keOyu(t) + /t i K;j exp ( - ;(t - s))@wv(s) ds.

0 i

This can be summarized to
- ¢ /ij 1
0o (t) = kodzv(t) + Z KjOpv(t) — / Z — exp ( - —(t- s))@lv(s) ds
j=1 0 '

= Kk0zu(t) +/(J K(t — s)0gvu(s) ds

with the total stiffness kK = kg + k1 + - - - + K, and the retardation kernel

R(s)z—iijexp(—j).

j=1 J
Together with the balance relation pd;v = 9,0 this is a model for viscous waves.

1.4. Elastic waves

In the next step we derive equations for waves in solids. We consider heterogeneous media where the material
parameters depend on the position, and we assume that the wave energy is sufficiently small, so that the material
law can be approximated by a linear relation.

Configuration. We consider an elastic body in the spatial domain 2 C R? and we fix a time interval I = (0, 7).
The boundary 02 = I'y U T's is decomposed into parts corresponding to dynamic boundary conditions for the
velocity and static boundary conditions for the stress.

Constituents. The current state of the body is described by the deformation or by the displacement
e=id+u: [0,T] x Q@ — R3, u: [0,7] x Q — R3,

ie., p(t,x) = x+ u(t,x) is the actual position of the point x € Q at time ¢. Depending on the displacement,
we define the velocity v = d;u, the strain e(u) = sym(Du), the acceleration a = 9;v = d%u, and the strain rate
g(v) = sym(Dv) = dse(u).
The internal forces in the material are described by the stress tensor

o:[0,T] x Q@ — R3X3

sym *
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Material parameters. Measurements are required to determine the distribution of the mass density
p:  — (0,00)

and to determine the material stiffness in all directions which are collected in Hooke’s tensor
C: Q — L(R3X3 R3%3Y,

Sym>? “Ssym
Balance of momentum. Newton’s law postulates equality between the temporal change of the momentum pv
in any time interval (¢1,t2) € (0,T) within any subvolume K C  and the driving forces on the boundary 0K

described by the stress in direction of the outer normal vector n on K. This results in the balance relation
(without external loads)

/p( ) (v(t2, %) — v(t1, %) dx—/ /aK o(t,x)n(x) da dt . (8)

For smooth functions we obtain by the Gauf} theorem

ta
/ / x)0yv(ta,x) dt dx z/ / diveo(t,x) dx dt,
ty1 t1 K

and since this holds for all time intervals and subvolumes, we get the pointwise relation
pov = dive in (0,T) x Q. (9)

Remark 1. In the balance relation (8) only the normal stress o (¢,x)n for all directions n € S? on the boundary
of a subvolume K C 2 is included. This described the force between material points left and right from z € K
with respect to the direction n. The existence of such a vector for all directions and all points is postulated by
the Cauchy axiom, and by the Cauchy theorem a tensor representing this force exists; moreover, the symmetry
of this tensor is a consequence of the balance of angular momentum.

Material law. Since the forces between the material points x; and x5 only depend on the difference of the
actual positions u(¢,x3) — u(t, x1), the stress o (¢, x) only depends on the deformation gradient Dep.

By definition, a material is elastic, if a function ¥ exists such that & = X(D¢). Then, d;0 = DE(D¢g)[Dv]. In
the limit of small strains the material response can be approximated by a linear model, i.e., we assume Dy ~ I,
and we use the linear relation d;0 = DX (I)[Dv]. In addition, we assume that the stress response is objective,
i.e., it is independent of the observer’s position; then it can be shown that it only depends on the symmetric
strain e(u) = sym(Du). Together, we obtain Hooke’s law

oo = Ce(v). (10)

Boundary and initial data. We start with u(0) = ug and v(0) = vy in Q at ¢t = 0, and for ¢t € (0,T) we
use the boundary conditions for the displacement u(t) = uy(¢) or the velocity v(¢) = vy(¢) on the dynamic
boundary I'v, and for the stress o (t)n = gg on the static boundary T's.

Including external body forces f, we obtain the second-order formulation of the linear wave equation

pdfu — divCe(u) = f n (0,7) x Q, (11a)
u(0) = ug inQatt=0, (11b)
Oru(0) = vy inQatt=0, (11c)
u(t) = uy(t) onT'y for t € (0,T), (11d)
Ce(u)n = gs(t) onT'g for t € (0,T). (11e)

and, equivalently, the first-order formulation
pov —dive =f in (0,7) x Q, (12a)
0o — Ce(u) =0 in (0,7) x Q, (12b)
v(0) = vy inQatt=0, (12¢)
o(0) = Ce(ug) inQatt=0, (12d)
v(t) = Opuy(t) onI'y for t € (0,7), (12e)
o(t)n = gs(t) onT'g fort € (0,T). (12f)
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1.5. Visco-elastic waves

The balance of momentum (9) together with Hooke’s law 9,0 = Ce(v) describes linear elastic waves. We
observe

o(t) = o(0) +/O 9,0 (5) ds = o (0) +/O Ce(v(s)) ds.

General linear visco-elastic waves are described by a retarded material law

t

o(t) = o(0) +/ C(t —s)e(v(s))ds

0

implying
t .
0o (t) = C(0)e(v(t)) +/ C(t—s)e(v(s)) ds
0

with a time-dependent extension C of the elasticity tensor C.
In analogy to the 1d model (7), one defines Generalized Standard Linear Solids with the relazation tensor

C(s)=—zlexp(—i)cj, C(0)=Co+Ci+---+C,.

7j

results in the first-order system for visco-elastic waves

patV_V‘(0'0+"'+0-r):fa (13&)
8,50'0—Co€(v) :07 (13b)
ato'j - CJE(V> +Tj710-j =0, J=1...,r. (130)

This is complemented by initial and boundary conditions for the velocity v and the total stress o, which are the
observable quantities. The stress components o7, ...,0, are inner variables describing the retarded material
law; they can be replaced, e.g., by memory variables encoding the material history.
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1.6. Acoustic waves in solids
In isotropic media, Hooke’s tensor only depends on two parameters, e.g., the Lamé parameters p, A
Ce =2ue + Ar(e)l

= 2udev(e) + rtr(e)l, dev(e) = ¢ — %tr(s)I.

For the wave dynamics, one uses a decomposition into components corresponding to shear waves depending on
the shear modulus p, and compressional waves depending on the compression modulus kK = %,u + A. Then, the
linear second order elastic wave equation (11a) in isotropic and homogeneous media takes the form

pOiu+puV x Vxu—3kV(V-u)=f.

A vanishing shear modulus g — 0 leads to the linear acoustic wave equation for the hydrostatic pressure
p= %tr(cr) and the velocity, described by the first-order system

pov—Vp= in (0,7) x Q, (14a)
Op— KV -v= in (0,7) x Q, (14b)
v(0) = vy inQatt=0, (14c)

p(0) = po inQatt=0, (14d)

n-v(t) = gy(t) onT'y for t € (0,7, (14e)

p(t) = ps(t) onI's for t € (0,T), (14f)

where we set ps = n-gg for the static boundary condition and gy = n- vy for the dynamic boundary condition.
For acoustics, this corresponds to Dirichlet and Neumann boundary conditions, for elasticity this is reversed.
In homogeneous media and for f = 0, (14a) and (14b) combine to the linear second-order acoustic wave equation

02p —*Ap=0, c=\K/p.

Remark 2. Simply neglecting the shear component is only an approximation and not fully realistic for waves
in solids, in particular since by reflections compressional waves split in compressional and shear components.
Nevertheless, in applications the acoustic wave equation is used also in solids since the system is much smaller
so that computations are much faster.

Remark 3. One obtains the same acoustic wave equations describing compression waves in a fluid or a gas.
Note that, historically, the sign conventions for pressure and stress are different in fluid and solid mechanics.

Visco-acoustic waves. Generalized Standard Linear Solids can be reduced to acoustics. The corresponding
retarded material law for the hydrostatic pressure takes the form

(9tp(t)znv-v(t)—&—/ot/%(t—s)v-v(s) ds, R(S)Z—Z;exp(_g).

Defining k = kg + k1 + -+ Kk and p=py +p1 + - - - + p, with

¢ s—1t
pj(t):/exp< )IijV'V(S)dS7 j=1...,r
0

Tj
results in the first-order system for linear visco-acoustic waves

pOv —V(po+ - +p)=f,
Oipo — KoV -v =0,
Btpj—mjV-VJFT;lpj:O, j=1...,r.

This is complemented by initial and boundary conditions (14c¢)—(14f).
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1.7. Electro-magnetic waves

Electric fields induce magnetic fields and vice versa. This is formulated by Maxwell’s equations describing the
propagation of electro-magnetic waves.

Configuration. We consider a spatial domain €2 C R3, a time interval I = (0,T), and a boundary decomposi-
tion 02 = I'g UT'| corresponding to perfect conducting or transmission boundaries.

Constituents. Electro-magnetic waves are determined by the electric field and the magnetic field intensity
E:TxQ—R3, H:TxQ—R3,

and by the electric flux density and magnetic induction
D: TxQ—R3, B:TxQ—R3.

Further quantities are the electric current density and the electric charge density

J:IxQ—R3, p: I xQ—=R.

Balance relations. Faraday’s law states that the temporal change of the magnetic induction through a two-
dimensional subset A C Q induces an electric field along the boundary 0A, so that for all 0 < t; < to < T

A(B(t2)_B(t1))'da:—/:/aAE-dEdt.

Ampere’s law states that the temporal change of the electric flux density together with the electric current
density through a two-dimensional manifold A C  induces a magnetic field intensity along the boundary 0A,
ie.,

to (2
/(D(tg)—D(tl))-da—l—/ /J-dadt:/ H.de dt.
A t1 A ty O0A

Here, we use u- da=u-nda and u-df = u-7d¢ the normal vector field n: A — R? and the tangential
vector field 7: A — R3 (where the orientation of dA is given by n).
The Gauf} laws state for all subvolumes K C 2 the conservation of the magnetic induction

B-da=0
oK

and the equilibrium of electric charge density in the volume with electric flux density across the boundary 0K

D~da:/ pdx.
oK K

Together, by the integral theorems of Stokes and Gaufl we obtain

tz t2
/ 8tB-dadt:f/ /VXE.dadt, /V~de:0,
AJty t1 A K

to ta to
/ BtD-dadt—i—/ /J-dadt:/ /V><H~dadt7 /V-Ddx:/pdx7
AJty t; JA t, JA K K

and since this holds for all (¢1,t2) C I and all A, K C , it results in the Maxwell system
0B+VxE=0, 9D-VxH=-J, V-B=0, V-D=p. (15)

Note that a combination of the second and fourth equation implies the conservation of charge d;p 4+ V -J = 0.
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Material laws in vacuum. Without the interaction with matter, electric field and the electric flux density,
D = gE, and magnetic induction and magnetic field intensity, B = puoH, are proportional by multiplication
with the constant permittivity o and permeability g, respectively, which together results in the linear second-
order Maxwell equation for E

PE—-PVXxVXE=0

with speed of light ¢ = 1/,/2019. A corresponding equation holds for H. In vacuum, in the absence of electric
currents and electric charges, we find J = 0 and p = 0.

Effective material laws for electro-magnetic waves in matter. The interaction of electro-magnetic waves
with the atoms in matter are described by the polarization P and the magnetization M depending on the electric
field E and the magnetic induction B. For the electric flux density holds

D=¢E+P(E,B),
and the magnetic field intensity is given by

wH =B - M(E,B).
The electric current density depends on the conductivity o (Ohm’s law) and the external current Jg, so that

J=cE+Jg.

In case of linear materials with instantaneous response, the polarization is proportional to the electric field

P= E()XE

with the susceptibility x, that yields D = ¢,E with relative permittivity e, = eo(1 + x).
Linear materials with retarded response are given by

P(t) = & / [t — $)E(s) ds. (16)

—0o0

t\es—¢
A special case is the Debye model with x(¢) = exp ( — 7) =2 50 that the polarization is determined by
T T

TOP +P =¢p(es — £x0)E.

This model is dispersive with a dispersion relation similar to the model for viscous elastic waves.
The relation (16) extends to nonlinear materials by, e.g.,

P(t) = EO/Xl(t —s)E(s) ds + / / /Xg(t — 81, — s9,t — 83)(E(81),E(82),E(83)) dsidsodss .

— 00 — 00 —00—00
For materials of Kerr-type this response is instantaneous, i.e.,
P = /B + y3[E[’E.

In more complex material models, the Maxwell system (15) is coupled to evolution equations for polarization
or magnetization. E.g., in the Maxwell-Lorentz system the evolution of the polarization is determined by

&P:%@—wam@.
In the Landau-Lifshitz—Gilbert (LLG) equation the magnetization M is given by
oM — aM x OM = —M x Heg, M| =1,
where o > 0 is a damping factor, and the effective field Hqg is a combination of the external magnetic field and

the demagnetizing field, which is a magnetic field due to the magnetization.
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Boundary conditions. The Maxwell system is complemented by conditions on 2. On a perfectly conducting
boundary I'g, we have

Exn=0and B-n=0,
and on the impedance (or Silver—Miiller) boundary I'1, we prescribe

Hxn+((Exn)xn=0
depending on the given impedance (.

Together, we obtain for general nonlinear instantaneous material laws D(E, H) and B(E, H) the first-order
system

OD(E,H) -V x H+ oE = —J, in (0,T) x Q, (17a)
OB(E,H) +VXxE=0 in (0,7) x Q, (17b)

E(0) =Eg inQatt=0, (17¢)

H(0) = Hy inQatt=0, (17d)

Exn=0 onI'y for t € (0,7), (17e)
Hxn+((Exn)xn=g on I’y for t € (0,7). (171)

In nonlinear optics, for the special case of an instantaneous nonmagnetic material law D(E) = ¢gE 4+ P(E) and
M = 0, the Maxwell system reduces to the second-order equation

ID(E) + 115'V x V x E 4 0E = —9,J

complemented by initial and boundary conditions.

Bibliographic comments. The mathematical foundations of modeling elastic solids (including a detailed
discussion and a proof of the Cauchy theorem) is given in [Ciarlet, 1988], and more physical background is given
in [Davis, 2012]. For generalized standard linear solids we refer to [Fichtner, 2011]. An overview on modeling
of electro-magnetic waves is given in [Jackson, 1999], the mathematical aspects of photonics are considered
in [Dorfler et al., 2011]. The example (3) is taken from [Leis, 2013, Example 3.4]. Dispersion relations and the
analogy in the modeling of elastic and electro-magnetic waves are collected in [Carcione, 2014, Chap. 2 and
Chap. 8].
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2. Space-time solutions for linear hyperbolic systems

The linear wave equation can be analyzed in the framework of symmetric Friedrichs systems as a special case of
linear hyperbolic conservation laws. Here, we introduce a general framework for the existence and uniqueness
of strong and weak solutions in space and time which applies to general linear wave equations.

We consider operators in space and time of the form L = M0; + A describing a linear hyperbolic system, where
A is a first-order operator in space. All results transfer to operators of the form L = MJ; + A+ D with an
additional positive semi-definite operator D; this applies to visco-acoustic and visco-elastic models, to mixed
boundary conditions of Robin type and impedance boundary conditions.

In the following, we use standard notations: for open domains G C R? in space or G C R'*? in space-time and
functions v,w: G — R we define the inner product (v, w)q = [, vw dx, the norm [jv||¢ = \/(v,v)¢ and the
Hilbert space La(G) of measurable functions v: G — R with ||v]|g < oco.

2.1. Linear hyperbolic first-order systems

Let Q C R? be a domain in space with Lipschitz boundary, I = (0,T) a time interval, and we denote the
space-time cylinder by @ = (0,7) x Q. Boundary conditions will be imposed on I'y C 9Q for k = 1,...,m,
depending on the model, so that the corresponding equations are well-posed.

We consider a linear operator in space and time of the form L = MJ; + A with a uniformly positive definite
operator M defined by My(x) = M (x)y(x) with a matrix valued function M € Lo (£2; RS X™), and a differential
operator Ay = Z?Zl A;0;y with matrices A; € RiG1™. Moreover, we define the matrix 4, = Z?Zl n;A; €
Riym™ for n € R¢ and the corresponding boundary operator (A,y)(x) = A,y (x).

In the first step, we consider the properties of the operators A and L for smooth functions. Then the operators
are extended to Hilbert spaces and, by specifying boundary conditions, we define maximal domains for the

operators.

Example 4. This applies to the linear acoustic wave equation (14) with m = d + 1 and

() () () ()

For linear elastic waves with v = d;u and o = Ce(u) we have

y= (o) = () av=(Te) - 4y = (g o)) 1)

and 1My -y = 1(p|v]* +0-C7lo) = 1(p|d,ul* + (u) - Ce(u)) is the kinetic and potential energy.
For linear electro-magnetic waves we have

_(E [ &oE _(-VxH _ (—nxH
y_<H>’ My_(,mH)’ Ay_(vXE)’ A“y_<n><E)’ (20)

and $ My -y = 1(go|E[* + po/HJ?) is the electro-magnetic energy.
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Linear conservation laws. Defining

A= (A, AY) = (Ajk)j=1. d, k=1, m € REXmXm

d
we observe Ay = 2?21 0jA;y = div(Ay) and A, =n-A = ) n;A;, so that this system takes the form of a
j=1

linear conservation law
Moy + div(Ay) =f£.

Integration by parts and using the symmetry of A; yields for differentiable functions with compact support in €2

(Ay,z)q = /Aajy zdx-ZZ/AJkl Ojy1)zr dx

j=1k,l=1

:—ZZ/A]klylazkdx— ZZ/ZJZ Ajuk 0521, dx

j=1k,i=1 j=1k,i=1

:_Z/Y'Ajajz dx = —(y,Az)q, y,z€ C{Q{R™),
. Q

so that A* = —A on C1(£2;R™). On the boundary 99 with outer unit normal n, integration by parts yields

M&
NE

(Ay,z)a + (v, Az)a = / (Aj,kl(ajyl)zk + Y1 Aj ik 3j2k) dx
0

1k,l=1

<.
Il

s

d m
/ aj (Ajyklylzk) dx = Z Z / n; Ajyklylzk da
Q Q

1 j=1k,i=1

M=
NE

1

x>

J

<.
I

Ay -z da=(A,y,2)s0, y,z € CH(Q;R™) N CO(LR™).
o0

Together, we obtain in space and time for L = MJ; + A and its adjoint L* = —L

(Lv,w)q = (v, L'W)q = (Mv(T),w(T)), — (Mv(0),w(0)), + (4nV, W)(0,7)x00 (21)
for v,w € C}(@Q;R™) N CO(Q; R™).
Example 5. For linear acoustic waves (18) we have

(L(v,p), (w, @), + ((v.p). L(w,q)) o = (pv(T), w(T)), + (57 'p(T), p(T))

— (pv(0),w(0)), — (v~ 'p(0),p(0)),,

'p(0
- (p,n- W)(o T)xd0 — (n-v CI) 0,7) x 9% -

For linear elastic waves (19) we have

(L(v,0), (W,T))Q + ((V70'>7L(W7T)>Q = (pv(T), w(T))q, + (C™ o (T), 7(T)),,
— (pv(0), w(0)), — (CflU(O)aT(O))Q

— (o, W)(O,T)xaQ — (v, Tn)(o,T)xaQ~
For linear electro-magnetic waves (20) we have

(L(E,H), (e,h)) , + ((E,H), L(e, h)) , = (20E(T), (7)), + (1oH(T),h(T)),
- (€0E(O),e(0))Q - (,UOH(O)a h(o))g
— (E xn,h)gryxo0 + (H X n,e) o rxon -
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Here we use the following calculus: for vectors a,b,c € R? we have a- (b x ¢) = (ax b)-c = (c x a) - b, and
for vector fields u,v: @ — R? we have V- (u x v) = v - (V x u) —u - (V x v). Thus, the Gau} theorem gives

(uxv)-nda:/ u- (v xn)da.
o0

/ﬂv-(qu)dx—/u-(va) dx = V~(u><v)dx:/

Q Q o0
The formulation in our examples of wave equations as Friedrichs systems yields symmetric matrices of the form

0 A, .
A = ( T B] with 4; € R™>m2 and m = my + meo. In order to obtain a well-posed problem with a

o A, 0
unique solution, boundary conditions are required. Here we select I'y = ... = I'y,, C 02 and the complement
Iy =09\TI'1 for k=m1 +1,...,m, as it is specified in the next section for acoustics in Ex. 6.
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2.2. Solution spaces

We define the Hilbert spaces

H(A, Q) = {y € Ly(%R™): z € Ly(Q; R™) exists with (z, w)g = (y, A*w)q for all w € CL((;R™)},
H(L,Q) = {V € Lo(Q;R™): z € Ly(Q; R™) exists with (z,w)g = (v, L*w)g for all w € Cé(Q;Rm)} ,

so that for y € H(A, Q) and v € H(L, Q) the weak derivatives Ay € L2 (Q;R™) and Lv € La(Q; R™) exist; the
corresponding norms are

I¥lacae) = IVIE+1AYIE . Ve = /IVIG + LI -

Depending on homogeneous boundary conditions on I'y C 92, k = 1,...,m, we define
Z={weC' (UR")NC(LR™): (A,w)y =0o0n Ty, k=1,...,m}, (22a)
V={weC(Q;R™)NC"(Q;R™): w(0) =0, (Anw)k =0on (0,7)x Ty, k=1,...,m},
(22b)
Vi={z¢ CHQ;R™) NCYQ;R™): z(T) =0, (Agz) =0o0n (0,T) x Ty, k=1,...,m},
(22¢)
where the sets I';, C 92 are chosen such that
(Az,z)q =0, z€Z, (23)
and such that for the sets I'; C 9€2 in the definition of the test space holds
(Anw,2Z)(0,1)x00 = Z (A W)k, 2k) OT)xry . WE CHQ:R™), ze V", (24)
k=1

This is obtained by taking I'; C 02 minimal such that for homogeneous boundary conditions in V and V*
(Anwvz)(O,T)XQQ = Oa LAS Va z c V* (25)

The choice of I'y, and I'j is essential in order to obtain a well-posed problem; this will be explained for our
examples in Sec. 2.7. Since we have A* = —A, this implies (Az,z)q = %(Anz,z)ag, and we observe I'; = T'.
Note that this is specific for our applications to wave problems but does not apply to general linear hyperbolic
systems.

Let Z C H(A,Q) be the closure of Z with respect to the norm || - [|(a,q), let V' C H(L, Q) be the closure of
V with respect to the norm || - [|g(z,q), and let V* C H(L*,Q) be the closure of V* with respect to the norm
|l - llt1(z=,@)- Then, we obtain from (21) and (24)

(Lv,w)g — (v,L*w)g =0, veV,weV™. (26)

Example 6. For linear acoustic waves (18) we have H(A, Q) = H(div, Q) x H!(Q), and for d = 2 the boundary
parts I'1 =Ty = I's and I's = 'y with 02 = I's UT'y in Ex. 5 yields that (26) holds with I'y = I}, and we
obtain
Z={(v,p) € H(div,Q) x H'(?):v-n=0onTy, p=0onTs},
Vo {(v,p) € Hl(o T; Lo (4 R™)) N Lo (0, T; H(div, Q) x HY(Q)):
0)=0, p(0)=0,v-n=00n (0,7)xI'yv, p=0on (0,T) x s},
Vo {(w,q) € Hl(o,T; Lo (% R™)) N Ly (0, T; H(div, Q) x HY(Q)):
w(T)=0, ¢(T)=0,w-n=00n (0,7)xT'v, ¢g=0o0n (0,T) x I's}.

<

InY =Lo(R™) and W = La(Q; R™) we use the energy norms

HYHY: (MYay)Qa yEY, HWHW: (MW,W)Qv WEW,
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and for the Lo adjoints

Y.z)q
Iylv-= sup 22 Sariy y)e wlhe = /(M- w, w)g .
zeY\{0} llzly

In V and V* we use the weighted norms

IVl =/ IVI3 + 1L Dzl = \/l2l3 + L7213 . veV, zeV”.

Remark 7. For the extension to visco-acoustic and visco-elastic models the same solution spaces can be used.
For mixed boundary conditions of Robin type or impedance boundary conditions a modification is required to
include additional conditions on the boundary, see Rem. 22. This relies on the fact that traces are well-defined
for smooth test functions in V*, but in general not in V', where traces on mixed boundaries are only defined in
distributional sense.
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2.3. Solution concepts

We consider different solution spaces of the equation Lu = f with initial and boundary conditions.
Definition 8. Depending on reqularity of the data, we define:

a) u € CHQ;R™) NC°Q;R™) is a classical solution, if

Lu=f in@Q=(0,T)xQ,
u(0) = uy inQatt=0,
(A )k = gk on (0,T)xTy, k=1,...,m,

for £ € CO(Q;R™), ug € CO(Q;R™), g € CO((0,T) x T').
b) u € H(L,Q) is a strong solution, if

Lu=f in@Q=(0,T)xQ,
u(0) = ug inQatt=0,
(Anu)k’:gk on (OvT)XFk7 k:17"'7m5

fO?” fe LQ(Q;Rm), ug € LQ(Q;RM), gr € LQ((O,T) X Fk).
c) u € Ly(Q;R™) is a weak solution, if

(u, L*z) =, z), z e V",

Q

with the linear functional ¢ defined by
<£a Z> = (faz)Q + (Mu(Ja Z(O))Q - (ga z)(O,T)X@Q

for data £ € La(Q;R™), ug € La(Q;R™), and gi, € La((0,T) x T'g).
We set g = (gk)k=1,....m € L2((0,T) x 0 R™) with gr, =0 on 0N\ T'.

Remark 9. For the variational definition of weak solutions we use smooth test functions V* so that the space-
time traces on {0} x Q C 9Q and (0,7T) x 9 C 9Q are well defined; with additional assumptions in Thm. 11

and Thm. 35 this extends to test functions in V*.

Example 10. A weak solution (v,0) € La((0,T) x (0, X); R?) of the linear wave equation (2) in 1d with wave
speed ¢ = \/k/p and homogeneous Dirichlet boundary conditions satisfies

(v, =pdw + 0, 7) 0,1)x(0,X) T (o, —K T + aﬂﬂw)(o,T)x(o,X) = (”0’“’(0))(0,)() + (0077(0))(0,)()

for all test functions w, 7 € CL([0, T x [0, X]) with w(T,x) = 7(T,z) = 0 for z € (0, X) and w(t,0) = w(t,X) =0
for t € (0,7"). This allows for discontinuities of the solution along the characteristics

{(zoict) E(O,T)szxoicteQ}:{CC) €(0,T) x Q: (xt%) : <i16> :0}

for some xy € R. Here we illustrate this for a simple example: consider a piecewise constant function

<UL> for xz < xo + ct, [v] = vr — oL,
(v(t,x))_ L
olt,x))
<UR> for z > xg + ct, [o] = or — oL
OR
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Then, we have for all (w,7) € Cc([0,T] x [0, X],R?)
T X
CAW —pOyw + O, T
/0 /0 <0> <—n_18t7' + (9zw> d dt
_ _ 1 _ 1
:/ <gt> _ ( PULW — K O'LT> e dt—l—/ <8t> _ ( PURW — K 0R7'> de dt
r<xo+tct T VLT + oLW z>x0+ct 8m URT + ORW
_ 1 —c\ (—pvLw — Kk lonT da+ 1 c\ (—purw— Kk loRT da
r=zotct Vitez U1 VLT + o w wezotet A /142 \—1 URT + ORW
_ 1 / (c) ' (—p[v]w — m_1[0]7'> da
V14 c? r=xz0+ct 1 [U]T + [U]w
L 6 ) ) -G o) () ()
= — c 1 — . da
T+ 2 Jomagret 0 w (o] 1 0/ \[o] T

e e () 22 () () e

We observe, that (v,0) is a weak solution if the jump ([v], [0]

A () =~ (i)

This is equivalent to the jump conditions [0] — ¢p[v] = 0 and [v] — ck~t[o] = 0.

)T is an eigenvector of

Ficure 2. Tlustration of a piecewise constant weak solution in 1d of the wave equation in
space and time with jumps along the characteristics. The solution is computed by the explicit
time stepping scheme in Example 10.

Based on the jump conditions we construct a weak solution

('U?O') € LQ((O»T) X (O7X)7R2)
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with X = ¢T that is discontinuous along the characteristics (¢, jAz £ ct) on a special mesh in space and time

depending of the wave speed ¢ with Ax = cAt and At = T/N, N € N, cf. Fig. 2. Starting with v(0,z) = v°

1
J—3
and 0(0,z) = o ; for (j — xr<x ) Ax, we obtain from the jump condition recursively for n =
d o(0, ;Jﬁf 1)Ar < x < jAw, btain from th dit ly fi 1,2,...,N
2
Uni% l(vn—l +Un—1 +O_n—1 O_n—l) o, = —
; . . . - . = —V1
J 2\ its -3 its i=%)’ -3 3’
n—1 1( n—1 n—1 n—1 n 1) .
2 2 2 2 2 n n
o — v, — U, 0. 0. =0 N v =—v
i 2 ]_‘_% ]_% j % + ]_% y ’ ’ ’ N+1 N—1>
1 n—3i n4+1 n—1 n—1
n _ 2 T2 2 2 n )
Vi1 5 (vj +vi_4 0; O ) , 0Z1 =01,
1/ not n—1 n—l nol
n - . 2 . 2 . 2 . 2 = n =gn
Oi_L = 2(11] vi_" +o; P Hoj_yg ), j=1,...,N, N4l = ON_1>

with suitable extensions for homogeneous Dirichlet boundary conditions for v, see Fig. 2 for an example.

Page: 19

job: MFOSpaceTime

date/time: January 25, 2022



20

2.4. Existence and uniqueness of space-time solutions
Now we construct strong and weak solutions by a least squares approach. Therefore, we define the quadratic

functionals

1 1
J(v) = SILv = £l v EH(LQ), T (2) = SlIL 2]y = (62), zEV".
Theorem 11. Depending on the regularity of the data, we obtain:
a) Assume that Cp > 0 exists with
Ivlw < CLl|Lvllw~,  vEV. (27)

Then, a unique minimizer u € V of J(-) exists, and if L(V) = W, the minimizer u € V is the unique
strong solution of

(Lu,w)g = (f,w)q, weWw (28)

with homogeneous initial and boundary data.
b) Assume that Cp >0 and Cy > 0 exists with

l2llw < CL-

L*z|lw~, [(¢,z)] < Collz||v~, zeVr. (29)

Then, J*(-) extends to V*, a unique minimizer z* € V* of J*(-) exists, and if L*(V*) C W is dense,
u=L"z* € Ly(Q;R™) is the unique weak solution of

(u,L*z)g = (¢,2), zeV™. (30)
Proof. ad a) The functional J(-) > 0 is bounded from below, and any minimizing sequence {uy, }neny C V with

lim J(u,) = inf J(v) := Jins

n— oo vev

satisfies

1 , 1 , 1 ) 1 2
I = Ll = S Zun — £l + 51 Zup — £l - HLE(un ) — wa*

1
=J(u,) + J(ug) — 2J(§(un + uk))
< J(up) + J(ug) —2Jinys — 0 for n, k — 0.

Condition (27) implies the norm equivalence

IVl < vllv = IV + 1LVl < 1+ C2livlw-.  veV, (31)

so that the minimizing sequence is a Cauchy sequence converging to u € V. Since J(-) is strictly convex, the
minimizer is unique. Moreover, since J(-) is differentiable, u is a critical point, i.e.,

0=0aJ(u)[v]= (Lu—f,Lv)y- = (Lu—f, M 'Lv)g, veV.

If L is surjective, this implies (28) by inserting w = M~1Lve M~1L(V)=W.
ad b) By assumption (29), J* and ¢ are continuous in V* with respect to the norm in V*, so they extend to V*,
and we observe that J* is bounded from below by

1
>
—2(1+C%.)

2o~ Crlal

T (2) = 5L 725 = (¢2) 12| ve 2 —5C;(1+CL).

By the same arguments as above a unique minimizer z* € V* exists characterized by

0= 00" (z")z] = (L7, L'2)w- — (L,7),  z€ V™.
Inserting u = L*z* implies (30). Now assume that @ also solves (30); then, (u — u, L*z)g = 0 for all z € V*.
Since L*(V*) is dense in W, this implies u = @, so that the weak solution is unique. O

Remark 12. Strong solutions with inhomogeneous initial and boundary data exist, if the initial function ug in €2
can be extended to a function ug € H(L, Q) satisfying the boundary conditions.
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2.5. Mapping properties of the space-time operator
Lemma 13. ||v|lw < CL||Lv||w~ for v €V holds with Cy, = 2T.
Proof. For v € V we have v(0) = 0, and using (23) we obtain

T T
Hvll%v=/0 (Mv(t),v(1) dt:/o ((Mv(t),v(t))ﬂ— (MV(O),V(O))Q) dat
T t T "
:/O /0 ds (Mv(s),v(s)) dsdt:Q/O /0 (Mosv(s),v(s)), dsdt
T t
= 2/0 /o ((M(’)Sv(s),v(s))Q + (AV(5)>V(3))Q) dsdt
T t T
= 2/0 /0 (LV(S),V(S))Q dsdt = 2/0 (T*t)(LV(t),v(t))Q dt

< 2T || Lv lw+[[v/[w -
Since V is dense in V, this extends to V. 1

As a consequence of Lemma 13, the operator L: V — Lo (Q; R™) is injective and continuous, i.e., L € L(V,W).
Corollary 14. L(V) C La(Q; R™) is closed.

Proof. For any sequence (W, )peny C V with lim Lw, =f € W we have
n—oo

lWn—willw + [[ LWy, — Lwg|lws < (Cr, + 1) ||[Lw,— Lwg|lw+ — 0, n,k— oo,

so that (w,,), is a Cauchy sequence in V; since V. C H(L, Q) is closed, the limit w = limw,, € V with Lw = f
exists. 0

Let the domain D(A) = Z C H(A, Q) of the operator A be the closure of Z defined in (22a). Then, (23) gives
((M + TA)z,z)Q = (Mz7z)Q >0 forallz=#0and 7 € R, i.e., M 4+ 7A is injective on Z. Moreover, we require
that M +7A is surjective on Z, which is achieved in our applications in Sect. 2.7 by a suitable balanced selection
of T'y, C 09.

Lemma 15. Assume that M + 17A: Z — Lao(Q; R™) is surjective for all 7 > 0.

Then, L(V) C La(Q;R™) is dense.

Proof. For f € Ly(Q;R™), N € N and tn,, = n% let fn € Ly(Q;R™) be piecewise constant in time with

fNn = fNl(tn.nr tn.,) SO that Nlim |£x —f|lg = 0. Since the operator M + 5 A: Z —s Ly(Q; R™) is surjective,
’ ’ —00

starting with uy o = 0 we find uy, € Z with

T T
(M+NA)UN,n:uN,n—1+NfN,na n=1,...,N.

Let uy € HY(0,T; Z) C V be the piecewise linear interpolation: for n =1,..., N set

t —t t—t _
uy(t) = Lqun_l 4 Nn=l

UNn t e (tN,n—latN,n)~
tN,n - tN,nfl

tNn — tNn-1
Then, we observe by construction Luy = fy and thus A}im | Luy — f]o = 0. O
—00

Remark 16. Together with Cor. 14 we observe L(V) = Lo(Q;R™), i.e., the operator L: V — Ly(Q;R™) is
surjective.

A corresponding result can be achieved for L*(V*) as the same arguments as in Lem. 13, 15, and Cor. 14 hold
for L* and V*. We obtain

lzlw < CLl|L7zlw~, zeV”
i.e., Cp, = Cp+. The operator M — 7A: Z — Lo(£2; R™) is surjective for all 7 > 0, and L*(V*) C La(Q;R™) is
dense which implies L*(V*) = Lo (Q; R™).
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Remark 17. Since L(V) and L*(V*) are dense in W, we have

V={veH(LQ): (Lv,z)g = (v,L*z)q for z € V*},
V* = {z € H(L*,Q) : (L*z,v)g = (z,Lv)g for v € V},

i.e., V* is the Hilbert adjoint space of V, and V is the Hilbert adjoint space of V*.
Lemma 18. Forz € V* holds

12()[IF < [zl -

Proof. We obtain, using z(T") = 0,

T
I12(0)[I5- = ll2(0)I3- — l|=(T)I3 = —/0 Orllz(t)lf3- dt = —2(M 0z, 2)q

= —2(Mdz,2)g — 2(Az,2)g = 2(L*2,2)q < ||z|} .
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2.6. Inf-sup stability
From the previous section we directly obtain the following results.
Theorem 19. The bilinear form b: V. x W — R, b(v,w) = (Lv,w)q, is inf-sup stable satisfying

. b(v,w) . b(v,w) 1
inf sup ———————— = inf sup ——————— > [ i= ——— .
Jiiee

vev\{or wew\{o} IVIVIWllw  wewto}veviioy IVIvIwlw —
Thus, for all f € Lo(Q,R™) a unique Petrov-Galerkin solution u € V' of

b(u, w) = (f,w) weWw,

Q )
exists, and the solution is bounded by ||uy < 87|y~

Proof. For v € V \ {0} we test with w = M ~!Lv, so that with (31)

b(v,w) _ b(v,M~'Lv) 4 1
sup e Ty =M Lvllw > ———IIvlv-
wew\{o} [[Wlw — [[M~'Lv|lw V1+C?
The existence and the a priori bound are now an easy consequence. O

Corollary 20. Due to our previous results on the adjoint operator L* we find correspondingly that for all d €
L2(Q,R™) the dual problem L*z = d admits a unique solution z € V* which is bounded by ||z|y+ < 871|d||w~.
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Corollary 21. Additional reqularity for the right-hand side £ € H*(0, T; Lo(Q; R™)) implies for the solution the
regularity u € H(0,T; Lo(Q; R™)) and the estimate ||Oullw < CL||0:f]||w+ .

Proof. This simply follows from Lu = f, which formally gives for the derivative in time Lo;u = O,f. If 0,f € W,
a solution v € V solving Lv = 0,f exists, and since the solution is unique, v = d;u. (|

2.7. Applications to acoustics and visco-elasticity
Acoustic waves. In the setting of Example 6 we have A(v,p) = —(Vp,V - v) and
(A(Vap)a (W7 q))Q + ((Vap)v A(W7 Q))Q = _(p7 n- W)aﬂ - (l’l *V, q)BQ .

We now show that the assumption in Lem. 15 is satisfied. For all (f,g) € La(€;R%*!) and 7 > 0 we define in
the first step p € H!(Q) with p = 0 on I's by solving the elliptic equation

T(p7'VP, Vo) + (k7P 0)g = (9:0)o — (07 'f, Vo), (32)
for ¢ € HY(Q) with ¢ = 0 on I's. Then, we define v = p~1(7Vp+f) € Ly(2;R?), and inserting (32), we observe
(v.V8)o=(9:0)g = (57'2.0). 6 €CUY),

ie., V-v=—g+kr1pecLy), and thus
0=(v,Vo)g+ (V-v,0),=(n-v,¢)aq, p€C(Q), p=0o0nTs,
so that n-v =0 on 9\ I's = I'y. Together, (v,p) € Z and
(M +7A)(v,p) = (f.9).

Moreover, the solution is unique, so that M + 7A is injective and surjective.

Visco-elastic waves. For the system (13) we set y = (v,00,...,0,)" and
p 0 - 0 0 div .- div 000 0
1 00 O 0
0 C; e 0 )
M= , A=—|. , , D=M |0 O 7
4 Do -
0 C; e 0 0 0 0 1

with m = 2+ 3(1 +r) components for d = 2 and m = 3+ 6(1 +r) for d = 3, and where D € Lo (€ RIE™) is a
positive semi-definite matrix function. This defines the operator Dy(z) = D(z)y(z), and we have (Dy,y)q > 0
for all y € Lo (Q; R™).

The space-time setting is extended to the operator L = Md; + A + D, and the formal adjoint operator is

L*=—-MO0; — A+ D. The assumption in Lem. 15 can be verified analogously to the acoustic case.

Remark 22. The extension to mixed boundary conditions on I'g C 952 requires Lo regularity of the traces on
the boundary part I'g. Then, extending the norm || - ||y by a corresponding boundary term again defines V'
as closure of V with respect to this stronger norm, and the space-time operator L is extended by a dissipative
boundary operator D.

Bibliographic comments. Least squares for linear first-order systems for finite elements are considered in [Cai
et al., 1994, Cai et al., 2001], where also the LL* technique is established which is used to prove Thm. 11 b).
Here this is applied to the space-time setting, see [Dorfler et al., 2016, Dorfler et al., 2019, Ernesti and Wieners,
2019b, Ernesti and Wieners, 2019a]. The extension to mixed boundary conditions is considered in [Dérfler et al.,
2020].

The inf-sup constant  in Thm. 19 is not optimal for the continuous problem; for an improved estimate see
[Ernesti and Wieners, 2019a, Lem. 1]. Here, it relies on the estimate for C, in Lem. 13 which is generalized in
Thm. 26 for the approximation. The suitable choice of boundary conditions for general Friedrichs systems is
discussed in [Di Pietro and Ern, 2011, Chap. 7.2].
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3. Discontinuous Galerkin methods for linear hyperbolic systems

We develop a space-time method with a discontinuous Galerkin discretization in space for linear wave problems.
For the ansatz space we use piecewise polynomials in every cell, where the traces on the cell interfaces can be
different from the two sides. Therefore, we need to extend the first-order operator A to discontinuous finite
element spaces. Here, we introduce the discrete operator A with upwind flux, where the evaluation of the
upwind flux is based on solving Riemann problems, i.e., by construction of piecewise constant solutions in space
and time. We start with simple examples for interface and transmission problems, and then consider the general
case for waves in heterogeneous media.

3.1. Traveling wave solutions in homogeneous media

We consider linear hyperbolic first-order systems L = M0; + A introduced in Sect. 2.1, and we start with
the case of homogeneous material parameters, so that the operator M is represented by a symmetric positive

definite matrix M € R{{ 1™ which is constant in (2.

Let (A, w) € RxR™ be an eigensystem of A, w = AMw, and let a € C!(R) be an amplitude function describing
the shape of the traveling wave. Then, we observe for y(t,x) = a(n-x — A\t)w

Oy (t,x) = —Xd'(n-x — M)w,
02,y(t,x) = nja'(n-x — A\t)w,
LY(tv X) = Mﬁty(tv X) + Ay(t7 X)

=d(n-x-— /\t)(— /\M—|—zd:njAj)w
j=1
= a’(n-x—/\t)(An—/\M)WZ 0,

so that y solves Ly = 0 for all t € R in Q = R

Example 23. For acoustic waves with wave speed ¢ = 1/k/p we have

_ (Vv _( PV _ _( pm _ (Fen
Y<p)7 My(l‘i_ll'))’ Any* (Vn)’ )\G{O,iC}, W( K}).

For elastic waves with wave speeds ¢, = /(2p + A)/p for compressional waves and ¢s = +/p1/p for shear waves,

we have
. A% . pvV _ on
= (o) = () A=y )
_ Fepn — ToT
A€ {0 Eep, ke, wp = (2,unnT + )\I) W T (,u(nTT + THT)) ’

where 7 € R? is a tangential unit vector, i.e., 7-n =0 and |7| = 1.
For linear electro-magnetic waves with wave speed ¢ = 1/,/e we have

E cE nx H
y_(H>7 My_</,LH>7 Any__(-an)’
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3.2. Reflection of traveling acoustic waves at boundaries

In the next step we consider solutions of the acoustic wave equation in the half space

(592)=()  maustmertinno)

with initial value

depending on a € C1(R) with a(n-x) =0 for n-x < ctg and to > 0, i.e., suppa C [—o0, ctg].
The wave starts traveling from right to left, and at time ¢ = ¢ it reaches the boundary. In case of a homogeneous
Neumann boundary condition v - n = 0 it is reflected, i.e.,

a(ct +n - x) (cn) 0<c(to—t) <n-x,
<V(t,X) _ i
p(t,x) cn —cn

a(ct +n-x) <K>+a(ctn~x)< ) O<n-x<c(t—ty).

K

Otherwise, with homogeneous Dirichlet boundary conditions p = 0 the reflection also changes sign, i.e.,

a(ct +n-x) <cn> 0<c(to—t) <n-x,
<v(t,x) B k

p(t7x) cn —cn
a(ct +n - x) <H>—a(ct—n-x)< ) O<n-x<c(t—ty).

K
For smooth amplitude functions this is a classical solution.

3.3. Transmission and reflection of traveling waves at interfaces

Now we consider solutions of the acoustic wave equation in R? with an interface

poyv — Vp 0) . QL:{xeRd:n~x<O},
Z = QL UOR,
(n 1atpv~v) (0 LR Op = {x€R%:n.x >0}

with constant coefficients (pr,, x1,) in Qp, and (pr, kr) in Qr defining M; and Mg, starting in Qg with

<;((8:;3) = a(n-x/cg) (ZHR> , a(n-x) =0 forn-x < cgrty, to >0,

where Z1, = \/ELpL, Zr = /ERPR are the left and right impedances, and where ¢, = y/k1L/pL, cR = \/KR/PR

are the left and right wave speeds. Note that we use a different scaling of the eigenvectors for the transmission
problem.
We state continuity at the interface to determine a classical solution and obtain

a(t+n~x/cR)<Zn> 0<cr(to—t) <n-x,
R

(v(t, x))) _ a(t +n-x/cg) <ZHR>

+ fra(t —n-x/cg) (;:) 0<n-x<cg(t—rto),

BLa(t—Fn-x/cL)(ZIl) en(top—t) <n-x<0
L
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with transmission and reflection coefficients

27 70 — Zn
Pr=——""1" Po=——01rH
Zr + 71, Zr + 71,

derived from the interface condition A,[y] = 0; by the interface condition we obtain L(v,p) € Lgjoc(R X

R?; R¥1), so that (v, p) is a strong solution.
We observe that no wave is reflected if the impedance Z;, = Zg is continuous. This properties can be used to
design absorbing boundary layers.

t=20.0
t =0.50
t=1.0
t=15
t=20

FIGURE 3. The evolution of the pressure distribution with reflection at a fixed boundary (left,
cf. Sect. 3.2), and reflection and transmission at an interface (right, cf. Sect. 3.3) of traveling
waves.
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3.4. The Riemann problem for acoustic waves

Now we consider weak solutions in Lg joc (Rd; Rd‘H) of the acoustic wave equation

pOyv — Vp 0 . QL={xeR%:n x<0}
= Q UQ 5 ?
(nlatp—v\f) (0) LR {QR: {xeR%:n x>0}

with constant coefficients (pr,, x1,) in Qp, and (pr, xkr) in Qr, and with piecewise constant initial values
v(0,x) VL) (V(O x)) (VR>
’ = , x e s ’ == 5 x €N )
(p(O, X)) (pL b p(0,x) PR R

called Riemann problem. The weak solution is of the form

VL x-n< —cyt
L
<VL>+5L<H> —ct<x-n<0
(V(t,X) . pL ZL
)
VR + Br n 0<x-n<crt
PR —ZRr
VR crt <x-n
PR

depending on B, g € R determined by the flux condition

() (2) = () (2)

Tan - — Zin-
which yields 8, = P ;_L f’I;R [v] , BrR= [P 7 J_“I;R[V] depending on [p]=pr — pL, [V]=VR — VL.

For discontinuous initial values the solution is discontinuous along the characteristic linear manifolds x-n+cpt =
0 and x - n — cgt = 0 in the space-time domain, so that we only obtain a weak solution.

3.5. The Riemann problem for linear conservation laws

We now construct a weak solution of the Riemann problem for general linear conservation laws, i.e., a piecewise
constant weak solution of Ly = 0 in LgleC(Rd; R™) with discontinuous initial values

YL,YRERm7 ML?MRER"LX”L-

sym

YL inQL:{xeRd:n-x<O},
YO<X): . . d.
yr inQr={xeR% n- x>0},
Let {()\?,w?)}

,, and {()\?,w?)} ., be eigenpairs, i.e.,

j=1,..., j=1,...,

AWy =AMy wy, Aawit = NIMpwit, wi- Myw) = wit - Mpwit =0 for j # k.
A solution is constructed by a superposition of traveling waves

YL + Z BJLW? X € QLv
jrxn>Abt

YR+ X Biwi x€Qg,
J: x-n<>\?'t

Y(tax) =

and by solving the equation for BJL, BJR (only depending on [yg] = yr — yL)
Ay(yo+ Y AwE) =Au(ye+ Y ARwR) on a9 N o0, (34)
j: )\;T‘<O Ve k?>0

Then, the flux A,y is continuous for ¢ > 0, and the piecewise constant function y is the unique weak solution
of Ly = 0 with initial value y(0) = yo.
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In summary, the solution of the Riemann problem defines the upwind flux

Ay = Ay(y+ Y iwh). (35)
j: A§‘<0

On the boundary, depending on the boundary conditions, a system corresponding to (34) is solved defining an
operator AP with

APy = Agyr + AMg (36)
depending on the boundary data g. This is specified in the following sections for our examples.

3.6. The DG discretization with full upwind

Let K, be a set of open convex cells K € K, with K € Q C R? such that Q, = |J K is a decomposition of
KeKky,

Q with skeleton Q) = Q\ Q, = |J 0K.
KeKy

Let Fx be the set of faces F C 0K, such that F = 9K N dNQ for boundary faces, and such that for inner
faces ' C 0K N Q the neighboring cell Kr € K, exists with F = 0K N 0Kp. Let Fj, = Uk Fr be the set
of all faces. For the boundary conditions on I'y C 92 we assume compatibility of the decomposition so that
Ly = UFe]fhan F.

Let Yy, C P(Q4;R™) = [[ ek, PK;R™) be a discontinuous piecewise polynomial finite element space, where
P(K) denotes the space of polynomials of any degree in K.

For y, € Yp, let yn k € P(K;R™) be the continuous extension of y,|x to K. On inner faces F' € F, N, we
define by [yr]x,r = Yh,k» — Y,k the jump across F.
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Lemma 24. We have foryy € Yj:

yh € HAR™) — A [yh]KF:O forall F e FrnNQ, KeKy.

Lng

Proof. We define ), x = Ay, kx in K, and since |Q \ Q4|q = 0, this defines a function f;, € Ly(2;R™) by
£1)x = £1,5. Now we observe for test functions z € CL(Q2,R™)

1
(f}hZ)Q + (yquZ)Q = Z ((fh,K - Ayh7K7Z)K + (AnKyh,K7Z)aK) = _5 Z Z (AnK [yh]K,F7Z)F
Keky KeK, FEFrNQ

using AUKF = —A,,. Thus, y, € H(A,R™) and Ay, = f}, € Ly(Q;R™) if and only if A, [yx]x,r vanishes on
all inner faces. O
For yn,z, € Yy, we observe
(Ayn,zn), = Z (div Ayn i, 2k ), = Z ((AnKYh,K,Zh,K)aK - (Yh,K,AZh,K)K) :
Kekp Keky

Inserting the upwind flux (35) defines the DG approximation A, where A, _ is replaced by A" yy, i.e.,

(Anyn,zn)g, = Z ((AEI;WYmZh,K)aK — (Yhx, Azh,K)K) (37)
Keky
= Z <(AYh,Ka Zn K)o + Z (A yp — AnKYh,mZh,K)F) .
Keky FeFx

For inhomogeneous boundary conditions, using (36), the corresponding right-hand side is defined by

<£h7 Zh> = (f, Zh)Q — Z (Aﬁndg, Zh)F . (38)
FeFnp,NnoQd

As we see in our examples, the boundary term is consistent with

bnd —
(An &hs Z) (0,T)x0Q — Z (gku Zk)(O,T)XFk (39)
k=1
for all test functions z € D(A) with homogeneous boundary conditions zp =0 on 9Q\T'y, k=1,...,m.
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Consistent extension of the discrete DG operator. For sufficiently smooth functions y € H!(£2;,; R™)
traces on the skeleton 9Qyexist in Lg, so that the discrete operator A, extends to A, € L(H*(Q,;R™),Y},) by

Ay z)g = > ((Ay,2nk) o + D (ASy = Ay y.20k) ) (40)

Keky FeFx
for y € HY(Qp,; R™) and z;, € Y3. Since in the conforming case by construction
ANy = An VK KeKy, y e H(Q;R™),
we obtain consistency for sufficiently smooth functions, i.e.,
(Ahy,zh)Q = (Ay, zh)Q, y € HY (S R™), 2, € V). (41)

In case of homogeneous boundary conditions, this extends to y € Y3, N D(A); this will be proved for acoustics
i 25. . . s . .
g%%elfheo full upwind discretization for the wave equation

We evaluate (35) using the eigensystems in Example 23. Therefore, we assume that the material parameters
are constant in every cell K and the possible material interfaces are aligned with the mesh.
For acoustics, we obtain on inner faces F' € F;, N from (33)

e () + o () = o (G e (25,))
= 0= () A () - (22)

+ Zgpnk - [Vilgr (Zxng
— Aupw Vh —A Vh,K) o [ph}K,F F y 49
ag (o) = dne (e s 1 ()

by solving the equation for Sx. This extends to the boundary by defining the jump terms depending on the
boundary conditions. On boundary faces F' € Fp, N 92, we obtain from

o () + o (25) ) = (st ) = e (57 ()

in case of Dirichlet boundary conditions Sx = i, which corresponds to the numerical fluxes [pn|x r = —2pp,
and ng - [vp]x,r = 0. This applies to the static boundary I's for the pressure (14f).
In case of Neumann boundary conditions we obtain Sx = 1 corresponding to ng - [vy]x rp = —2ng - vy and

[pr]k, 7 = 0, which applies to the dynamic boundary I'y for the velocity (14e). In both cases we extend the
impedance on boundary faces F' by Zk, = Zk.

The DG operator for acoustics and visco-acoustics. The operator Ay € E(Yh, Yh), Ap = > Apx for
KeKy,
acoustics (with » = 0) and visco-acoustics (r > 1) with full upwind (42) on inner faces and (43) on the boundary

is explicitly given by

(Ah,KYiuZh)K = - (V- vh,mqh,K)K — (Vph,K,Wh,K)K (44)
1
- Tt T + Zxp0k - [V JqhK + Zxng - W,
FEZJ:K ZK + Zkp (Ipnlscr + Ziceme - Vil rs gn i + Ziense - Wi i)

- (V- Vh,Kaq}LK)K - (Vph,K,Wh,K)K

1
- Z ﬁ({?h]K,F + Zgp0k - [Vilk Py Ghk + ZK0K - Wh k)
reFrnn 7K Kr

1
+ Z 7(ph,K, Gnh,x + Zgng 'Wh,K)F
FeFknls
+ Z (nk - Vi, Ghx + Zxng -Wh,K)F

FeFrnl'y

for yn = (Vh,Pohs - Prn)s 2o = (Why oy - -+, Grn) € Yo With pp = pon + -+ Prny g = qop + -+ + Gy
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For inhomogeneous boundary conditions we obtain the right-hand side (38) by £;, = > £, x with
Kekp

(hrcr2n k) = (Fnyzni) o + Z (ps, Zg'an,x + 1k SWhK) Tt Z (9v,anx + Zxng - Wi ) -
FeFkNTs FeFgnl'y

(45)

Lemma 25. The DG discretization (44) is
a) consistent, i.e.,

(Ahy,Zh)Q = (Ayvzh)gv y € Yh n D(A) , Zp € Yh,
(Athaz)Q:*(thAZ)Q’ Yu EYh, ZEwY‘hﬁD(14)7

b) monotone / dissipative satisfying

1 1
(AthJh)Q =3 Z Z Tn+ Zrn <H[Phhr<F||fT + ZKZKFHnK . [Vh]K,FHj;) >0, Yh €Y.
KeKy FeFk F
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Proof. Tt is sufficient to consider r = 0. For y = (v,p) € Y3, N D(A) we obtain ng - [v]gx r = [plxr = 0 for
FCFreQ p,=0onF e FxNI'y,and ng -v=0on F € Fg NIg, so that consistency is obtained by

(Any,zn), = Z (AnKYK ZhK) = Z (Ay,znk) o = (Ay,zn) g
KeKy, KeK,

for z;, € Y}, since all flux terms on the faces are vanishing.
Integration by parts for y, = (vi,pr) € Yy, and z = (w, q) € Y, N D(A) yields dual consistency by

(Anyn.z),, = Z (- (V-vhi ax) o — (Voh g, WE)

KeKy
1
- 7([1%]1{,1«“ + Zgpng - [Vilk F, 9k + Zgng - WK)
Fe;rm ZK + ZKr " r
+ Z (ph7K7nK'WK)F+ Z (nK'vh,KaqK)F>
FeFgNl's FeFxnl'y
= > ((Vh,K7 Vi) g+ (Prr, V- W)
Keky
1
- Z m([ph]K,F + Zkp 0k - [VilkF, Gk + Zk0K - WK)
F

FeFrnNQ

+ (me,nK 'WK)F + (HK 'Vh,K7QK)F)>

I
—
|
<

=
X
o
N
B
=

1
+ I (([Z%]K,FaCIK) + Zi Zkp (0K - [Vilk,poDE - W) ))
FG;K:QQ Zk + ZKr r ) i

For yj, = (v, pn) € Y, we obtain the identity

(Anyn.yn)g = Z (An&Yn Yn)

KeKky,
= Z (‘ (V ) Vh,KaPh,K)K - (Vph,K,Vh,K)K
Kekp
1
- ———(Ipnlx,F + Zx etk - [Vi K, P, Ph ik + ZxDK -V,
FE;K:QQ ZK+ZKF ([ h]KF KrpllK [ IL]KF Ph,K KK hK)F

1
+ Z Z(ph,x,ph,K + Zxng Vi) p + Z (ng - Vi, phx + ZrDk - Vh,K)F>
FeFrgnI's FeFrNI'y

1 1
PP M(!|wK,F||2+ZKzKFHnK-[vuK,FHi)
F

KeKk, FEFK

since we obtain, using (V . Vh’K7ph’K)K + (Vph,K, Vh,K)K = (nK . vh,K,ph,K)aK7 for the remaining terms

Z <— (HK 'Vh,Kvph,K)aK

Kekn,
: (
B 7 \Z ng - v 4+ Zr (0w v )
FEEFK:OQ Zx + Zr. & ([prlk, Pk - Vik) o+ Zre (0K - Vil kP, PhK) 5
+ E (ph7K7nK ~Vh,K)F + Z (nK 'Vh,Kyph,K)F> =0.
FeFrnlv FeFgnl's
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]

The DG operator for visco-elasticity. The operator A, = >, Apx € £(Yh,Yh) with full upwind is

KeKy
defined by

(Anxyn zn) = —(V-onx, Ulh K)o — (EVhK), M)

Z I Z}’( (HK (lon]x.rmk + 2% [Vilk,F) 0k - (Mn g0k + Z}’(Wh,K))F

FeFxk
1 . S
75 7 (IIK x ([on)k,pnk + Z5, [Vilk,r), 0K X (Mn, g0k + Z}(Wh,K))

Ferg K Kr F
for yn = (Vi,00,hs---s0rn), Zh = (Wh Moy - -, Mrk) € Yi, 0p =Y 0 p, and n, = > n;n. The coefficients
Zy =+/(2p+ Np |k and Z5, = \/pp |k are the impedance of compressional waves and shear waves, respectively.
On boundary faces F' € Fj, NT'y, we set [vy]x,r = —2vy, and [0k rg = 0, and on F € Fj, NT's we set
[Vilk,r =0 and [o}]x pig = —20,nk. We have

(4 DD e - (londacomae) [ + 25 Zi, |Imac - vl
thaYh 70 4 2%
KGICh FeFx F

e x (nlrnse) [ + ZicZiep Imae < Wadierlli
Zy + 7, -

The DG operator for linear electro-magnetic waves. For (H, Ey), (pn, %) € Yy, we have

(An(Hp, Ep), (‘Ph,Ka"/’h,K))O)K = (curl Ey k', 0,k )0,k — (Curth,Kv"/)h,K)O,K

1
— —((Zg. | E +ng x H , N X
F; Zw + Zrer (( Kp[ h]K,F K [ h]K,F K SDh,K)F

+ (Zxpng % [Eplk,r — Hplk,r, Zgng x ¢h,K)F)

+ Z (¢ng x Egp,ng X oK),
FeFxMI

with coefficient Zx = /ex /ux and impedance (.

On boundary faces F' € F;, N T'g, perfect conducting boundary conditions are modeled by the (only virtual)
definition of ngxXE, = ngxE, and ng xH), = ng XHh, i.e., ng X [E]K,F = 2ng xE;, and ng % [Hh]K,F =
0. On impedance boundary faces F' € Fj;, N Ty, we set ng X [E]x rp =0 and ng x [Hy]xr = —2ng x Hy,.
With the same arguments as for the acoustic case we obtain

(Ah(Hh, Eh)7 (Hh’ Eh))O,Q

1 Z Z ZxZxp |0k x [Eh]KFHi; + [|ng x [Hh]KFHip

KeK), FEFK IK + ZKr
S Y B 0.
FeF,NnI'y

Bibliographic comments. An introduction to discontinuous Galerkin methods for hyperbolic conservation
laws is given, e.g., in [Hesthaven and Warburton, 2008, Hesthaven, 2017]. The numerical flux for wave equations
is evaluated in [Hochbruck et al., 2015] and extended to viscous waves in [Ziegler, 2019]. For the explicit
evaluation of the numerical flux for inhomogeneous boundary conditions we refer to [Dérfler et al., 2019].
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4. A Petrov—Galerkin space-time approximation for linear hyperbolic systems

We introduce and analyze a variational discretization in space and time by extending the discontinuous Galerkin
method in space to a Petrov—Galerkin method in time and space. We verify discrete inf-sup stability, and this
yields well-posedness, stability and convergence for strong solutions. By duality, this extends to convergence for
weak solutions. Finally, we address a posteriori error bounds. For a given error functional, the corresponding
dual solution is computed and an error indicator is defined by weighted residuals. A reliable error estimator of
weak solutions is obtained computing local conforming reconstructions.

4.1. Decomposition of the space-time cylinder
For the discretization, we use tensor product space-time cells combining the mesh in space (see Sect. 3.6) with
a decomposition in time. For 0 =ty < t; < --- <ty =T, we define

I, = (to,tl) U'“U(tN,l,tN) cl= (07T)

Together with the decomposition in space 2, = |J K into open cells K C Q C R? we obtain a decomposition
KeKy,

Qn=1InxQ = U R of the space-time cylinder Q = I x Q C R'T? so that Q = Q;, U9Q},, where 9Qy, is
RERy
the space-time skeleton.

For every space-time cell R = (t,—1,t,) X K we select polynomial degrees pg = p,,x > 1 in time and gg =
@n.x > 0 in space. This defines the discontinuous test space in the space-time cylinder

Wi =[] Pon-1 @Pop(K;R™) CP(I, x @ R™) = [[ P(R;R™) C Lo(Q;R™),
ReR} RER}

where P, are the polynomials up to order p, P (K) are the polynomials up to order ¢ in K, and P(R) are
polynomials of any degree in R.
Defining the discontinuous spaces

Yon= H Py, « (BGR™) CP(Qp;R™) C Lo(R™), YVi=Yip+ -+ YN,
KeKy

we observe W}, C L2(0,T3Y},), and in every time slice wy(t) € Y, C Y}, for all ¢ € (t,,-1,t,) and wy, € W),

4.2. The Petrov—Galerkin setting

Let Ly, = My0; + Dy, + Ay : HY(0,T;Y,) — L2(0,7T;Y}) be the linear mapping approximating the differential
operator L = M9, + D + A with the following properties:
a) My € L(Y,Ys) is uniformly positive definite, i.e., cps > 0 exists with

(Mypyn,yn)o > emllynlliy Yh € Y (46a)
b) Dy € L(Y3,Y},) is monotone, i.e.,
(Dryn,yn)a >0, Yh € Yi; (46D)

c) Ap € L(Y},,Y},) is monotone and consistent, i.e.,

(Anyn,yn)a >0, Yh € Yn, (46¢)
(AhZaYh)Q = (AZ7Yh)Qa
(Ahyh, Z)Q = *(Yhy AZ)Q R z€eY,N D(A) . (46d)

The operators Mp,, Dy, Aj, do not depend on the time variable t € (0,T), i.e., they are defined in Y}, C P(25; R™),
but the operators do not depend on the chosen local ansatz and test spaces.
In the next step we construct a suitable ansatz space Vi, C P(Qp; R™). In every time slice (t,—1,t,) let

Hn,h: LQ(Q; Rm) — Yn,h
be the weighted Lo-projection defined by

(Mth,hY7zh)Q = (Mhya Zh)Qa y € LQ(Q7Rm)a Zp € Yn,h
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corresponding to the norm

HYhHYh = \/m7 Yn €Ya

For v, € P(I x Qp; R™) let vy, n € P([tn—1, 0] X Qs R™) be the extension of vp |, +.)xq, t0 [tn—1,%s]. Then,
we define

v, = {vh c 11 P,, ® Py, (K;R™) C P(I, x Qy; R™):
R=(tn—1,tn)xKER},

vi(0) = 0, Vin(tno1) = My Va1 (tn_1) for n =2, ... ,N} CHY0,T:Y3).

By construction, we have 9;V, = W), in I, and dim V), = dim W},. Note that V}, includes homogeneous initial
data. For inhomogeneous initial data uy we define the affine space

Vi(ug) = {vh € 11 Py, @ Py, (K;R™) C P(I, x ;3 R™):
R=(tn_1,tn)xKER,
v (0) = Ty pug for ¢ =0, Vi p(tn-1) = Mo Va1 (tn_1) for n =2, ... ,N} c HY(0,T;Yy).

4.3. Inf-sup stability (47)

Let
I}, : Ly(Q;R™) — Wy
be the projection defined by

(MhHhV,Wh) = (MhV,Wh) VvV E LQ(Q;Rm), wp € Wy, .

Q Q’

Note that HthVh = MhHth and HhAth = AhHth for Vp € LQ(O,T; Yh).
The analysis of the discretization is based on the norms

HWhHWh = (thh’wh)Q’ HthW;: = (Mizlfh’fh)Q7 Wi, fn € Lo(Q;R™)

and

Ivally, = Vlvll, + 00 Lovall, - va € H O, T3%) (48)

Theorem 26. The bilinear form by: H'(0,T;Y}) x La(Q; R™) — R defined by by (v, wr) = (Lpvp, Wi)g 18
inf-sup stable in Vi, x Wy, satisfying

b (Vh, Wh) ) 1
sup ———— 2> Bvellv,, VvhEVHL with f = ———.
wiewi\{o} [1Wnllw, vallv, VAT? 11
Thus, for given £ € La(Q;R™), a unique solution uy, € Vi, of
(Lnup, wi)g = (£, wn)q, wy, € Wh, (49)

exists satisfying the a priori bound ||uy |y, < B7|Tuf ||,

The stability constant 5 > 0 is the same as in the continuous case in Thm. 19.
The proof of the inf-sup stability is based on the following estimates.

Lemma 27. Let A\, € P, k=0,1,2,..., be the orthonormal Legendre polynomials in Lo (t,—1,t,). Then, we
have (t@t)\n,k,)\n’k) > 0.

(tn—1,tn) —

Proof. The orthonormal Legendre polynomials A, ; with respect to (~7 ) ( are given by scaling the or-

tn—1,tn)
thogonal polynomials A, x

)\n,k(t) = Cn,kxn,k(t) ) Xn,k:(t) = 65(@ - tn—l)(t - tn))k y Cnk = ||5\n,k
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For k = 0 we have 0;\,, 0 = 0 and thus (tat)\mm A"»U)(t ) = 0. For £ > 1 we have

= (ten k0P ((E = ta 1) (t = 10))" Ank)
= (tcn kak+1t2k )\n,k)

= (Cn kka t

(tat n,ks >\n k)

(tn 1 n) (tnfhtn)

(tn—htn)

= k()\n,ka An’k) (tn—1,tn) =k>0

n k)(tn 17tn)
using t OF 142k = t(2k(2k 1) (b + 1)ktk—1) = kO 2k, O

Lemma 28. Let X = (Xg,) € Rg,IﬁN be a symmetric and positive semidefinite matriz, and Y = (Yi,) € RV*N

be a positive semidefinite matriz. Then,
N
Z kaYkm > 0.
m=1

Proof. Let (um »)sn=1,...,N be a complete eigensystem of X with s, > 0 and w,, = (Wnk)k=1,.. N € RV,
so that X = Z _, Hnw,w,! . Then, we have

N N N
k,m=1 k,m,n=1 n=1
O
Lemma 29. We have for vy € V},
[Villw, < 2T |0 M  Lavallw, . Vi € Va. (50)

This shows that Lem. 13 extends to the discrete estimate also with Cp, = 2T.

Proof. Set p = nax pg. For vj, € V}, in every time slice (¢,_1,t,) a representation
€Rn

P
Vi, n(t, %) :Z)\nk Vo kn(X), Vokh € Yon, (6,X) € (tao1,tn) X Qp
k=0

exists with v, 1 ,(x) = 0 for (t,x) € R = (t,—1,t,) X K and k > pg, so that

Pr—1 P
v (%) = D Ak OV n(¥) = Ak (OVnpn(x),  (6%) € R=(tn-1,tn) x K
k=0 k=0

with Vv, g n(X) = Vi k,p (%) for k < pr and ¥, i n(x) = 0 for k > pg.
The proof of (50) relies on the application of Fubini’s theorem

/0 /Olqb(s) dsdt:/o dr()o(d)dt, ¢ € Li(0,T) (51)

and on estimates with respect to the weighting function in time dr(t) =T — t.
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In the first step, we show

(MpOyvh,drvy), < (Mpdyvh, drllpvy) Q°

o<
0 < (MpApvp, drllyvy,)

0 < (4 Dpvp, drllyvy)

Q?
Q.

Since A, and Dy, are monotone, we obtain (53) and (54) from Lem. 28 applied to

I
] =

(IIy Apvi, drllpvy) (Ih Ap Vi, dr Vi)

Q (tn—1,tn) xQ

i
1

3
o
|
—
3
T
|
—

I
E
(]

(Anis dTAny) (tnr ) (Anvaions Vn,z,h)K

3
Il
-
b=}
I
—~
o~
3
|
~
~
3
N
X
x>
I
<}
—
I
<=}

I
M=
M=
M=

(/\n,ka dT}‘"vl)(t”,l,tn) (A}L‘A’n,k,h; ‘A/n,l,h)Q > 0 )

3
Il
-
£
Il
<
-
I
<

=3
oy
|
—
=3
2y
—

I
WE
]

(I, Dy, dTHth)Q (Anis AT Any) (tnstn) (DhVa,o,hs Vn,l,h)K

3
Il
—
o]
Il
—~
=
3
|
-
=~
3
N
X
=~
Il
<}
I
<}

I
M=
NE
NE

(Anks dr A1) (tnritn) (Dr¥m ks V) g = 0.

n=1 k=0 (=0
For k > 1 we have (dTat nks An k)% . —(t@t)\mk, >\”1k)(t, oty < 0 by Lem. 27, which gives
(dr Mpdyvp, vi, — Hth dr MpOyvy, v, — Hhvh)(tn_htn)m

=1

3

PR

N
Z Z Z (drdiAn ks Anpr) it (MpV kb Vipsoh)
( itn)

:1R:( n—1,tn )XK’{)ZO

3

=

3

R*(tnfl,tn)XK

Thus we obtain (52) by

(Mn0yvn, drvi) o = (drMudevn, vi) o < (drMpdevi, Invn) o = (MpOeva, drllyvy) -

Finally, we show the assertion (50). We have for k =2,...,N
||Vk,h(tk—1)||yh = e wvie—1.n(te—1) v, < ||Vi—1,0(tk—1)llvs »

so that for all ¢t € (¢,_1,t,) using v,(0) = v1,,(0) =0

n

[va@|f5, = [[va@]f;, + Z (v a0, = [Vt ) = [Ivan @13,

3

< va®l, + 20 (IVe-raten) I, = [veatte-d|3, ) = Vi@,

k=2
n—1
= Va1, = Ivantta-vlly, + 3 (IVea5, = Ivente-n], )
k=1

t n—1 .t
= / 0s (thn,h(8)7vn7h(8))g ds + Z/ 0 (thn,h(s)vvn,h(5)>g ds
tn—1

k=1"tk—1

= 2/0 (Mhasvh(s),vh(s))Q ds
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and thus using (51), (52), (53), and (54) we obtain (50) by

T T t
IIVhII%Vh,:/0 (‘f\ﬁvh(t),vh(t))ﬂoltg2/0 /O(Mhasvh(s),vh(s))ﬂdsdt

T
= 2/ drp(t) (Mpoyvi(t), va(t)), dt = 2(Mpdyvp, dth)Q

0
< 2(Mpoyvy, dTHth)Q = 2(MpI1,0; v, dTHth)Q = 2(II, MpOyvh, dTHth)Q < 2(HpLpvp, drilyvy)
= 2(M,, "Wy Lyvy, Mydrllpvy) o = 2(HWn My Lyva, MydrIlave)

< 2| My, Lpvallw, ldr v ||w, < 27 ([T, M,  Lavillw, [Vallw, -

Q

Now we can prove Thm. 26.

Proof. (Thm. 26) For v, € Vj, \ {0} we have
bn(Vh, wWp) = (thh,Wh)Q = (Mh_thVh,Wh)Wh = (Hth_thVh,Wh)Wh )

and we test with w;, = HhM}:thvh, so that

b D) bp(ve, ML
sup h(Vh, W) h(Vi, O M, " Lyvy)

> = = [T M;,  Lavallw, > (4T + 1) 72 |va]lv, -
whewm\{0} [[Whllw, T, M, Lvaw, 4 " !

using ||Vh||%,h = ||vh||%Vh+||HhM,:1thhH%Vh < (4T2+1)||HhM,:1thh||‘2/Vh inserting the estimate (50) in Lem. 29.
U

4.4. Convergence for strong solutions

For the error estimate with respect to the norm in V}, we need to extend the norm || - ||y, such that the error
can be evaluated in this norm. For sufficiently smooth functions the operator A can be extended by (40), so
that Lj; and thus the norm in V}, is well-defined.

Theorem 30. Let u € V be the strong solution of Lu = f, and let uy, € V), be the approzimation solving (49).
If the solution is sufficiently smooth, we obtain the a priori error estimate

Ju—wpllv, < C(at” + n2%) (|0 ullq + 1D ullq)
+ B M, P (M — MYMTV |0
+ 67| M, A (D) = DYMTY|ullw

for At, Az and p,q > 1 with At > t, — t,—1, Az > diam(K), p < pr and ¢ < qg (for all n, K, R), and with a
constant C' > 0 depending on B = (412 + 1)’1/2, on the material parameters in M, and on the mesh regularity.

Proof. For the solution we assume the regularity u € HPH! (O,T;LQ(Q;R’”)) N Lo (O,T; H‘ZH(Q;R’”)), hence
there exists an interpolant v, € V}, such that

lu=vallv, < (o7 + aa?) (07 M ullq + D ullq) (55)
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Moreover, Apu is well-defined and consistent satisfying (41). We have
b (Vi — up, wp) = by (v, W) — b (up, Wp) = by (v, wi) — (£, wr)g
= byp(vp, wp) — b(u, wp,)
= (Lpvh, wi)g — (Lu, wp)g
= (Lh(vh - u),wh)Q — (Lu, wh)Q + (Lhu7wh)Q
= (Lh(vh — u),wh)Q — ((M — M},)0u, wh)Q
— ((D = D), Wh)Q — (A= Ap)u,wy)
= (MpI1, M, Ly (v — u),wh)Q
— (Mp M (M — Mp)dpu, wh) o, — (MpM; (D — Dp)u, wy,)

Q

Q
< ([0 Lo = W)y, + (1345 M = M)yl + |34, (D ~ Diyulw, ) 1w,

and thus the assertion follows from

[u—up|lv, < lla—vaullv, +[[vh — unllv,

_ bp(vi — up, wp,
<lu-valy, + 570 sup  onlve = wa)
WhEWh\{O} ||Wh||Wh

< lu=vallv,
+p871 (||HhM;1Lh(vh — )|y, +[[M (M = My)dul[, + [ M (D~ Dh)u||Wh)

<A+ B Y a—valv, + 87| M, (M - My)0pul|, + s M, (D - Du)u,
by the interpolation estimate (55) and
|6, (M = M)yl = || My, (M = M) MY 20|, < || M, Y2 (M = M) M| [[9allw -

Remark 31. The estimate is derived for homogeneous initial and boundary conditions. It transfers to the
inhomogeneous case if initial and boundary data uy and g; can be extended to H(L, @), i.e., if a € H(L, Q) exists
such that (0, z) = ug(z) for z € Q and (4,0(t, x)); = g,(t,x) and for (t,z) € (0,T) x Ty, k =1,...,m. Then,
the approximation u;, € Vj(up) in the affine space (47) is computed by by (up, wp) = (£, wy) for wy, € Wy,
and the strong solution with inhomogeneous initial and boundary data is given by u = a+a € H(L, @), where
u € V solves Lu = f — Lu. Then, the result in Thm. 30 can be extended.

Remark 32. Since the norm (48) in V}, + (HY(Q;R™) N V) is discrete in the derivatives, the topology in the
space V with respect to this norm is equivalent to the topology in Ly with mesh dependent bounds for the norm
equivalence. Norm equivalence with respect to || - ||y is obtained in the limit: Let (V3 )nen be a shape regular
family of discrete spaces with 0 € H such that (V,NV)pey is dense in V. Then, defining ||v|v,, = suppey [[VIva
yields a norm, and for sufficiently smooth functions v € H!(Q;R™) NV this norm is equivalent to || - || .

4.5. Convergence for weak solutions

Qualitative convergence estimates with respect to the norm in V' C H(L, Q) require additional regularity, so
that these estimates do not apply to weak solutions with discontinuities or singularities. For weak solutions
without additional regularity we only can derive asymptotic convergence. Here, this is shown for simplicity only
for homogeneous boundary data. The given data are the right-hand side f € Lo(Q;R™) and the initial value
ug € Z. We assume that Lem. 15 and dual consistency for Aj, in Lem. 25 is satisfied.

In the first step, we show that the inf-sup stability of the Petrov—Galerkin method yields a uniform a priori
bound for the approximation. We define the approximation of the initial value ug 5 by ug (t) = (1—t/t1)IL, pup
for ¢ € (0,t1) in the first time interval and ug (t) = 0 for ¢ > t1, so that Vj,(ug) = ug 5 + V.

Lemma 33. The discrete solution uy, € Vi(ug) of the variational space-time equation
byp(up, wp) = (f,Wh)Q, wp, € Wh
is bounded by

lunllw, <27 (| M, T |lw, + (1+27) [[ug s v, -
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Proof. For vj, = uj, — ug,, € Vi, the estimate ||vp|lw, < 27|11, M, " Lyvy|w, in Lem. 29 together with
(Hth_thVmWh)Wh = (Mh_thVh;Wh)Wh = (Lth,Wh)Q = bp(up, wp) — bp(ug,n, wp)
= (f, Wh)Q —bp(ugp, wp) = (th,wh)Q — b (ug,p, W)
for wp, € Wy, yields by duality

0, M, ' Lyvy, wh
Ivillw, <2T|0uM; ' Lyvi|w, =2T  sup ( ‘ Jw,

Wi W\ {0} W llw,
(IT,f, Wh)Q — by (ao,n, W) o .
=27  sup <2T (||Mh Iy fl|w, + ||, M, thlo,h”vvh) ,
w,eW,\{0} [wallw,

so that

lanllw,, < v llws, + o sllws, < 27 (I Watllw, + 10005 Lotto allws, ) + 0.l

<27 || M, 't ||, + (14 27) [lug,nllvs, -
O

Next we show that the dual consistency of the DG operator implies dual consistency of the space-time method.
For simplicity, we assume that the parameters in M and D are piecewise constant on all cells K € K, so that
M = My, and D = Dy, which implies ||zp||w, = ||zn|lw for z, € La(0,T;Y3).

Lemma 34. We have

bh(Vh,W) = (Vh,L*W>Q — (MHl,huo,W) vy € Vh(uo), weW,n v*. (56)

Q°
Proof. We obtain for vy, € Vj,(ug) € H'(0,7;Y},) and w € W, N V*
bp(vp,w) = (M@tvh,w)Q + (Dvh,w)Q + (Ahvh,w) on
= (Mvi(T), w(T))g = (Mva(0),w(0)), = (Vh, MOw) , + (vi, DW)
= (Vh,L*w)Q — (M1 pug, w(0))

— (Vh,AW)

Q Q

Q-

using M = My, D = Dy, integration by parts for v,,w € H(0,7;Y}), w(T) = 0 in V*, and the dual
consistency of the DG operator Aj, with upwind flux (see Lem. 24 and Lem. 25 for acoustics). (]

Let (Vi, W4), h € H C (0, hg), be a dense family of nested discretizations with V;, C Vj,» and W), € Wy, for
h' < h, h,h' € H and 0 € H. We assume that the assumptions in this section are fulfilled for all discretizations,
so that (V3, W},) is uniformly inf-sup stable by Thm. 26. We only consider the case P1(Qp; R™) C Wy, so that
W, "MHY(Q; R™) includes the continuous linear elements and thus |J, ¢, (V* NW},) is dense in V*.

Theorem 35. Assume M = My, D = Dy, and that ||ug |y, < C is uniformly bounded for all h € H. Then,
the discrete solutions (up)pey are weakly converging to the weak solution u € W of the equation

(w,L*z)q = (£, z)Q + (Muyg,2(0)),, , ze V. (57)

Proof. By Thm. 26 up — g, is uniformly bounded in V}, and thus, by Lem. 29, (up)pez is uniformly bounded
in W, so that a subsequence Hy C H and a weak limit u € W exists, i.e.,

hlgr{lo (uh,w)W: (u,w)W7 wew.

The assumption that (W), N V*),ey is dense in V* D V* implies that for all z € V* there exists a sequence
(Wh)hen with wy, € W, N V* and %II% |lwp — z||v~ = 0. This implies }{m?l{ lwr(0) — z(0)|ly =0, cf. Rem. 16.
€ €

Using the weak convergence of uy,, the strong convergence of L*wy,, and Lem. 34 yields

(u,L*z) = lim (uh,L*z)Q = lim (uh,L*wh) = lim (bh(uh,wh) + (MHl,huo,wh(O))Q)

@  heHo hEHo Q@ heHo
= hléri}o (f, Wh)Q + (Muo,z(O))Q = (f, Z)Q + (Mu07z(0))Q,
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so that u is a weak solution of (57). Since the weak solution is unique by Thm. 11 and Lem. 15, this shows that
the weak limit of all subsequences in H is the unique weak solution, so that the full sequence is convergent. [

Remark 36. Since we assume that (ugj)nen is uniformly bounded in Vj, the initial value ug extends to
H(L, ), and the weak solution is a strong solution.
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4.6. Goal-oriented adaptivity

In order to find an efficient choice for the polynomial degrees (pr,qr), we introduce a dual-weighted residual
error indicator with respect to a suitable goal functional. Its construction is based on a dual-primal error repre-
sentation combined with a priori estimates constructed from an approximation of the dual solution. Note that
this corresponds to a problem backward in time, so that the resulting error indicator only refines regions of the
space-time domain which are relevant for the evaluation of the chosen goal functional.

Dual-primal error bound. Let £: W — R be a linear error functional. Our goal is to estimate and then to
reduce the error with respect to this functional. The dual solution u* € V* is defined by

(w,L*u")g = (E,w), weWw.
For the local representation of E we define the pairing in R € Ry,
(VrR,Wr)or = (LVR,WRr)rR — (Vr,L"WR)r,  vr€H(L,R), wg € H(L", R).

Lemma 37. Let u € V be the solution of Lu = £, and let uy, € V}, be the approzimation solving (49). Then,
the error can be represented by

(E,u—up) = Z (<f = Ly, u") , + <u’“u*>‘9R) ’
RERy,

If the dual solution is sufficiently reqular, the error is bounded for all w;, € Wy by

N
|(E,u—uh>’ SZ Z (Hf_(Mhat+A+Dh)uh|‘RHu*_WhHR

n=1 R=(ty—1,tn)xXK

+ Z ||A11KuhvR - AE};W“”M (tn,l,t,,L)xFHu* - Wh| (tnl,t”)xF>
FeFg

N-1
2 M (o () = Tt (b)) g 0" (£) = W, (8)
n=1

N-1
—1/2 — %
2O = MM Y203 () — Tttt v [0 ()
n=1

+ (| 2 = MM || B |y [0,
+[|M, (D = D) MV o[ 0]

—
Proof. We have by definition of u*

(E,u—up) = (u—uy, L™'u")g = (u, L*u")g — (up, L'u")q
= (Lu,u*)g — (up, L*u")g = (f,u")g — Z (up, L*u™)p

ReRR
= (f,u")g — Z ((Luh,u*)R - <uh,u*)aR)
RERy,
— Z ((f — Luy,u*) , + <uh,u*>312) .

ReR
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Using up(0) = 0 and u*(T") = 0, we obtain

tn

] =

N
S (M (o=

n=1 R=(tn—1,tn)xXK

Oh(Muy, p,u")q dt

1 tn—1

3
Il

(Muy, (t,), u* (tn))Q — (Muy, p(tn—1), u*(tn,l))Q

I
M-

i

(M (w1 (tn) = Wnsr,n(tn)), 0™ (ta))

il
,‘_.»—-

(M(un,h(tn) - Hn+1,hun,h(tn))7U* (tn))Q

3
Il
—

and in every time slice (¢,—1,t,) we obtain, if the dual solution u* is sufficiently smooth satisfying u*|sq, €
Lo (0Qp; R™), for the restriction to the space-time skeleton

Z (Aun,h,u*)(tnihtn)xK + (un,hyAll*)(tnihtn)XK

KeKy,
_ *
- Z (Anku"vh-K’u )(tn,l,tn)xaK

KeK,

_ *

=2 D @actunm ) er
KeK, FEFk

_ _ Aupw *

- Z Z (AnKun,h,K An}( u’n,hvu )(tnfl,tn)XF
KeKp FeFk

where u,, 5 i is the extension of u, »|x to K. This gives, inserting (37),

N
Z <uhaU*>3R = Z Z (Lun,h;U*)Rf (un,th*U*)R
n=

ReR

Z (Matun,h, u*)R + (Mun’h, 8tu*)R + (Aumh7 u*)R + (un,h, Au*)R
LR=(tp_1,tn) XK

I
NgE

= (M (wn,p(tn) = g1, m0n,n(tn)), u*(tn)) g,

_ Aupw *
+ Z Z (AnKuh,R AnK Up.p, U )(tn,l,tn)XF’
R=(tn—1,tn) XK FEFK

where uy, g is the extension of uy|r to R.
For the discrete solution u, € Vj, and any discrete test function wy, € W}, we have

(f, Wh)Q = (thlh,Wh)Q = (Mhatllmwh)Q + (Ahllh,Wh)Q + (Dhllh,Wh)Q
= (Mhatuhawh)Q + (Dhuh,Wh)Q

N
+ Z Z <(Auh, Wh) g +Z (AP ap, , — Ay Un R, Wi R) (t”ht")xF> )

n=1 R=(tn_1,tn) X K FeFk
so that

N
0= Z Z ((Allh - nyh)R + (MhatU.h,Wh)R + (Dhuh7wh)R
n=1R

=(tn—1,tn)x K

upw
+ > (A, , —AnKuh,R,Wh,,R)(t"MVF) -
FeFk
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Together, this gives

(E,u—up) = ((f—Luh,u*)R+(uh,u*>aR)
ReRy,

Mz

> ((f (Myd; + A+ Dp)up,u*) ,

n=1 R=(tn_1,tn)x K
- ((IW - Mh)atuh, u*) - ((D - Dh)uh, 11*)
R R

§ : upw *
+ (AnKul’hR _AnK Up,p, 0 )(tn—l-,tn)XF>
FeFxi

2

+ - (M(un,h(tn) - Hn+1,hunvh(t”))’u*(t"))ﬂ

3
Il
_

N
Z Z ((f (M} 0y + A+ Dp)up,u* *Wh)R

(t —1, tr )XK

_ upw * _
+ z : (Anxuth AHK Un,hs U Wh)(tn—lytn)xF>

FeFk

2
L

+ (Mh (un,h(tn) - Hn+1,hun,h(tn))7U* (tn) - Wn+1,h(tn))9

il
,L»—A

+ ((M — Mh) (un,h(tn) - Hn+1,hun,h(tn))aU* (tn))Q

— (M — Mp)0puap,u

S
_

—~

— ((D — Dh)uh, l.l}k

)Q )Q

N
S (Hf—<Mhat+A+Dh>uhHRHu*—WhHR

(t 1,tn)><K

© S At - A whn(tm,tnw)
FeFk

+ Z HMh (un7h(tn) - Hn+1 hUn, h )

— Wn41, h )HQ

+ZHM (M = My) (1 (6) — W () Iy 0 (1)
+ || M* M)A [y [0 [y = 1D = DaJunfyp.. Ju[fy,, -

This yields the assertion.

45
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Dual-primal error indicator. For the evaluation of the error bound the exact solution u* of the dual problem
is required, and for wj, an interpolation of u* can be inserted. Then, the interpolation errors Hu* — WhH r and

can be estimated by the regularity of the dual solution.

*
Hu Wh‘ (tn—1,tn)XF

Since u* € V* cannot be computed exactly, it is approximated by u; € W), solving the discrete dual solution
bh(vh,uZ) = <E,Vh> , vy € Vi,

and the regularity of the dual solution is estimated from the regularity of uj. Therefore, we compute the
L, projection II9 : Ly(Q; R™) — Py(Qp; R™) and the jump terms [[IYu}]r with [ynlr = ynke — Yok on
inner faces, ([yn|r); = (Apyn); for FF C I';, and ([yn]r); = 0 for F' C 9Q \ I';. Then, the error indicator
np = ZRERh ngr for R = (t,—1,tn) X K is defined by

NR = (H(Mhat + A+ Dp)uy, — fHR + Hlln,h(tnq) — Hnﬁhunfl,h(tnfl)HK) h}(/2 \![Hﬁu;’;}p|l(tm,tn)xaK

+ (A = AP ) unll s,y ) wox || T 0] P |

(tn—1,tn)xOK ~

Depending on threshold parameters 0 < ¥y < ¥g < 1 this results in the following p-adaptive algorithm:
1: choose low order polynomial degrees on the initial mesh
2: while maxg(pr) < Pmax and maxg(gr) < gmax do
3:  compute up
compute u; and the projection H%u};
compute ng on every cell R
if the estimated error 7, is small enough, then STOP
mark space-time cell R for refinement if ng > ¥y maxg ng/
and for derefinement if np < Y9 maxp g/
increase/decrease polynomial degrees on marked cells
9:  redistribute cells on processes for better load balancing

®
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4.7. Reliable error estimation for weak solutions

Finally, we derive a posteriori estimates for weak solutions based on local conforming reconstructions. Here we
consider the general case including inhomogeneous initial and boundary data, where initial data are included
in the definition of the affine ansatz space (47), and the DG formulation for boundary data is derived in (38),
see (45) for an example. For simplicity, we assume that the parameters in M and D are piecewise constant, so
that M = My, and D = Dy,.

For the data f € Lo(Q;R™), ug € La(; R™), gi € La((0,T) x T'y) defining the linear functional ¢ by

m
(t,z) = (f,2)q + (Muo,2(0)), — > (9r, 2) 0yt ZEV
k=1

we select piecewise polynomial approximations f;, € P(Qn;R™), ugp € P(Qp;R™), and gin € P((0,T) x T'y)
defining the approximated linear functional ¢ by

(thyzn) = (Fnzn)q + (Mo n,zn(0)) g — > (k. 2k.n) (0.T)xTy * zp, €V".
k=1

We assume that ¢ is bounded by (29) so that a unique weak solution u € W of

(u,L*z), = ((,2), zeV*

Q

exists by Thm. 11 and Cor. 20. For the approximation uy, € Vj,(ug ) solving
bn(an, wn) = (fn, wn) g, — (A}i“dgh,w;z)(mxm, wp € W,

we now construct a conforming reconstruction in a continuous finite element space Vit € H(L, Q) NP(Qp; R™)
as described in the following. Here, we set for the right-hand side gn = (gx.n)k=1,...,.m € L2((0,T) x 0; R™)
with ggp, =0 on 00\ T'y.
The reconstruction is defined on local patches associated to the corners of the space-time mesh. Therefore,
let Cxk C K be the corner points in space of the elements K € Kj such that K = convCg, and define
» = Ukex, Cx. For all ¢ € Cp we define Kje = {K € Kj:c € Cx} and open subdomains we C €
with @, = UKE,CM K. This extends to space-time patches Qg = (0,1) X we, Qne = (tn—1,tnt1) X we for
n=1,...,N—1,and Qnec = (tn-1,T) X we. Let ¥, € C°(Q) NP(Q) be a corresponding decomposition of
1= ZT]YIO Zcech Yn,c With supp ¢y, c = @mc. On every patch we define discrete conforming local affine spaces

Vet (uon,gn) = {vi € Vi supp(vi) C Qe
vi(0) =Ypcupn in Qifn=0,
Vi(th—1) =0in Qifn >0,
Vi(tht1) =0in Qif n < N,
(Apvi)k = Ynegipon (0,T) x Ty, k=1,...,m,
A,vi =00n (0,T) x (Owe \ 02)} .

In the following we assume V,ffc(uoﬁ, gr) # (), which can be achieved by a suitable choice of the data approxi-
mation ug j and gy, depending on the reconstruction space V}ff.

Now, the local conforming reconstruction of the discrete solution uy, is defined by u§f = Eg:o > cecy u%{c,

where uf | € VCf (U0 1, 8h) is the best approximation of 1, cuy, in the topology of W, i.e.,

Hwn,cuh - uf“bfyCHW é ’|¢n,cuh - Vn,c||W7 Vn.c S V (11() hagh)

so that uflf’c is determined by a small local quadratic minimization problem with linear constraints.
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Lemma 38. The approximation error of the weak solution can be estimated by

. . a (6 — L, 2)
o=l < on iy 27 20—l + 67! sup S

Proof. By construction we have for uﬁic € Vyffc(u()ﬁ, gn)

N

w(0) =Y > tneuon=uon inQ,

n=0ceCy

N
(Anu(}:bf)k = Z Z w’mcgk},h = Gk,h on (O’T) X Flw k= 1a cee, M,
n=0ceCy

so that for all z € V* integration by parts and the boundary conditions in V* gives

(uf,22) , = (Lugf,2) g + (Mug(0),2(0)) — (Aqus',2)

(0, T)x0Q
— (Luzf _ fh,z)Q + (h,2) .
Since Lo (Q;R™) = M~1L*(V*) and V* C V* is dense, we obtain by duality
(M(u—uf), V)Q (u—uy, L*Z)Q
la —uff|w = sup = sup oo
vELy(Q:E™)\{0} v sev-: Lrato  |M~1L*z|lw
B w (Luflf—fh,z)Q—l—@—Eh,Z)
= p "
zeV* : L*z#£0 HL Z”W*
Lu§f —f .|z {7
< sup H h *hHW HW + sup ( _ h, %)
zeV* : L*z#£0 ||L Z”W* zeV* : L*z#0 HL ZHW*
<£ — éh7z>

< 2T ||Lugf — £ s
< H up, hHW*—i_B zevf}lﬁz#o ]|y

using the a priori estimate ||z||w < 27T ||L*z|w+ from Rem. 16 with Cp, = 2T and ||z|v« < 871||L*z|w~ with
871 = /1 +4T? from Cor. 20, so that

Ju—upllw < flu—ufflw + [luff — uslw

yields the assertion. O
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This lemma shows that the corresponding error estimator with local contributions

1/2 1/2
n, Kk = ( Z 773_1,c + ﬂi,c) ) Mn,e = (HMl/z(wn,cuh - u%f’C)Hi?n,c + 2T ||M71/2(Luzf - fh)”?QﬂQ) ’

ceCk

is reliable up to the data approximation error, i.e.,

N
fn—wily < (33 n2w) “ s Lot

o el sev-\{o} 1z[lv

Bibliographic comments. This chapter is based on [Dorfler et al., 2016, Dérfler et al., 2019], where also nu-
merical results for the adaptive algorithm are presented. Further applications and several numerical applications
are reported in [Findeisen, 2016, Ziegler, 2019, Dorfler et al., 2020].

The extension to estimates for weak solutions is based on the construction of a right-inverse as it is done in [Ern
and Guermond, 2016] for conforming Petrov—Galerkin approximations in reflexive Banach spaces.

The estimate for the Legendre polynomials can also be obtained recursively using [Abramowitz and Stegun,
1964, Lem. 8.5.3], see, e.g., [Dorfler et al., 2016, Lem. §].

The error estimation based on dual-weighted residuals transfers the approach in [Becker and Rannacher, 2001]
to our space-time framework, and for the general concepts on error estimation by conforming reconstructions
we refer to [Ern and Vohralik, 2015].

The results are closely related to the analysis of space-time discontinuous Galerkin methods for acoustics in
[Moiola and Perugia, 2018, Bansal et al., 2021, Imbert-Gérard et al., 2020]. Alternative concepts for space-time
discretizations for wave equations are collected in [Langer and Steinbach, 2019]. See also the results in [Banjai
et al., 2017, Gopalakrishnan et al., 2017] and more recently in [Perugia et al., 2020, Steinbach and Zank, 2020],
and the references therein.
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