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1. Modeling of acoustic, elastic, and electro-magnetic waves

Mathematical modeling of physical processes yields a system of partial differential equations that describes
the behavior of a system physically correct and allows for analytical and numerical predictions of the system
behavior. Here we start by shortly summarizing modeling principles which are illustrated for simple linear
models in one space dimension. Then this is specified for different types of wave equations.

1.1. Modeling in continuum mechanics

Describing a model in continuum mechanics is a complex process combining physical principles, parameters and
data. For a mathematical framework, we introduce the following terminology:

• Geometric configuration
We select a domain in space Ω ⊂ Rd (d ∈ {1, 2, 3}) and a time interval I ⊂ R, and for the specification
of boundary conditions we select boundary parts Γk ⊂ ∂Ω, k = 1, . . . ,m, where m is the number of
components of the variables which describe the current state of the physical system.

• Constituents
Which physical quantities determine the model?
Which quantities directly depend on these primary quantities?
For the mathematical formulation it is required to select a set of primary variables.

• Parameters
Which material data are required for the model?
Which properties do these parameters have in order to be physically meaningful?

• Balance relations
This collects relations between the physical quantities (and external sources) which are derived from
basic energetic or kinematic principles. These relations are independent of specific materials and appli-
cations.

• Material laws
This collects relations between the physical quantities that have to be determined by measurements and
depend on the specific material and application.

• External forces, boundary and initial data
The system behavior is controlled by the initial state at t = 0, by external forces in the interior of the
space-time domain I × Ω, and by conditions on the boundary I × ∂Ω.
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1.2. The wave equation in 1d

This formalism is now specified for the most simple wave model in 1d with constant coefficients. Therefore, we
assume that all quantities are sufficiently smooth, so that all derivatives and integrals are well-defined.

Configuration. We consider an interval Ω = (0, X) ⊂ R in space and a time interval I = (0, T ) ⊂ R for given
X,T > 0.

Constituents. Here, we consider the simplified situation that material points in R2 move up and down verti-
cally. The state of this physical system is then determined by the vertical displacement

u : [0, T ]× Ω −→ R

describing the position of the material point
(
x, u(t, x)

)
∈ R2 at time t, and the tension

σ : [0, T ]× Ω −→ R

describing the forces between the points x ∈ Ω. In this simplified 1d setting with vertical displacements the
tension corresponds to the shear stress in higher dimensions.
Depending on the primal variable u, we define the velocity v = ∂tu, the acceleration a = ∂tv = ∂2

t u, the strain
ε = ∂xu, and the strain rate ∂tε = ∂xv = ∂x∂tu.

Material parameters. This simple model only depends on the mass density ρ > 0 and the stiffness κ > 0;
together, this defines c =

√
κ/ρ. We will see that c is the wave speed which characterizes this model.

Balance of momentum. Depending on the velocity v and the mass density ρ we define the momentum ρv.
Newton’s law states that the temporal change of the momentum in time equals the sum of all driving forces.
Here, without any external forces, this balance relation reads as follows:
for all 0 < x1 < x2 < X and 0 < t1 < t2 < T we have∫ x2

x1

ρ(x)
(
v(t2, x)− v(t1, x)

)
dx =

∫ t2

t1

(
σ(t, x2)− σ(t, x1)

)
dt .

For smooth functions this yields∫ x2

x1

∫ t2

t1

ρ(x)∂tv(t, x) dtdx =

∫ t2

t1

∫ x2

x1

∂xσ(t, x) dx dt ,

and since this holds for all 0 < x1 < x2 < X and 0 < t1 < t2 < T , this holds point-wise, i.e.,

ρ(x)∂tv(t, x) = ∂xσ(t, x) , (t, x) ∈ (0, T )× (0, X) . (1)

Material law. One observes that the tension σ(t, x) only depends on the strain ε(t, x) = ∂xu(t, x). This is
formulated as a material law: a material is by definition elastic, if a function Σ exists such that σ = Σ(∂xu),
and it is linear elastic, if σ = κε with stiffness κ > 0. In a homogeneous material, the stiffness κ is independent
of x ∈ (0, X).

Boundary and initial data. The actual physical state at time t of the system depends on its state at the
beginning t = 0 and on constraints at the boundary. Here, assume that at t = 0 the system is given by the
initial displacement u(0, x) = u0(x) and velocity v(0, x) = v0(x) for x ∈ Ω, and we use homogeneous boundary
conditions u(t, 0) = u(t,X) = 0 for t ∈ [0, T ] corresponding to a string that is fixed at the endpoints.
Inserting v = ∂tu and ε = ∂xu in (1) we obtain the second-order formulation of the wave equation

∂2
t u(t, x)− c2∂2

xu(t, x) = 0 for (t, x) ∈ (0, T )× (0, X) , (2a)

u(0, x) = u0(x) for x ∈ (0, X) at t = 0 , (2b)

∂tu(0, x) = v0(x) for x ∈ (0, X) at t = 0 , (2c)

u(t, x) = 0 for x ∈ {0, X} and t ∈ (0, T ) . (2d)

Note that the same equation can be derived for a 1d wave with horizontal displacement, corresponding to an
actual position of the material point x+ u(x) ∈ R.
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The solution of the linear wave equation in 1d in homogeneous media. The equation (2) with constant
wave speed c > 0 can be solved explicitly. For given initial values (2b) and (2c) the solution is given within the
cone

C =
{

(t, x) ∈ (0, T )× (0, X) : 0 < x− ct < x+ ct < X
}

by the d’Alembert formula

u(t, x) =
1

2

(
u0(x− ct) + u0(x+ ct) +

1

c

∫ x+ct

x−ct
v0(ξ) dξ

)
, (t, x) ∈ C .

Now we consider the solution in the bounded interval Ω = (0, X) of length X = π with homogeneous Dirichlet
boundary conditions (2d). The solution can be expanded into eigenmodes of the operator−∂2

xu in H1
0(Ω)∩H2(Ω),

so that we obtain

u(t, x) =

∞∑
n=1

(
αn cos(cnt) + βn sin(cnt)

)
sin(nx) ,

where the coefficients are determined by the initial values (2b) and (2c). For the special example with initial
values u0(x) = 1, v0(x) = 0 for x ∈ (0, π), and wave speed c = 1, we obtain the explicit Fourier representation

u(t, x) =
4

π

∞∑
n=0

1

2n+ 1
cos
(
(2n+ 1)t

)
sin
(
(2n+ 1)x

)
=

1

2

(
u0(x+ t) + u0(x− t)

)
, (3)

where the initial function u0 is extended to the periodic function

u0(x) =

 1 x ∈ (0, π) + 2πZ ,
0 x ∈ πZ ,
−1 x ∈ (−π, 0) + 2πZ ,

cf. Fig. 1. We observe that this solution solves the wave equation only in a weak sense since it is discontinuous
along linear characteristics x± ct = const.

Figure 1. Weak solution u ∈ L2

(
(0, 8)×(0, π)) with initial values for u(0, ·) = 1, ∂tu(0, ·) = 0,

and homogeneous Dirichlet boundary values u(·, 0) = u(·, π) = 0.
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1.3. Harmonic, anharmonic and viscous waves

Special solutions of the linear wave equation (2) can be derived by the ansatz

u(t, x) = exp(−iωt)a(x)

with a fixed frequency ω ∈ R. This yields in case of constant wave speed c =
√
κ/ρ

∂2
t u(t, x)− c2∂2

xu(t, x) = −
(
ω2a(x) + c2∂2

xa(x)
)

exp(−iωt) .

The equation ω2a(x) + c2∂2
xa(x) = 0 is solved by a(x) = a0 exp(ikx) with k = ω/c and a0 ∈ R, cf. Tab. 1.

Table 1. Characteristic quantities for harmonic waves u(t, x) = a0 exp
(
i(kx− ωt)

)
.

wave number k angular frequency ω frequency ν = ω/2π

wave speed c = ω/k wave length λ = c/ν amplitude a0

Interaction with material: anharmonic waves. The harmonic wave with constant amplitude is an idealistic
model. This contradicts to observations: a wave traveling through material interacts with the particles in some
sense, so that the amplitude is decreasing in time. A simple ansatz are waves of the form

u(t, x) = a(t) exp
(
i(kx− ωt)

)
, a(t) = a0 exp(−τt) (4)

depending on wave number k, angular frequency ω, and relaxation time τ > 0. Then, we observe for (4) in case
of constant ρ and κ

(ρ∂2
t − κ∂2

x)u(x, t) =
(
ρ(τ + iω)2 + κk2

)
u(x, t) , ∂tu(x, t) = −(τ + iω)u(x, t)

which yields with the angular frequency

ω =
√
k2κ/ρ+ τ2 ∈ R (5)

a solution of the wave equation with attenuation

ρ∂2
t u(t, x)− κ∂2

xu(t, x) + 2τρ ∂tu(t, x) = 0 . (6)

In general, one observes that the wave speed depends on the frequency of the wave, i.e., the wave is dispersive.
For the case of constant parameters this is characterized by the dispersion relation ω = ω(k). In this example,
we find the dispersion relation (5) for the wave equation with attenuation (6). For the general description of
real media this approach is too simple and applies only for the wave propagation within a limited frequency
range, in particular since the relaxation time also depends on the frequency. For viscous waves suitable material
laws are constructed where the parameters can be determined from measurements of the dispersion relation at
sample frequencies which are relevant for the application. This is now demonstrated for a specific example.

A model for viscous waves. One approach to characterize waves with dispersion is to use a linear superpo-
sition of the constitutive law for a harmonic wave with several relations for anharmonic waves. In this ansatz
the material law for the stress is based on a decomposition σ = σ0 +σ1 + · · ·+σr with Hooke’s law for σ0, i.e.,

σ0 = κ0ε , (7a)

and several Maxwell bodies for σ1, . . . , σr described by the relations

∂tσj + τ−1
j σj = κj∂tε , j = 1, . . . , r . (7b)

This model depends on the stiffness of the components κ0, . . . , κr and relaxation times τ1, . . . , τr. Solving the
linear ODE (7b) with initial value σj(0) = 0 and inserting ∂tε = ∂xv yields

σj(t) =

∫ t

0

κj exp
(
− 1

τj
(t− s)

)
∂xv(s) ds ,
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and together with (7a) we obtain the retarded material law

σ(t) = κ0∂xu(t) +

∫ t

0

r∑
j=1

κj exp
(
− 1

τj
(t− s)

)
∂xv(s) ds .

This can be summarized to

∂tσ(t) = κ0∂xv(t) +

r∑
j=1

κj∂xv(t)−
∫ t

0

r∑
j=1

κj
τj

exp
(
− 1

τj
(t− s)

)
∂xv(s) ds

= κ∂xv(t) +

∫ t

0

κ̇(t− s)∂xv(s) ds

with the total stiffness κ = κ0 + κ1 + · · ·+ κr and the retardation kernel

κ̇(s) = −
r∑
j=1

κj
τj

exp
(
− s

τj

)
.

Together with the balance relation ρ∂tv = ∂xσ this is a model for viscous waves.

1.4. Elastic waves

In the next step we derive equations for waves in solids. We consider heterogeneous media where the material
parameters depend on the position, and we assume that the wave energy is sufficiently small, so that the material
law can be approximated by a linear relation.

Configuration. We consider an elastic body in the spatial domain Ω ⊂ R3 and we fix a time interval I = (0, T ).
The boundary ∂Ω = ΓV ∪ ΓS is decomposed into parts corresponding to dynamic boundary conditions for the
velocity and static boundary conditions for the stress.

Constituents. The current state of the body is described by the deformation or by the displacement

ϕ = id + u : [0, T ]× Ω −→ R3 , u : [0, T ]× Ω −→ R3 ,

i.e., ϕ(t,x) = x + u(t,x) is the actual position of the point x ∈ Ω at time t. Depending on the displacement,
we define the velocity v = ∂tu, the strain ε(u) = sym(Du), the acceleration a = ∂tv = ∂2

t u, and the strain rate
ε(v) = sym(Dv) = ∂tε(u).
The internal forces in the material are described by the stress tensor

σ : [0, T ]× Ω −→ R3×3
sym .
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Material parameters. Measurements are required to determine the distribution of the mass density
ρ : Ω −→ (0,∞)

and to determine the material stiffness in all directions which are collected in Hooke’s tensor
C : Ω −→ L(R3×3

sym,R3×3
sym) .

Balance of momentum. Newton’s law postulates equality between the temporal change of the momentum ρv
in any time interval (t1, t2) ∈ (0, T ) within any subvolume K ⊂ Ω and the driving forces on the boundary ∂K
described by the stress in direction of the outer normal vector n on ∂K. This results in the balance relation
(without external loads) ∫

K

ρ(x)
(
v(t2,x)− v(t1,x)

)
dx =

∫ t2

t1

∫
∂K

σ(t,x)n(x) da dt . (8)

For smooth functions we obtain by the Gauß theorem∫
K

∫ t2

t1

ρ(x)∂tv(t2,x) dt dx =

∫ t2

t1

∫
K

divσ(t,x) dx dt ,

and since this holds for all time intervals and subvolumes, we get the pointwise relation

ρ∂tv = divσ in (0, T )× Ω . (9)

Remark 1. In the balance relation (8) only the normal stress σ(t,x)n for all directions n ∈ S2 on the boundary
of a subvolume K ⊂ Ω is included. This described the force between material points left and right from x ∈ ∂K
with respect to the direction n. The existence of such a vector for all directions and all points is postulated by
the Cauchy axiom, and by the Cauchy theorem a tensor representing this force exists; moreover, the symmetry
of this tensor is a consequence of the balance of angular momentum.

Material law. Since the forces between the material points x1 and x2 only depend on the difference of the
actual positions u(t,x2)− u(t,x1), the stress σ(t,x) only depends on the deformation gradient Dϕ.
By definition, a material is elastic, if a function Σ exists such that σ = Σ(Dϕ). Then, ∂tσ = DΣ(Dϕ)[Dv]. In
the limit of small strains the material response can be approximated by a linear model, i.e., we assume Dϕ ≈ I,
and we use the linear relation ∂tσ = DΣ(I)[Dv]. In addition, we assume that the stress response is objective,
i.e., it is independent of the observer’s position; then it can be shown that it only depends on the symmetric
strain ε(u) = sym(Du). Together, we obtain Hooke’s law

∂tσ = Cε(v) . (10)

Boundary and initial data. We start with u(0) = u0 and v(0) = v0 in Ω at t = 0, and for t ∈ (0, T ) we
use the boundary conditions for the displacement u(t) = uV(t) or the velocity v(t) = vV(t) on the dynamic
boundary ΓV, and for the stress σ(t)n = gS on the static boundary ΓS.

Including external body forces f , we obtain the second-order formulation of the linear wave equation

ρ∂2
t u− div Cε(u) = f in (0, T )× Ω , (11a)

u(0) = u0 in Ω at t = 0 , (11b)

∂tu(0) = v0 in Ω at t = 0 , (11c)

u(t) = uV(t) on ΓV for t ∈ (0, T ) , (11d)

Cε(u)n = gS(t) on ΓS for t ∈ (0, T ) . (11e)

and, equivalently, the first-order formulation

ρ∂tv − divσ = f in (0, T )× Ω , (12a)

∂tσ −Cε(u) = 0 in (0, T )× Ω , (12b)

v(0) = v0 in Ω at t = 0 , (12c)

σ(0) = Cε(u0) in Ω at t = 0 , (12d)

v(t) = ∂tuV(t) on ΓV for t ∈ (0, T ) , (12e)

σ(t)n = gS(t) on ΓS for t ∈ (0, T ) . (12f)
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1.5. Visco-elastic waves

The balance of momentum (9) together with Hooke’s law ∂tσ = Cε(v) describes linear elastic waves. We
observe

σ(t) = σ(0) +

∫ t

0

∂tσ(s) ds = σ(0) +

∫ t

0

Cε(v(s)) ds .

General linear visco-elastic waves are described by a retarded material law

σ(t) = σ(0) +

∫ t

0

C(t− s)ε(v(s)) ds

implying

∂tσ(t) = C(0)ε(v(t)) +

∫ t

0

Ċ(t− s)ε
(
v(s)

)
ds

with a time-dependent extension Ċ of the elasticity tensor C.
In analogy to the 1d model (7), one defines Generalized Standard Linear Solids with the relaxation tensor

Ċ(s) = −
r∑
j=1

1

τj
exp

(
− s

τj

)
Cj , C(0) = C0 + C1 + · · ·+ Cr .

Introducing the corresponding stress decomposition σ = σ0 + · · ·+ σr with

σj(t) =

∫ t

0

exp

(
s− t
τj

)
Cjε(v(s)) ds , j = 1, . . . , r,

results in the first-order system for visco-elastic waves
ρ ∂tv −∇ ·

(
σ0 + · · ·+ σr

)
= f , (13a)

∂tσ0 −C0ε(v) = 0 , (13b)

∂tσj −Cjε(v) + τ−1
j σj = 0 , j = 1, . . . , r . (13c)

This is complemented by initial and boundary conditions for the velocity v and the total stress σ, which are the
observable quantities. The stress components σ1, . . . ,σr are inner variables describing the retarded material
law; they can be replaced, e.g., by memory variables encoding the material history.
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1.6. Acoustic waves in solids

In isotropic media, Hooke’s tensor only depends on two parameters, e.g., the Lamé parameters µ, λ

Cε = 2µε+ λ tr(ε)I

= 2µdev(ε) + κ tr(ε)I , dev(ε) = ε− 1

3
tr(ε)I .

For the wave dynamics, one uses a decomposition into components corresponding to shear waves depending on
the shear modulus µ, and compressional waves depending on the compression modulus κ = 2

3µ+ λ. Then, the
linear second order elastic wave equation (11a) in isotropic and homogeneous media takes the form

ρ∂2
t u + µ∇×∇× u− 3κ∇(∇ · u) = f .

A vanishing shear modulus µ → 0 leads to the linear acoustic wave equation for the hydrostatic pressure
p = 1

3 tr(σ) and the velocity, described by the first-order system

ρ ∂tv −∇p = f in (0, T )× Ω , (14a)

∂tp− κ∇ · v = 0 in (0, T )× Ω , (14b)

v(0) = v0 in Ω at t = 0 , (14c)

p(0) = p0 in Ω at t = 0 , (14d)

n · v(t) = gV(t) on ΓV for t ∈ (0, T ) , (14e)

p(t) = pS(t) on ΓS for t ∈ (0, T ) , (14f)

where we set pS = n ·gS for the static boundary condition and gV = n ·vV for the dynamic boundary condition.
For acoustics, this corresponds to Dirichlet and Neumann boundary conditions, for elasticity this is reversed.
In homogeneous media and for f = 0, (14a) and (14b) combine to the linear second-order acoustic wave equation

∂2
t p− c2∆p = 0 , c =

√
κ/ρ .

Remark 2. Simply neglecting the shear component is only an approximation and not fully realistic for waves
in solids, in particular since by reflections compressional waves split in compressional and shear components.
Nevertheless, in applications the acoustic wave equation is used also in solids since the system is much smaller
so that computations are much faster.

Remark 3. One obtains the same acoustic wave equations describing compression waves in a fluid or a gas.
Note that, historically, the sign conventions for pressure and stress are different in fluid and solid mechanics.

Visco-acoustic waves. Generalized Standard Linear Solids can be reduced to acoustics. The corresponding
retarded material law for the hydrostatic pressure takes the form

∂tp(t) = κ∇ · v(t) +

∫ t

0

κ̇(t− s)∇ · v(s) ds , κ̇(s) = −
r∑
j=1

κj
τj

exp
(
− s

τj

)
.

Defining κ = κ0 + κ1 + · · ·+ κr and p = p0 + p1 + · · ·+ pr with

pj(t) =

∫ t

0

exp

(
s− t
τj

)
κj∇ · v(s) ds , j = 1, . . . , r

results in the first-order system for linear visco-acoustic waves

ρ ∂tv −∇(p0 + · · ·+ pr) = f ,

∂tp0 − κ0∇ · v = 0 ,

∂tpj − κj∇ · v + τ−1
j pj = 0 , j = 1, . . . , r .

This is complemented by initial and boundary conditions (14c)–(14f).
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1.7. Electro-magnetic waves

Electric fields induce magnetic fields and vice versa. This is formulated by Maxwell’s equations describing the
propagation of electro-magnetic waves.

Configuration. We consider a spatial domain Ω ⊂ R3, a time interval I = (0, T ), and a boundary decomposi-
tion ∂Ω = ΓE ∪ ΓI corresponding to perfect conducting or transmission boundaries.

Constituents. Electro-magnetic waves are determined by the electric field and the magnetic field intensity

E : I × Ω→ R3 , H : I × Ω→ R3 ,

and by the electric flux density and magnetic induction

D : I × Ω→ R3 , B : I × Ω→ R3 .

Further quantities are the electric current density and the electric charge density

J : I × Ω→ R3 , ρ : I × Ω→ R .

Balance relations. Faraday’s law states that the temporal change of the magnetic induction through a two-
dimensional subset A ⊂ Ω induces an electric field along the boundary ∂A, so that for all 0 < t1 < t2 < T∫

A

(
B(t2)−B(t1)

)
· da = −

∫ t2

t1

∫
∂A

E · d` dt .

Ampere’s law states that the temporal change of the electric flux density together with the electric current
density through a two-dimensional manifold A ⊂ Ω induces a magnetic field intensity along the boundary ∂A,
i.e., ∫

A

(
D(t2)−D(t1)

)
· da +

∫ t2

t1

∫
A

J · da dt =

∫ t2

t1

∫
∂A

H · d` dt .

Here, we use u · da = u · n da and u · d` = u · τ d`, the normal vector field n : A → R3 and the tangential
vector field τ : ∂A → R3 (where the orientation of ∂A is given by n).
The Gauß laws state for all subvolumes K ⊂ Ω the conservation of the magnetic induction∫

∂K

B · da = 0

and the equilibrium of electric charge density in the volume with electric flux density across the boundary ∂K∫
∂K

D · da =

∫
K

ρ dx .

Together, by the integral theorems of Stokes and Gauß we obtain∫
A

∫ t2

t1

∂tB · da dt = −
∫ t2

t1

∫
A

∇×E · da dt ,

∫
K

∇ ·B dx = 0 ,∫
A

∫ t2

t1

∂tD · da dt+

∫ t2

t1

∫
A

J · da dt =

∫ t2

t1

∫
A

∇×H · da dt,

∫
K

∇ ·D dx =

∫
K

ρ dx ,

and since this holds for all (t1, t2) ⊂ I and all A,K ⊂ Ω, it results in the Maxwell system

∂tB +∇×E = 0 , ∂tD−∇×H = −J , ∇ ·B = 0 , ∇ ·D = ρ . (15)

Note that a combination of the second and fourth equation implies the conservation of charge ∂tρ+∇ · J = 0.
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Material laws in vacuum. Without the interaction with matter, electric field and the electric flux density,
D = ε0E, and magnetic induction and magnetic field intensity, B = µ0H, are proportional by multiplication
with the constant permittivity ε0 and permeability µ0, respectively, which together results in the linear second-
order Maxwell equation for E

∂2
tE− c2∇×∇×E = 0

with speed of light c = 1/
√
ε0µ0. A corresponding equation holds for H. In vacuum, in the absence of electric

currents and electric charges, we find J = 0 and ρ = 0.

Effective material laws for electro-magnetic waves in matter. The interaction of electro-magnetic waves
with the atoms in matter are described by the polarization P and the magnetization M depending on the electric
field E and the magnetic induction B. For the electric flux density holds

D = ε0E + P(E,B) ,

and the magnetic field intensity is given by

µ0H = B−M(E,B) .

The electric current density depends on the conductivity σ (Ohm’s law) and the external current J0, so that

J = σE + J0 .

In case of linear materials with instantaneous response, the polarization is proportional to the electric field

P = ε0χE

with the susceptibility χ, that yields D = εrE with relative permittivity εr = ε0(1 + χ).
Linear materials with retarded response are given by

P(t) = ε0

∫ t

−∞
χ(t− s)E(s) ds . (16)

A special case is the Debye model with χ(t) = exp
(
− t

τ

)εs − ε∞
τ

, so that the polarization is determined by

τ∂tP + P = ε0(εs − ε∞)E .

This model is dispersive with a dispersion relation similar to the model for viscous elastic waves.
The relation (16) extends to nonlinear materials by, e.g.,

P(t) = ε0

t∫
−∞

χ1(t− s)E(s) ds+

t∫
−∞

t∫
−∞

t∫
−∞

χ3(t− s1, t− s2, t− s3)
(
E(s1),E(s2),E(s3)

)
ds1ds2ds3 .

For materials of Kerr-type this response is instantaneous, i.e.,

P = χ1E + χ3|E|2E .

In more complex material models, the Maxwell system (15) is coupled to evolution equations for polarization
or magnetization. E.g., in the Maxwell–Lorentz system the evolution of the polarization is determined by

∂2
tP =

1

ε2
0

(E−P) + |P|2P .

In the Landau–Lifshitz–Gilbert (LLG) equation the magnetization M is given by

∂tM− αM× ∂tM = −M×Heff , |M| = 1 ,

where α > 0 is a damping factor, and the effective field Heff is a combination of the external magnetic field and
the demagnetizing field, which is a magnetic field due to the magnetization.
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Boundary conditions. The Maxwell system is complemented by conditions on ∂Ω. On a perfectly conducting
boundary ΓE, we have

E× n = 0 and B · n = 0 ,

and on the impedance (or Silver–Müller) boundary ΓI, we prescribe

H× n + ζ (E× n)× n = 0

depending on the given impedance ζ.
Together, we obtain for general nonlinear instantaneous material laws D(E,H) and B(E,H) the first-order
system

∂tD(E,H)−∇×H + σE = −J0, in (0, T )× Ω , (17a)

∂tB(E,H) +∇×E = 0 in (0, T )× Ω , (17b)

E(0) = E0 in Ω at t = 0 , (17c)

H(0) = H0 in Ω at t = 0 , (17d)

E× n = 0 on ΓE for t ∈ (0, T ) , (17e)

H× n + ζ (E× n)× n = g on ΓI for t ∈ (0, T ) . (17f)

In nonlinear optics, for the special case of an instantaneous nonmagnetic material law D(E) = ε0E + P(E) and
M ≡ 0, the Maxwell system reduces to the second-order equation

∂2
tD(E) + µ−1

0 ∇×∇×E + σE = −∂tJ0

complemented by initial and boundary conditions.

Bibliographic comments. The mathematical foundations of modeling elastic solids (including a detailed
discussion and a proof of the Cauchy theorem) is given in [Ciarlet, 1988], and more physical background is given
in [Davis, 2012]. For generalized standard linear solids we refer to [Fichtner, 2011]. An overview on modeling
of electro-magnetic waves is given in [Jackson, 1999], the mathematical aspects of photonics are considered
in [Dörfler et al., 2011]. The example (3) is taken from [Leis, 2013, Example 3.4]. Dispersion relations and the
analogy in the modeling of elastic and electro-magnetic waves are collected in [Carcione, 2014, Chap. 2 and
Chap. 8].
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2. Space-time solutions for linear hyperbolic systems

The linear wave equation can be analyzed in the framework of symmetric Friedrichs systems as a special case of
linear hyperbolic conservation laws. Here, we introduce a general framework for the existence and uniqueness
of strong and weak solutions in space and time which applies to general linear wave equations.
We consider operators in space and time of the form L = M∂t +A describing a linear hyperbolic system, where
A is a first-order operator in space. All results transfer to operators of the form L = M∂t + A + D with an
additional positive semi-definite operator D; this applies to visco-acoustic and visco-elastic models, to mixed
boundary conditions of Robin type and impedance boundary conditions.
In the following, we use standard notations: for open domains G ⊂ Rd in space or G ⊂ R1+d in space-time and
functions v, w : G → R we define the inner product (v, w)G =

∫
G
vw dx, the norm ‖v‖G =

√
(v, v)G and the

Hilbert space L2(G) of measurable functions v : G→ R with ‖v‖G <∞.

2.1. Linear hyperbolic first-order systems

Let Ω ⊂ Rd be a domain in space with Lipschitz boundary, I = (0, T ) a time interval, and we denote the
space-time cylinder by Q = (0, T ) × Ω. Boundary conditions will be imposed on Γk ⊂ ∂Ω for k = 1, . . . ,m,
depending on the model, so that the corresponding equations are well-posed.
We consider a linear operator in space and time of the form L = M∂t + A with a uniformly positive definite
operator M defined by My(x) = M(x)y(x) with a matrix valued function M ∈ L∞(Ω;Rm×msym ), and a differential

operator Ay =
∑d
j=1Aj∂jy with matrices Aj ∈ Rm×msym . Moreover, we define the matrix An =

∑d
j=1 njAj ∈

Rm×msym for n ∈ Rd and the corresponding boundary operator (Any)(x) = Any(x).
In the first step, we consider the properties of the operators A and L for smooth functions. Then the operators
are extended to Hilbert spaces and, by specifying boundary conditions, we define maximal domains for the
operators.

Example 4. This applies to the linear acoustic wave equation (14) with m = d+ 1 and

y =

(
v
p

)
, My =

(
ρv
κ−1p

)
, Ay =

(
−∇p
−∇ · v

)
, Any =

(
−pn
−n · v

)
. (18)

For linear elastic waves with v = ∂tu and σ = Cε(u) we have

y =

(
v
σ

)
, My =

(
ρv

C−1σ

)
, Ay =

(
−divσ
−ε(v)

)
, Any =

(
−σn

− 1
2 (nv> + vn>)

)
, (19)

and 1
2My · y = 1

2

(
ρ|v|2 + σ ·C−1σ

)
= 1

2

(
ρ|∂tu|2 + ε(u) ·Cε(u)

)
is the kinetic and potential energy.

For linear electro-magnetic waves we have

y =

(
E
H

)
, My =

(
ε0E
µ0H

)
, Ay =

(
−∇×H
∇×E

)
, Any =

(
−n×H
n×E

)
, (20)

and 1
2My · y = 1

2

(
ε0|E|2 + µ0|H|2

)
is the electro-magnetic energy.
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Linear conservation laws. Defining

A = (A1, · · · , Ad) = (Aj,kl)j=1...d, k,l=1,...,m ∈ Rd×m×m

we observe Ay =
∑d
j=1 ∂jAjy = div(Ay) and An = n · A =

d∑
j=1

njAj , so that this system takes the form of a

linear conservation law

M∂ty + div(Ay) = f .

Integration by parts and using the symmetry of Aj yields for differentiable functions with compact support in Ω

(Ay, z)Ω =

d∑
j=1

∫
Ω

Aj∂jy · z dx =

d∑
j=1

m∑
k,l=1

∫
Ω

Aj,kl(∂jyl)zk dx

= −
d∑
j=1

m∑
k,l=1

∫
Ω

Aj,klyl ∂jzk dx = −
d∑
j=1

m∑
k,l=1

∫
Ω

ylAj,lk ∂jzk dx

= −
d∑
j=1

∫
Ω

y ·Aj∂jz dx = −(y, Az)Ω , y, z ∈ C1
c(Ω;Rm) ,

so that A∗ = −A on C1
c(Ω;Rm). On the boundary ∂Ω with outer unit normal n, integration by parts yields

(Ay, z)Ω + (y, Az)Ω =

d∑
j=1

m∑
k,l=1

∫
Ω

(
Aj,kl(∂jyl)zk + ylAj,lk ∂jzk

)
dx

=

d∑
j=1

m∑
k,l=1

∫
Ω

∂j
(
Aj,klylzk

)
dx =

d∑
j=1

m∑
k,l=1

∫
Ω

nj Aj,klylzk da

=

∫
∂Ω

Any · z da = (Any, z)∂Ω , y, z ∈ C1(Ω;Rm) ∩ C0(Ω;Rm) .

Together, we obtain in space and time for L = M∂t +A and its adjoint L∗ = −L

(Lv,w)Q − (v, L∗w)Q =
(
Mv(T ),w(T )

)
Ω
−
(
Mv(0),w(0)

)
Ω

+ (Anv,w)(0,T )×∂Ω (21)

for v,w ∈ C1(Q;Rm) ∩ C0(Q;Rm).

Example 5. For linear acoustic waves (18) we have(
L(v, p), (w, q)

)
Q

+
(
(v, p), L(w, q)

)
Q

=
(
ρv(T ),w(T )

)
Ω

+
(
κ−1p(T ), p(T )

)
Ω

−
(
ρv(0),w(0)

)
Ω
−
(
κ−1p(0), p(0)

)
Ω

− (p,n ·w)(0,T )×∂Ω − (n · v, q)(0,T )×∂Ω .

For linear elastic waves (19) we have(
L(v,σ), (w, τ )

)
Q

+
(
(v,σ), L(w, τ )

)
Q

=
(
ρv(T ),w(T )

)
Ω

+
(
C−1σ(T ), τ (T )

)
Ω

−
(
ρv(0),w(0)

)
Ω
−
(
C−1σ(0), τ (0)

)
Ω

− (σn,w)(0,T )×∂Ω − (v, τn)(0,T )×∂Ω .

For linear electro-magnetic waves (20) we have(
L(E,H), (e,h)

)
Q

+
(
(E,H), L(e,h)

)
Q

=
(
ε0E(T ), e(T )

)
Ω

+
(
µ0H(T ),h(T )

)
Ω

−
(
ε0E(0), e(0)

)
Ω
−
(
µ0H(0),h(0)

)
Ω

− (E× n,h)(0,T )×∂Ω + (H× n, e)(0,T )×∂Ω .
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Here we use the following calculus: for vectors a,b, c ∈ R3 we have a · (b× c) = (a× b) · c = (c× a) · b, and
for vector fields u,v : Ω→ R3 we have ∇ · (u× v) = v · (∇× u)− u · (∇× v). Thus, the Gauß theorem gives∫

Ω

v · (∇× u) dx−
∫

Ω

u · (∇× v) dx =

∫
Ω

∇ · (u× v) dx =

∫
∂Ω

(u× v) · n da =

∫
∂Ω

u · (v × n) da .

The formulation in our examples of wave equations as Friedrichs systems yields symmetric matrices of the form

Aj =

(
0 Ãj

Ã
>
j 0

)
with Ãj ∈ Rm1×m2 and m = m1 + m2. In order to obtain a well-posed problem with a

unique solution, boundary conditions are required. Here we select Γ1 = . . . = Γm1 ⊂ ∂Ω and the complement
Γk = ∂Ω \ Γ1 for k = m1 + 1, . . . ,m, as it is specified in the next section for acoustics in Ex. 6.
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2.2. Solution spaces

We define the Hilbert spaces

H(A,Ω) =
{
y ∈ L2(Ω;Rm) : z ∈ L2(Ω;Rm) exists with (z,w)Ω = (y, A∗w)Ω for all w ∈ C1

c(Ω;Rm)
}
,

H(L,Q) =
{
v ∈ L2(Q;Rm) : z ∈ L2(Q;Rm) exists with (z,w)Q = (v, L∗w)Q for all w ∈ C1

c(Q;Rm)
}
,

so that for y ∈ H(A,Ω) and v ∈ H(L,Q) the weak derivatives Ay ∈ L2(Ω;Rm) and Lv ∈ L2(Q;Rm) exist; the
corresponding norms are

‖y‖H(A,Ω) =
√
‖y‖2Ω + ‖Ay‖2Ω , ‖v‖H(L,Q) =

√
‖v‖2Q + ‖Lv‖2Q .

Depending on homogeneous boundary conditions on Γk ⊂ ∂Ω, k = 1, . . . ,m, we define

Z =
{
w ∈ C1(Ω;Rm) ∩ C0(Ω;Rm) : (Anw)k = 0 on Γk , k = 1, . . . ,m

}
, (22a)

V =
{
w ∈ C1(Q;Rm) ∩ C0(Q;Rm) : w(0) = 0 , (Anw)k = 0 on (0, T )× Γk , k = 1, . . . ,m

}
,

(22b)

V∗ =
{
z ∈ C1(Q;Rm) ∩ C0(Q;Rm) : z(T ) = 0 , (Anz)k = 0 on (0, T )× Γ∗k , k = 1, . . . ,m

}
,

(22c)

where the sets Γk ⊂ ∂Ω are chosen such that

(Az, z)Ω = 0 , z ∈ Z , (23)

and such that for the sets Γ∗k ⊂ ∂Ω in the definition of the test space holds

(Anw, z)(0,T )×∂Ω =

m∑
k=1

(
(Anw)k, zk

)
(0,T )×Γk

, w ∈ C1(Q;Rm) , z ∈ V∗ . (24)

This is obtained by taking Γ∗k ⊂ ∂Ω minimal such that for homogeneous boundary conditions in V and V∗

(Anw, z)(0,T )×∂Ω = 0 , w ∈ V , z ∈ V∗ (25)

The choice of Γk and Γ∗k is essential in order to obtain a well-posed problem; this will be explained for our
examples in Sec. 2.7. Since we have A∗ = −A, this implies (Az, z)Ω = 1

2 (Anz, z)∂Ω, and we observe Γ∗k = Γk.
Note that this is specific for our applications to wave problems but does not apply to general linear hyperbolic
systems.
Let Z ⊂ H(A,Q) be the closure of Z with respect to the norm ‖ · ‖H(A,Q), let V ⊂ H(L,Q) be the closure of
V with respect to the norm ‖ · ‖H(L,Q), and let V ∗ ⊂ H(L∗, Q) be the closure of V∗ with respect to the norm
‖ · ‖H(L∗,Q). Then, we obtain from (21) and (24)

(Lv,w)Q − (v, L∗w)Q = 0 , v ∈ V , w ∈ V ∗ . (26)

Example 6. For linear acoustic waves (18) we have H(A,Ω) = H(div,Ω)×H1(Ω), and for d = 2 the boundary
parts Γ1 = Γ2 = ΓS and Γ3 = ΓV with ∂Ω = ΓS ∪ ΓV in Ex. 5 yields that (26) holds with Γk = Γ∗k, and we
obtain

Z =
{

(v, p) ∈ H(div,Ω)×H1(Ω): v · n = 0 on ΓV , p = 0 on ΓS

}
,

V ⊃
{

(v, p) ∈ H1(0, T ; L2(Ω;Rm)) ∩ L2(0, T ; H(div,Ω)×H1(Ω)) :

v(0) = 0 , p(0) = 0 ,v · n = 0 on (0, T )× ΓV , p = 0 on (0, T )× ΓS

}
,

V ∗ ⊃
{

(w, q) ∈ H1(0, T ; L2(Ω;Rm)) ∩ L2(0, T ; H(div,Ω)×H1(Ω)) :

w(T ) = 0 , q(T ) = 0 ,w · n = 0 on (0, T )× ΓV , q = 0 on (0, T )× ΓS

}
.

In Y = L2(Ω;Rm) and W = L2(Q;Rm) we use the energy norms

‖y‖Y =
√

(My,y)Ω , y ∈ Y , ‖w‖W =
√

(Mw,w)Q , w ∈W ,
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and for the L2 adjoints

‖y‖Y ∗ = sup
z∈Y \{0}

(y, z)Ω

‖z‖Y
=
√

(M−1y,y)Ω , ‖w‖W∗ =
√

(M−1w,w)Q .

In V and V ∗ we use the weighted norms

‖v‖V =
√
‖v‖2W + ‖Lv‖2

W∗
, ‖z‖V ∗ =

√
‖z‖2W + ‖L∗z‖2

W∗
, v ∈ V , z ∈ V ∗ .

Remark 7. For the extension to visco-acoustic and visco-elastic models the same solution spaces can be used.
For mixed boundary conditions of Robin type or impedance boundary conditions a modification is required to
include additional conditions on the boundary, see Rem. 22. This relies on the fact that traces are well-defined
for smooth test functions in V∗, but in general not in V , where traces on mixed boundaries are only defined in
distributional sense.
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2.3. Solution concepts

We consider different solution spaces of the equation Lu = f with initial and boundary conditions.

Definition 8. Depending on regularity of the data, we define:

a) u ∈ C1(Q;Rm) ∩ C0(Q;Rm) is a classical solution, if

Lu = f in Q = (0, T )× Ω ,

u(0) = u0 in Ω at t = 0 ,

(Anu)k = gk on (0, T )× Γk , k = 1, . . . ,m ,

for f ∈ C0(Q;Rm), u0 ∈ C0(Ω;Rm), gk ∈ C0((0, T )× Γk).

b) u ∈ H(L,Q) is a strong solution, if

Lu = f in Q = (0, T )× Ω ,

u(0) = u0 in Ω at t = 0 ,

(Anu)k = gk on (0, T )× Γk , k = 1, . . . ,m ,

for f ∈ L2(Q;Rm), u0 ∈ L2(Ω;Rm), gk ∈ L2((0, T )× Γk).

c) u ∈ L2(Q;Rm) is a weak solution, if

(
u, L∗z

)
Q

= 〈`, z〉 , z ∈ V∗,

with the linear functional ` defined by

〈`, z〉 = (f , z)Q +
(
Mu0, z(0)

)
Ω
− (g, z)(0,T )×∂Ω

for data f ∈ L2(Q;Rm), u0 ∈ L2(Ω;Rm), and gk ∈ L2((0, T )× Γk).
We set g = (gk)k=1,...,m ∈ L2((0, T )× ∂Ω;Rm) with gk = 0 on ∂Ω \ Γk.

Remark 9. For the variational definition of weak solutions we use smooth test functions V∗ so that the space-
time traces on {0} × Ω ⊂ ∂Q and (0, T )× ∂Ω ⊂ ∂Q are well defined; with additional assumptions in Thm. 11
and Thm. 35 this extends to test functions in V ∗.

Example 10. A weak solution (v, σ) ∈ L2((0, T )× (0, X);R2) of the linear wave equation (2) in 1d with wave

speed c =
√
κ/ρ and homogeneous Dirichlet boundary conditions satisfies

(
v,−ρ∂tw + ∂xτ

)
(0,T )×(0,X)

+
(
σ,−κ−1∂tτ + ∂xw

)
(0,T )×(0,X)

=
(
v0, w(0)

)
(0,X)

+
(
σ0, τ(0)

)
(0,X)

for all test functions w, τ ∈ C1([0, T ]×[0, X]) with w(T, x) = τ(T, x) = 0 for x ∈ (0, X) and w(t, 0) = w(t,X) = 0
for t ∈ (0, T ). This allows for discontinuities of the solution along the characteristics

{(
t

x0 ± ct

)
∈ (0, T )× R : x0 ± ct ∈ Ω

}
=

{(
t
x

)
∈ (0, T )× Ω :

(
t

x− x0

)
·
(
±c
1

)
= 0

}

for some x0 ∈ R. Here we illustrate this for a simple example: consider a piecewise constant function

(
v(t, x)
σ(t, x)

)
=



(
vL

σL

)
for x < x0 + ct , [v] = vR − vL ,(

vR

σR

)
for x > x0 + ct , [σ] = σR − σL .
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Then, we have for all (w, τ) ∈ Cc([0, T ]× [0, X],R2)∫ T

0

∫ X

0

(
v
σ

)
·
(
−ρ∂tw + ∂xτ
−κ−1∂tτ + ∂xw

)
dx dt

=

∫
x<x0+ct

(
∂t
∂x

)
·
(
−ρvLw − κ−1σLτ

vLτ + σLw

)
dx dt+

∫
x>x0+ct

(
∂t
∂x

)
·
(
−ρvRw − κ−1σRτ

vRτ + σRw

)
dx dt

=

∫
x=x0+ct

1√
1 + c2

(
−c
1

)
·
(
−ρvLw − κ−1σLτ

vLτ + σLw

)
da+

∫
x=x0+ct

1√
1 + c2

(
c
−1

)
·
(
−ρvRw − κ−1σRτ

vRτ + σRw

)
da

= − 1√
1 + c2

∫
x=x0+ct

(
c
1

)
·
(
−ρ[v]w − κ−1[σ]τ

[v]τ + [σ]w

)
da

=
1√

1 + c2

∫
x=x0+ct

(
c

(
ρ 0
0 κ−1

)(
[v]
[σ]

)
−
(

0 1
1 0

)(
[v]
[σ]

))
·
(
w
τ

)
da

=
1√

1 + c2

∫
x=x0+ct

(
cM

(
[v]
[σ]

)
+A

(
[v]
[σ]

))
·
(
w
τ

)
da .

We observe, that (v, σ) is a weak solution if the jump ([v], [σ])> is an eigenvector of

A

(
[v]
[σ]

)
= −cM

(
[v]
[σ]

)
.

This is equivalent to the jump conditions [σ]− cρ[v] = 0 and [v]− cκ−1[σ] = 0.

Figure 2. Illustration of a piecewise constant weak solution in 1d of the wave equation in
space and time with jumps along the characteristics. The solution is computed by the explicit
time stepping scheme in Example 10.

Based on the jump conditions we construct a weak solution

(v, σ) ∈ L2

(
(0, T )× (0, X),R2)
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with X = cT that is discontinuous along the characteristics (t, jMx ± ct) on a special mesh in space and time
depending of the wave speed c with Mx = cMt and Mt = T/N , N ∈ N, cf. Fig. 2. Starting with v(0, x) = v0

j− 1
2

and σ(0, x) = σ0
j− 1

2

for (j− 1)Mx < x < jMx, we obtain from the jump condition recursively for n = 1, 2, . . . , N

v
n− 1

2
j =

1

2

(
vn−1
j+ 1

2

+ vn−1
j− 1

2

+ σn−1
j+ 1

2

− σn−1
j− 1

2

)
, vn− 1

2
= −vn1

2
,

σ
n− 1

2
j =

1

2

(
v
n− 1

2

j+ 1
2

− vn−
1
2

j− 1
2

+ σ
n− 1

2

j+ 1
2

+ σ
n− 1

2

j− 1
2

)
, j = 0, . . . , N , vnN+ 1

2
= −vnN− 1

2
,

vnj− 1
2

=
1

2

(
v
n− 1

2
j + v

n+ 1
2

j−1 + σ
n− 1

2
j − σn−

1
2

j−1

)
, σn− 1

2
= σn1

2
,

σnj− 1
2

=
1

2

(
v
n− 1

2
j − vn−

1
2

j−1 + σ
n− 1

2
j + σ

n− 1
2

j−1

)
, j = 1, . . . , N , σnN+ 1

2
= σnN− 1

2
,

with suitable extensions for homogeneous Dirichlet boundary conditions for v, see Fig. 2 for an example.
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2.4. Existence and uniqueness of space-time solutions
Now we construct strong and weak solutions by a least squares approach. Therefore, we define the quadratic
functionals

J(v) =
1

2
‖Lv − f‖2W∗ , v ∈ H(L,Q) , J∗(z) =

1

2
‖L∗z‖2W∗ − 〈`, z〉 , z ∈ V∗ .

Theorem 11. Depending on the regularity of the data, we obtain:

a) Assume that CL > 0 exists with

‖v‖W ≤ CL‖Lv‖W∗ , v ∈ V . (27)

Then, a unique minimizer u ∈ V of J(·) exists, and if L(V ) = W , the minimizer u ∈ V is the unique
strong solution of

(Lu,w)Q = (f ,w)Q , w ∈W (28)

with homogeneous initial and boundary data.
b) Assume that CL∗ > 0 and C` > 0 exists with

‖z‖W ≤ CL∗‖L∗z‖W∗ , |〈`, z〉| ≤ C`‖z‖V ∗ , z ∈ V∗ . (29)

Then, J∗(·) extends to V ∗, a unique minimizer z∗ ∈ V ∗ of J∗(·) exists, and if L∗(V∗) ⊂ W is dense,
u = L∗z∗ ∈ L2(Q;Rm) is the unique weak solution of

(u, L∗z)Q = 〈`, z〉 , z ∈ V ∗ . (30)

Proof. ad a) The functional J(·) > 0 is bounded from below, and any minimizing sequence {un}n∈N ⊂ V with

lim
n→∞

J(un) = inf
v∈V

J(v) := Jinf

satisfies

1

4
‖Lun − Luk‖2W∗ =

1

2
‖Lun − f‖2W∗ +

1

2
‖Luk − f‖2W∗ −

∥∥∥L1

2

(
un + uk

)
− f
∥∥∥2

W∗

= J(un) + J(uk)− 2J
(1

2

(
un + uk

))
≤ J(un) + J(uk)− 2Jinf −→ 0 for n, k −→∞ .

Condition (27) implies the norm equivalence

‖Lv‖W∗ ≤ ‖v‖V =
√
‖v‖2W + ‖Lv‖2W∗ ≤

√
1 + C2

L ‖Lv‖W∗ , v ∈ V , (31)

so that the minimizing sequence is a Cauchy sequence converging to u ∈ V . Since J(·) is strictly convex, the
minimizer is unique. Moreover, since J(·) is differentiable, u is a critical point, i.e.,

0 = ∂J(u)[v] = (Lu− f , Lv)W∗ = (Lu− f ,M−1Lv)Q , v ∈ V .

If L is surjective, this implies (28) by inserting w = M−1Lv ∈M−1L(V ) = W .
ad b) By assumption (29), J∗ and ` are continuous in V∗ with respect to the norm in V ∗, so they extend to V ∗,
and we observe that J∗ is bounded from below by

J∗(z) =
1

2
‖L∗z‖2W∗ − 〈`, z〉 ≥

1

2(1 + C2
L∗

)
‖z‖2V ∗ − C` ‖z‖V ∗ ≥ −

1

2
C2
`

(
1 + C2

L∗
)
.

By the same arguments as above a unique minimizer z∗ ∈ V ∗ exists characterized by

0 = ∂J∗(z∗)[z] = (L∗z∗, L∗z)W∗ − 〈`, z〉 , z ∈ V ∗ .

Inserting u = L∗z∗ implies (30). Now assume that ũ also solves (30); then, (u − ũ, L∗z)Q = 0 for all z ∈ V∗.
Since L∗(V∗) is dense in W , this implies u = ũ, so that the weak solution is unique. �

Remark 12. Strong solutions with inhomogeneous initial and boundary data exist, if the initial function u0 in Ω
can be extended to a function u0 ∈ H(L,Q) satisfying the boundary conditions.
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2.5. Mapping properties of the space-time operator

Lemma 13. ‖v‖W ≤ CL‖Lv‖W∗ for v ∈ V holds with CL = 2T .

Proof. For v ∈ V we have v(0) = 0, and using (23) we obtain

‖v‖2W =

∫ T

0

(
Mv(t),v(t)

)
Ω

dt =

∫ T

0

((
Mv(t),v(t)

)
Ω
−
(
Mv(0),v(0)

)
Ω

)
dt

=

∫ T

0

∫ t

0

∂s
(
Mv(s),v(s)

)
Ω

dsdt = 2

∫ T

0

∫ t

0

(
M∂sv(s),v(s)

)
Ω

dsdt

= 2

∫ T

0

∫ t

0

((
M∂sv(s),v(s)

)
Ω

+
(
Av(s),v(s)

)
Ω

)
dsdt

= 2

∫ T

0

∫ t

0

(
Lv(s),v(s)

)
Ω

dsdt = 2

∫ T

0

(T − t)
(
Lv(t),v(t)

)
Ω

dt

≤ 2T ‖Lv‖W∗‖v‖W .

Since V is dense in V , this extends to V . �

As a consequence of Lemma 13, the operator L : V → L2(Q;Rm) is injective and continuous, i.e., L ∈ L(V,W ).

Corollary 14. L(V ) ⊂ L2(Q;Rm) is closed.

Proof. For any sequence (wn)n∈N ⊂ V with lim
n→∞

Lwn = f ∈W we have

‖wn−wk‖W + ‖Lwn− Lwk‖W∗ ≤ (CL + 1) ‖Lwn− Lwk‖W∗ −→ 0 , n, k →∞ ,

so that (wn)n is a Cauchy sequence in V ; since V ⊂ H(L,Q) is closed, the limit w = lim wn ∈ V with Lw = f
exists. �

Let the domain D(A) = Z ⊂ H(A,Ω) of the operator A be the closure of Z defined in (22a). Then, (23) gives(
(M + τA)z, z

)
Ω

=
(
Mz, z

)
Ω
> 0 for all z 6= 0 and τ ∈ R, i.e., M + τA is injective on Z. Moreover, we require

that M+τA is surjective on Z, which is achieved in our applications in Sect. 2.7 by a suitable balanced selection
of Γk ⊂ ∂Ω.

Lemma 15. Assume that M + τA : Z → L2(Ω;Rm) is surjective for all τ > 0.
Then, L(V ) ⊂ L2(Q;Rm) is dense.

Proof. For f ∈ L2(Q;Rm), N ∈ N and tN,n = n TN let fN ∈ L2(Q;Rm) be piecewise constant in time with

fN,n = fN |(tN,n−1,tN,n) so that lim
N→∞

‖fN − f‖Q = 0. Since the operator M+ T
NA : Z −→ L2(Ω;Rm) is surjective,

starting with uN,0 = 0 we find uN,n ∈ Z with(
M +

T

N
A
)
uN,n = uN,n−1 +

T

N
fN,n , n = 1, . . . , N .

Let uN ∈ H1(0, T ;Z) ⊂ V be the piecewise linear interpolation: for n = 1, . . . , N set

uN (t) =
tN,n − t

tN,n − tN,n−1
uN,n−1 +

t− tN,n−1

tN,n − tN,n−1
uN,n , t ∈ (tN,n−1, tN,n) .

Then, we observe by construction LuN = fN and thus lim
N→∞

‖LuN − f‖Q = 0. �

Remark 16. Together with Cor. 14 we observe L(V ) = L2(Q;Rm), i.e., the operator L : V −→ L2(Q;Rm) is
surjective.
A corresponding result can be achieved for L∗(V ∗) as the same arguments as in Lem. 13, 15, and Cor. 14 hold
for L∗ and V ∗. We obtain

‖z‖W ≤ CL‖L∗z‖W∗ , z ∈ V ∗

i.e., CL = CL∗ . The operator M − τA : Z → L2(Ω;Rm) is surjective for all τ > 0, and L∗(V ∗) ⊂ L2(Q;Rm) is
dense which implies L∗(V ∗) = L2(Ω;Rm).
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Remark 17. Since L(V) and L∗(V∗) are dense in W , we have

V =
{
v ∈ H(L,Q) : (Lv, z)Q = (v, L∗z)Q for z ∈ V∗

}
,

V ∗ =
{
z ∈ H(L∗, Q) : (L∗z,v)Q = (z, Lv)Q for v ∈ V

}
,

i.e., V ∗ is the Hilbert adjoint space of V , and V is the Hilbert adjoint space of V ∗.

Lemma 18. For z ∈ V ∗ holds

‖z(0)‖2Y ≤ ‖z‖2V ∗ .

Proof. We obtain, using z(T ) = 0,

‖z(0)‖2Y = ‖z(0)‖2Y − ‖z(T )‖2Y = −
∫ T

0

∂t‖z(t)‖2Y dt = −2(M∂tz, z)Q

= −2(M∂tz, z)Q − 2(Az, z)Q = 2(L∗z, z)Q ≤ ‖z‖2V ∗ .

�
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2.6. Inf-sup stability

From the previous section we directly obtain the following results.

Theorem 19. The bilinear form b : V ×W → R, b(v,w) = (Lv,w)Q, is inf-sup stable satisfying

inf
v∈V \{0}

sup
w∈W\{0}

b(v,w)

‖v‖V ‖w‖W
= inf

w∈W\{0}
sup

v∈V \{0}

b(v,w)

‖v‖V ‖w‖W
≥ β :=

1√
1 + C2

L

.

Thus, for all f ∈ L2(Q,Rm) a unique Petrov–Galerkin solution u ∈ V of

b(u,w) =
(
f ,w

)
Q
, w ∈W,

exists, and the solution is bounded by ‖u‖V ≤ β−1‖f‖W∗ .

Proof. For v ∈ V \ {0} we test with w = M−1Lv, so that with (31)

sup
w∈W\{0}

b(v,w)

‖w‖W
≥ b(v,M−1Lv)

‖M−1Lv‖W
= ‖M−1Lv‖W ≥

1√
1 + C2

L

‖v‖V .

The existence and the a priori bound are now an easy consequence. �

Corollary 20. Due to our previous results on the adjoint operator L∗ we find correspondingly that for all d ∈
L2(Q,Rm) the dual problem L∗z = d admits a unique solution z ∈ V ∗ which is bounded by ‖z‖V ∗ ≤ β−1‖d‖W∗ .
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Corollary 21. Additional regularity for the right-hand side f ∈ H1(0, T ; L2(Ω;Rm)) implies for the solution the
regularity u ∈ H1(0, T ; L2(Ω;Rm)) and the estimate ‖∂tu‖W ≤ CL‖∂tf‖W∗ .

Proof. This simply follows from Lu = f , which formally gives for the derivative in time L∂tu = ∂tf . If ∂tf ∈W ,
a solution v ∈ V solving Lv = ∂tf exists, and since the solution is unique, v = ∂tu. �

2.7. Applications to acoustics and visco-elasticity

Acoustic waves. In the setting of Example 6 we have A(v, p) = −(∇p,∇ · v) and(
A(v, p), (w, q)

)
Ω

+
(
(v, p), A(w, q)

)
Ω

= −(p,n ·w)∂Ω − (n · v, q)∂Ω .

We now show that the assumption in Lem. 15 is satisfied. For all (f , g) ∈ L2(Ω;Rd+1) and τ > 0 we define in
the first step p ∈ H1(Ω) with p = 0 on ΓS by solving the elliptic equation

τ
(
ρ−1∇p,∇φ

)
Ω

+
(
κ−1p, φ

)
Ω

=
(
g, φ
)

Ω
−
(
ρ−1f ,∇φ

)
Ω

(32)

for φ ∈ H1(Ω) with φ = 0 on ΓS. Then, we define v = ρ−1(τ∇p+ f) ∈ L2(Ω;Rd), and inserting (32), we observe(
v,∇φ

)
Ω

=
(
g, φ
)

Ω
−
(
κ−1p, φ

)
Ω
, φ ∈ C1

c(Ω) ,

i.e., ∇ · v = −g + κ−1p ∈ L2(Ω), and thus

0 =
(
v,∇φ

)
Ω

+
(
∇ · v, φ

)
Ω

= 〈n · v, φ〉∂Ω , φ ∈ C1(Ω) , φ = 0 on ΓS ,

so that n · v = 0 on ∂Ω \ ΓS = ΓV. Together, (v, p) ∈ Z and

(M + τA)(v, p) = (f , g) .

Moreover, the solution is unique, so that M + τA is injective and surjective.

Visco-elastic waves. For the system (13) we set y =
(
v,σ0, . . . ,σr)

> and

M=


ρ 0 · · · 0
0 C−1

0
...

. . .

0 C−1
r

 , A=−


0 div · · · div
ε 0
...

. . .

ε 0 0

 , D= M


0 0 0 · · · 0
0 0 0 · · · 0
0 0 τ−1

1
...

...
. . .

0 0 τ−1
r


with m = 2 + 3(1 + r) components for d = 2 and m = 3 + 6(1 + r) for d = 3, and where D ∈ L∞(Ω;Rm×msym ) is a
positive semi-definite matrix function. This defines the operator Dy(x) = D(x)y(x), and we have (Dy,y)Ω ≥ 0
for all y ∈ L2(Ω;Rm).
The space-time setting is extended to the operator L = M∂t + A + D, and the formal adjoint operator is
L∗ = −M∂t −A+D. The assumption in Lem. 15 can be verified analogously to the acoustic case.

Remark 22. The extension to mixed boundary conditions on ΓR ⊂ ∂Ω requires L2 regularity of the traces on
the boundary part ΓR. Then, extending the norm ‖ · ‖V by a corresponding boundary term again defines V
as closure of V with respect to this stronger norm, and the space-time operator L is extended by a dissipative
boundary operator D.

Bibliographic comments. Least squares for linear first-order systems for finite elements are considered in [Cai
et al., 1994, Cai et al., 2001], where also the LL∗ technique is established which is used to prove Thm. 11 b).
Here this is applied to the space-time setting, see [Dörfler et al., 2016,Dörfler et al., 2019,Ernesti and Wieners,
2019b,Ernesti and Wieners, 2019a]. The extension to mixed boundary conditions is considered in [Dörfler et al.,
2020].
The inf-sup constant β in Thm. 19 is not optimal for the continuous problem; for an improved estimate see
[Ernesti and Wieners, 2019a, Lem. 1]. Here, it relies on the estimate for CL in Lem. 13 which is generalized in
Thm. 26 for the approximation. The suitable choice of boundary conditions for general Friedrichs systems is
discussed in [Di Pietro and Ern, 2011, Chap. 7.2].
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3. Discontinuous Galerkin methods for linear hyperbolic systems

We develop a space-time method with a discontinuous Galerkin discretization in space for linear wave problems.
For the ansatz space we use piecewise polynomials in every cell, where the traces on the cell interfaces can be
different from the two sides. Therefore, we need to extend the first-order operator A to discontinuous finite
element spaces. Here, we introduce the discrete operator Ah with upwind flux, where the evaluation of the
upwind flux is based on solving Riemann problems, i.e., by construction of piecewise constant solutions in space
and time. We start with simple examples for interface and transmission problems, and then consider the general
case for waves in heterogeneous media.

3.1. Traveling wave solutions in homogeneous media

We consider linear hyperbolic first-order systems L = M∂t + A introduced in Sect. 2.1, and we start with
the case of homogeneous material parameters, so that the operator M is represented by a symmetric positive
definite matrix M ∈ Rm×msym which is constant in Ω.

Let (λ,w) ∈ R×Rm be an eigensystem of Anw = λMw, and let a ∈ C1(R) be an amplitude function describing
the shape of the traveling wave. Then, we observe for y(t,x) = a(n · x− λt) w

∂ty(t,x) = −λa′(n · x− λt)w ,

∂xjy(t,x) = nja
′(n · x− λt)w ,

Ly(t,x) = M∂ty(t,x) +Ay(t,x)

= a′(n · x− λt)
(
− λM +

d∑
j=1

njAj

)
w

= a′(n · x− λt)
(
An − λM

)
w = 0 ,

so that y solves Ly = 0 for all t ∈ R in Ω = Rd.

Example 23. For acoustic waves with wave speed c =
√
κ/ρ we have

y =

(
v
p

)
, My =

(
ρv
κ−1p

)
, Any = −

(
pn

v · n

)
, λ ∈ {0,±c} , w =

(
∓cn
κ

)
.

For elastic waves with wave speeds cp =
√

(2µ+ λ)/ρ for compressional waves and cs =
√
µ/ρ for shear waves,

we have

y =

(
v
σ

)
, My =

(
ρv

C−1σ

)
, Any = −

(
σn

1
2

(
nv> + vn>

)) ,

λ ∈ {0,±cp,±cs} , wp =

(
∓cpn

2µnn> + λI

)
, ws =

(
∓csτ

µ(nτ> + τn>)

)
,

where τ ∈ Rd is a tangential unit vector, i.e., τ · n = 0 and |τ | = 1.
For linear electro-magnetic waves with wave speed c = 1/

√
εµ we have

y =

(
E
H

)
, My =

(
εE
µH

)
, Any = −

(
n×H
−n×E

)
,

λ ∈ {0,±c} , w1 =

(√
εn× τ
±√µτ

)
, w2 =

(
±
√
ετ√

µn× τ

)
.
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3.2. Reflection of traveling acoustic waves at boundaries

In the next step we consider solutions of the acoustic wave equation in the half space(
ρ∂tv −∇p

κ−1∂tp−∇ · v

)
=

(
0
0

)
in ΩR =

{
x ∈ Rd : n · x > 0

}
with initial value (

v(0,x)
p(0,x)

)
= a(n · x)

(
cn
κ

)
depending on a ∈ C1(R) with a(n · x) = 0 for n · x < ct0 and t0 > 0, i.e., supp a ⊂ [−∞, ct0].
The wave starts traveling from right to left, and at time t = t0 it reaches the boundary. In case of a homogeneous
Neumann boundary condition v · n = 0 it is reflected, i.e.,

(
v(t,x)
p(t,x)

)
=


a(ct+ n · x)

(
cn

κ

)
0 < c(t0 − t) < n · x ,

a(ct+ n · x)

(
cn

κ

)
+ a(ct− n · x)

(
−cn
κ

)
0 < n · x < c(t− t0) .

Otherwise, with homogeneous Dirichlet boundary conditions p = 0 the reflection also changes sign, i.e.,

(
v(t,x)
p(t,x)

)
=


a(ct+ n · x)

(
cn

κ

)
0 < c(t0 − t) < n · x ,

a(ct+ n · x)

(
cn

κ

)
− a(ct− n · x)

(
−cn
κ

)
0 < n · x < c(t− t0) .

For smooth amplitude functions this is a classical solution.

3.3. Transmission and reflection of traveling waves at interfaces

Now we consider solutions of the acoustic wave equation in Rd with an interface(
ρ∂tv −∇p

κ−1∂tp−∇ · v

)
=

(
0
0

)
in ΩL ∪ ΩR ,

{
ΩL =

{
x ∈ Rd : n · x < 0

}
,

ΩR =
{
x ∈ Rd : n · x > 0

}
with constant coefficients (ρL, κL) in ΩL and (ρR, κR) in ΩR defining ML and MR, starting in ΩR with(

v(0,x)
p(0,x)

)
= a(n · x/cR)

(
n
ZR

)
, a(n · x) = 0 for n · x < cRt0 , t0 > 0 ,

where ZL =
√
κLρL, ZR =

√
κRρR are the left and right impedances, and where cL =

√
κL/ρL, cR =

√
κR/ρR

are the left and right wave speeds. Note that we use a different scaling of the eigenvectors for the transmission
problem.
We state continuity at the interface to determine a classical solution and obtain

(
v(t,x)
p(t,x)

)
=



a(t+ n · x/cR)

(
n

ZR

)
0 < cR(t0 − t) < n · x,

a(t+ n · x/cR)

(
n

ZR

)
+ βR a(t− n · x/cR)

(
−n

ZR

)
0 < n · x < cR(t− t0),

βL a(t+ n · x/cL)

(
n

ZL

)
cL(t0 − t) < n · x < 0
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with transmission and reflection coefficients

βR =
2ZR

ZR + ZL
, βL =

ZL − ZR

ZR + ZL

derived from the interface condition An[y] = 0; by the interface condition we obtain L(v, p) ∈ L2,loc(R ×
Rd;Rd+1), so that (v, p) is a strong solution.
We observe that no wave is reflected if the impedance ZL = ZR is continuous. This properties can be used to
design absorbing boundary layers.

t = 0.0

t = 0.50

t = 1.0

t = 1.5

t = 2.0

Figure 3. The evolution of the pressure distribution with reflection at a fixed boundary (left,
cf. Sect. 3.2), and reflection and transmission at an interface (right, cf. Sect. 3.3) of traveling
waves.
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3.4. The Riemann problem for acoustic waves

Now we consider weak solutions in L2,loc(Rd;Rd+1) of the acoustic wave equation(
ρ∂tv −∇p

κ−1∂tp−∇ · v

)
=

(
0
0

)
in ΩL ∪ ΩR ,

{
ΩL =

{
x ∈ Rd : n · x < 0

}
ΩR =

{
x ∈ Rd : n · x > 0

} ,

with constant coefficients (ρL, κL) in ΩL and (ρR, κR) in ΩR, and with piecewise constant initial values(
v(0,x)
p(0,x)

)
=

(
vL

pL

)
, x ∈ ΩL ,

(
v(0,x)
p(0,x)

)
=

(
vR

pR

)
, x ∈ ΩR ,

called Riemann problem. The weak solution is of the form

(
v(t,x)
p(t,x)

)
=



(
vL

pL

)
x · n < −cLt(

vL

pL

)
+ βL

(
n

ZL

)
−cLt < x · n < 0(

vR

pR

)
+ βR

(
n

−ZR

)
0 < x · n < cRt(

vR

pR

)
cRt < x · n

depending on βL, βR ∈ R determined by the flux condition

An

((
vL

pL

)
+ βL

(
n
ZL

))
= An

((
vR

pR

)
+ βR

(
n
−ZR

))
, (33)

which yields βL =
[p] + ZRn · [v]

ZL + ZR
, βR =

[p]− ZLn · [v]

ZL + ZR
depending on [p]=pR − pL, [v]=vR − vL.

For discontinuous initial values the solution is discontinuous along the characteristic linear manifolds x·n+cLt =
0 and x · n− cRt = 0 in the space-time domain, so that we only obtain a weak solution.

3.5. The Riemann problem for linear conservation laws

We now construct a weak solution of the Riemann problem for general linear conservation laws, i.e., a piecewise
constant weak solution of Ly = 0 in L2,loc(Rd;Rm) with discontinuous initial values

y0(x) =

{
yL in ΩL =

{
x ∈ Rd : n · x < 0

}
,

yR in ΩR =
{
x ∈ Rd : n · x > 0

}
,

yL,yR ∈ Rm , ML ,MR ∈ Rm×msym .

Let
{

(λL
j ,w

L
j )
}
j=1,...,m

and
{

(λR
j ,w

R
j )
}
j=1,...,m

be eigenpairs, i.e.,

AnwL
j = λL

jMLwL
j , AnwR

j = λR
j MRwR

j , wL
k ·MLwL

j = wR
k ·MRwR

j = 0 for j 6= k .

A solution is constructed by a superposition of traveling waves

y(t,x) =


yL +

∑
j : x·n>λL

j t

βL
j wL

j x ∈ ΩL,

yR +
∑

j : x·n<λR
j t

βR
j wR

j x ∈ ΩR,

and by solving the equation for βL
j , βR

j (only depending on [y0] = yR − yL)

An

(
yL +

∑
j : λL

j<0

βL
j wL

j

)
= An

(
yR +

∑
j : λR

j >0

βR
j wR

j

)
on ∂ΩL ∩ ∂ΩR . (34)

Then, the flux Any is continuous for t > 0, and the piecewise constant function y is the unique weak solution
of Ly = 0 with initial value y(0) = y0.
Page: 28 job: MFOSpaceTime date/time: January 25, 2022



29

In summary, the solution of the Riemann problem defines the upwind flux

Aupw
n y0 = An

(
yL +

∑
j : λL

j<0

βL
j wL

j

)
. (35)

On the boundary, depending on the boundary conditions, a system corresponding to (34) is solved defining an

operator Abnd
n with

Aupw
n y0 = AnyL +Abnd

n g (36)

depending on the boundary data g. This is specified in the following sections for our examples.

3.6. The DG discretization with full upwind

Let Kh be a set of open convex cells K ∈ Kh with K ⊂ Ω ⊂ Rd such that Ωh =
⋃

K∈Kh

K is a decomposition of

Ω with skeleton ∂Ωh = Ω \ Ωh =
⋃

K∈Kh

∂K.

Let FK be the set of faces F ⊂ ∂K, such that F = ∂K ∩ ∂Ω for boundary faces, and such that for inner
faces F ⊂ ∂K ∩ Ω the neighboring cell KF ∈ Kh exists with F = ∂K ∩ ∂KF . Let Fh =

⋃
K FK be the set

of all faces. For the boundary conditions on Γk ⊂ ∂Ω we assume compatibility of the decomposition so that
Γk =

⋃
F∈Fh∩Γk

F .

Let Yh ⊂ P(Ωh;Rm) =
∏
K∈Kh

P(K;Rm) be a discontinuous piecewise polynomial finite element space, where

P(K) denotes the space of polynomials of any degree in K.
For yh ∈ Yh, let yh,K ∈ P(K;Rm) be the continuous extension of yh|K to K. On inner faces F ∈ Fh ∩ Ω, we
define by [yh]K,F = yh,KF

− yh,K the jump across F .
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Lemma 24. We have for yh ∈ Yh:

yh ∈ H(A,Rm) ⇐⇒ AnK
[yh]K,F = 0 for all F ∈ FK ∩ Ω , K ∈ Kh .

Proof. We define fh,K = Ayh,K in K, and since |Ω \ Ωh|d = 0, this defines a function fh ∈ L2(Ω;Rm) by
fh|K = fh,K . Now we observe for test functions z ∈ C1

c(Ω,Rm)

(
fh, z

)
Ω

+
(
yh, Az

)
Ω

=
∑
K∈Kh

((
fh,K −Ayh,K , z

)
K

+
(
AnK

yh,K , z
)
∂K

)
= −1

2

∑
K∈Kh

∑
F∈FK∩Ω

(
AnK

[yh]K,F , z
)
F

using AnKF
= −AnK

. Thus, yh ∈ H(A,Rm) and Ayh = fh ∈ L2(Ω;Rm) if and only if AnK
[yh]K,F vanishes on

all inner faces. �

For yh, zh ∈ Yh we observe(
Ayh, zh

)
Ω

=
∑
K∈Kh

(
divAyh,K , zh,K

)
K

=
∑
K∈Kh

((
AnK

yh,K , zh,K
)
∂K
−
(
yh,K , Azh,K

)
K

)
.

Inserting the upwind flux (35) defines the DG approximation Ah, where AnK
is replaced by Aupw

nK
yh, i.e.,

(
Ahyh, zh

)
Ω

=
∑
K∈Kh

((
Aupw

nK
yh, zh,K

)
∂K
−
(
yh,K , Azh,K

)
K

)
(37)

=
∑
K∈Kh

((
Ayh,K , zh,K

)
K

+
∑
F∈FK

(
Aupw

nK
yh −AnK

yh,K , zh,K
)
F

)
.

For inhomogeneous boundary conditions, using (36), the corresponding right-hand side is defined by

〈`h, zh〉 =
(
f , zh

)
Ω
−

∑
F∈Fh∩∂Ω

(
Abnd

n g, zh
)
F
. (38)

As we see in our examples, the boundary term is consistent with

(
Abnd

n gh, z
)

(0,T )×∂Ω
=

m∑
k=1

(
gk, zk

)
(0,T )×Γk

(39)

for all test functions z ∈ D(A) with homogeneous boundary conditions zk = 0 on ∂Ω \ Γk, k = 1, . . . ,m.
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Consistent extension of the discrete DG operator. For sufficiently smooth functions y ∈ H1(Ωh;Rm)
traces on the skeleton ∂Ωhexist in L2, so that the discrete operator Ah extends to Ah ∈ L(H1(Ωh;Rm), Yh) by

(
Ahy, zh

)
Ω

=
∑
K∈Kh

((
Ay, zh,K

)
K

+
∑
F∈FK

(
Aupw

nK
y −AnK

y, zh,K
)
F

)
(40)

for y ∈ H1(Ωh;Rm) and zh ∈ Yh. Since in the conforming case by construction

Aupw
nK

y = AnK
yK , K ∈ Kh , y ∈ H1(Ω;Rm) ,

we obtain consistency for sufficiently smooth functions, i.e.,(
Ahy, zh

)
Ω

=
(
Ay, zh

)
Ω
, y ∈ H1

0(Ω;Rm) , zh ∈ Yh . (41)

In case of homogeneous boundary conditions, this extends to y ∈ Yh ∩ D(A); this will be proved for acoustics
in Lem. 25.
3.7. The full upwind discretization for the wave equation

We evaluate (35) using the eigensystems in Example 23. Therefore, we assume that the material parameters
are constant in every cell K and the possible material interfaces are aligned with the mesh.
For acoustics, we obtain on inner faces F ∈ Fh ∩ Ω from (33)

AnK

((
vh,K
ph,K

)
+ βK

(
nK
ZK

))
= AnK

((
vh,KF

ph,KF

)
+ βKF

(
nK
−ZKF

))
=⇒ 0 =

(
nK
ZKF

)
·AnK

((
[vh]K,F
[ph]K,F

)
− βK

(
nK
ZK

))
=⇒ Aupw

nK

(
vh
ph

)
= AnK

(
vh,K
ph,K

)
− [ph]K,F + ZKF

nK · [vh]K,F
ZK + ZKF

(
ZKnK

1

)
(42)

by solving the equation for βK . This extends to the boundary by defining the jump terms depending on the
boundary conditions. On boundary faces F ∈ Fh ∩ ∂Ω, we obtain from

AnK

((
vK
pK

)
+ βK

(
nK
ZK

))
=

(
pKnK

nK · vK

)
− βK

(
ZKnK

1

)
(43)

in case of Dirichlet boundary conditions βK = 1
ZK

, which corresponds to the numerical fluxes [ph]K,F = −2ph
and nK · [vh]K,F = 0. This applies to the static boundary ΓS for the pressure (14f).
In case of Neumann boundary conditions we obtain βK = 1 corresponding to nK · [vh]K,F = −2nK · vh and
[ph]K,F = 0, which applies to the dynamic boundary ΓV for the velocity (14e). In both cases we extend the
impedance on boundary faces F by ZKF

= ZK .

The DG operator for acoustics and visco-acoustics. The operator Ah ∈ L
(
Yh, Yh

)
, Ah =

∑
K∈Kh

Ah,K for

acoustics (with r = 0) and visco-acoustics (r ≥ 1) with full upwind (42) on inner faces and (43) on the boundary
is explicitly given by(

Ah,Kyh, zh
)
K

= −
(
∇ · vh,K , qh,K

)
K
−
(
∇ph,K ,wh,K

)
K

(44)

−
∑
F∈FK

1

ZK + ZKF

(
[ph]K,F + ZKF

nK · [vh]K,F , qh,K + ZKnK ·wh,K

)
F

= −
(
∇ · vh,K , qh,K

)
K
−
(
∇ph,K ,wh,K

)
K

−
∑

F∈FK∩Ω

1

ZK + ZKF

(
[ph]K,F + ZKF

nK · [vh]K,F , qh,K + ZKnK ·wh,K

)
F

+
∑

F∈FK∩ΓS

1

ZK

(
ph,K , qh,K + ZKnK ·wh,K

)
F

+
∑

F∈FK∩ΓV

(
nK · vh,K , qh,K + ZKnK ·wh,K

)
F

for yh = (vh, p0,h, . . . , pr,h), zh = (wh, q0,h, . . . , qr,h) ∈ Yh with ph = p0,h + · · ·+ pr,h, qh = q0,h + · · ·+ qr,h.
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For inhomogeneous boundary conditions we obtain the right-hand side (38) by `h =
∑

K∈Kh

`h,K with

〈`h,K , zh,K〉 =
(
fh, zh,K

)
K

+
∑

F∈FK∩ΓS

(
pS, Z

−1
K qh,K + nK ·wh,K

)
F

+
∑

F∈FK∩ΓV

(
gV, qh,K + ZKnK ·wh,K

)
F
.

(45)

Lemma 25. The DG discretization (44) is

a) consistent, i.e.,(
Ahy, zh

)
Ω

=
(
Ay, zh

)
Ω
, y ∈ Yh ∩ D(A) , zh ∈ Yh ,(

Ahyh, z
)

Ω
= −

(
yh, Az

)
Ω
, yh ∈ Yh , z ∈ Yh ∩ D(A) ;

b) monotone / dissipative satisfying

(
Ahyh,yh

)
Ω

=
1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(∥∥[ph]K,F
∥∥2

F
+ ZKZKF

∥∥nK · [vh]K,F
∥∥2

F

)
≥ 0 , yh ∈ Yh .
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Proof. It is sufficient to consider r = 0. For y = (v, p) ∈ Yh ∩ D(A) we obtain nK · [v]K,F = [p]K,F = 0 for
F ⊂ FK ∈ Ω, ph = 0 on F ∈ FK ∩ ΓV, and nK · v = 0 on F ∈ FK ∩ ΓS, so that consistency is obtained by(

Ahy, zh
)

Ω
=
∑
K∈Kh

(
Ah,KyK , zh,K

)
K

=
∑
K∈Kh

(
AyK , zh,K

)
K

=
(
Ay, zh

)
Ω

for zh ∈ Yh since all flux terms on the faces are vanishing.
Integration by parts for yh = (vh, ph) ∈ Yh and z = (w, q) ∈ Yh ∩ D(A) yields dual consistency by

(
Ahyh, z

)
Ω

=
∑
K∈Kh

(
−
(
∇ · vh,K , qK

)
K
−
(
∇ph,K ,wK

)
K

−
∑

F∈FK∩Ω

1

ZK + ZKF

(
[ph]K,F + ZKF

nK · [vh]K,F , qK + ZKnK ·wK

)
F

+
∑

F∈FK∩ΓS

(
ph,K ,nK ·wK

)
F

+
∑

F∈FK∩ΓV

(
nK · vh,K , qK

)
F

)

=
∑
K∈Kh

((
vh,K ,∇qK

)
K

+
(
ph,K ,∇ ·wK

)
K

−
∑

F∈FK∩Ω

( 1

ZK + ZKF

(
[ph]K,F + ZKF

nK · [vh]K,F , qK + ZKnK ·wK

)
F

+
(
ph,K ,nK ·wK

)
F

+
(
nK · vh,K , qK

)
F

))

=
∑
K∈Kh

(
−
(
yh,K , AzK

)
K

+
∑

F∈FK∩Ω

1

ZK + ZKF

((
[ph]K,F , qK

)
F

+ ZKZKF

(
nK · [vh]K,F ,nK ·wK

)
F

))
= −

(
yh, Az

)
Ω
.

For yh = (vh, ph) ∈ Yh we obtain the identity(
Ahyh,yh

)
Ω

=
∑
K∈Kh

(
Ah,Kyh,yh

)
K

=
∑
K∈Kh

(
−
(
∇ · vh,K , ph,K

)
K
−
(
∇ph,K ,vh,K

)
K

−
∑

F∈FK∩Ω

1

ZK + ZKF

(
[ph]K,F + ZKF

nK · [vh]K,F , ph,K + ZKnK · vh,K
)
F

+
∑

F∈FK∩ΓS

1

ZK

(
ph,K , ph,K + ZKnK · vh,K

)
F

+
∑

F∈FK∩ΓV

(
nK · vh,K , ph,K + ZKnK · vh,K

)
F

)

=
1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(∥∥[ph]K,F
∥∥2

F
+ ZKZKF

∥∥nK · [vh]K,F
∥∥2

F

)

since we obtain, using
(
∇ · vh,K , ph,K

)
K

+
(
∇ph,K ,vh,K

)
K

=
(
nK · vh,K , ph,K

)
∂K

, for the remaining terms

∑
K∈Kh

(
−
(
nK · vh,K , ph,K

)
∂K

−
∑

F∈FK∩Ω

1

ZK + ZKF

(
ZK
(
[ph]K,F ,nK · vh,K

)
F

+ ZKF

(
nK · [vh]K,F , ph,K

)
F

)
+

∑
F∈FK∩ΓV

(
ph,K ,nK · vh,K

)
F

+
∑

F∈FK∩ΓS

(
nK · vh,K , ph,K

)
F

)
= 0 .
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�

The DG operator for visco-elasticity. The operator Ah =
∑

K∈Kh

Ah,K ∈ L
(
Yh, Yh

)
with full upwind is

defined by(
Ah,Kyh, zh

)
K

= −
(
∇ · σh.K ,ψh,K

)
K
−
(
ε(vh,K),ηh,K

)
K

−
∑
F∈FK

1

Zp
K + Zp

KF

(
nK ·

(
[σh]K,FnK + Zp

KF
[vh]K,F

)
,nK ·

(
ηh,KnK + Zp

Kwh,K

))
F

−
∑
F∈FK

1

Zs
K + Zs

KF

(
nK ×

(
[σh]K,FnK + Zs

KF
[vh]K,F

)
,nK ×

(
ηh,KnK + Zs

Kwh,K

))
F

for yh = (vh,σ0,h, . . . ,σr,h), zh = (wh,η0,h, . . . ,ηr,h) ∈ Yh, σh =
∑
σj,h, and ηh =

∑
ηj,h. The coefficients

Zp
K =

√
(2µ+ λ)ρ |K and Zs

K =
√
µρ |K are the impedance of compressional waves and shear waves, respectively.

On boundary faces F ∈ Fh ∩ ΓV, we set [vh]K,F = −2vh and [σh]K,FnK = 0, and on F ∈ Fh ∩ ΓS we set
[vh]K,F = 0 and [σh]K,FnK = −2σhnK . We have

(
Ahyh,yh

)
Ω

=
1

2

∑
K∈Kh

∑
F∈FK

(∥∥nK · ([σh]K,FnK
)∥∥2

F
+ Zp

KZ
p
KF

∥∥nK · [vh]K,F
∥∥2

F

Zp
K + Zp

KF

+

∥∥nK × ([σh]K,FnK
)∥∥2

F
+ Zs

KZ
s
KF

∥∥nK × [vh]K,F
∥∥2

F

Zs
K + Zs

KF

)
≥ 0 .

The DG operator for linear electro-magnetic waves. For (Hh,Eh), (ϕh,ψh) ∈ Yh we have(
Ah(Hh,Eh), (ϕh,K ,ψh,K)

)
0,K

= (curl Eh,K ,ϕh,K)0,K − (curl Hh,K ,ψh,K
)

0,K

−
∑
F∈FK

1

ZK + ZKF

((
ZKF

[Eh]K,F + nK × [Hh]K,F ,nK ×ϕh,K
)
F

+
(
ZKF

nK × [Eh]K,F − [Hh]K,F , ZKnK ×ψh,K
)
F

)
+

∑
F∈FK∩ΓI

(
ζ nK ×EK,h,nK ×ϕh,K

)
F

with coefficient ZK =
√
εK/µK and impedance ζ.

On boundary faces F ∈ Fh ∩ ΓE, perfect conducting boundary conditions are modeled by the (only virtual)
definition of nK×Eh = −nK×Eh and nK×Hh = nK×Hh, i.e., nK×[E]K,F = −2nK×Eh and nK×[Hh]K,F =
0. On impedance boundary faces F ∈ Fh ∩ ΓI, we set nK × [E]K,F = 0 and nK × [Hh]K,F = −2nK ×Hh.
With the same arguments as for the acoustic case we obtain(

Ah(Hh,Eh), (Hh,Eh)
)

0,Ω

=
1

2

∑
K∈Kh

∑
F∈FK

ZKZKF

∥∥nK × [Eh]K,F
∥∥2

F
+
∥∥nK × [Hh]K,F

∥∥2

F

ZK + ZKF

+
∑

F∈Fh∩ΓI

ζ
∥∥nK ×Eh

∥∥2

F
≥ 0 .

Bibliographic comments. An introduction to discontinuous Galerkin methods for hyperbolic conservation
laws is given, e.g., in [Hesthaven and Warburton, 2008,Hesthaven, 2017]. The numerical flux for wave equations
is evaluated in [Hochbruck et al., 2015] and extended to viscous waves in [Ziegler, 2019]. For the explicit
evaluation of the numerical flux for inhomogeneous boundary conditions we refer to [Dörfler et al., 2019].
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4. A Petrov–Galerkin space-time approximation for linear hyperbolic systems

We introduce and analyze a variational discretization in space and time by extending the discontinuous Galerkin
method in space to a Petrov–Galerkin method in time and space. We verify discrete inf-sup stability, and this
yields well-posedness, stability and convergence for strong solutions. By duality, this extends to convergence for
weak solutions. Finally, we address a posteriori error bounds. For a given error functional, the corresponding
dual solution is computed and an error indicator is defined by weighted residuals. A reliable error estimator of
weak solutions is obtained computing local conforming reconstructions.

4.1. Decomposition of the space-time cylinder

For the discretization, we use tensor product space-time cells combining the mesh in space (see Sect. 3.6) with
a decomposition in time. For 0 = t0 < t1 < · · · < tN = T , we define

Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) .

Together with the decomposition in space Ωh =
⋃

K∈Kh

K into open cells K ⊂ Ω ⊂ Rd we obtain a decomposition

Qh = Ih × Ωh =
⋃

R∈Rh

R of the space-time cylinder Q = I × Ω ⊂ R1+d, so that Q = Qh ∪ ∂Qh, where ∂Qh is

the space-time skeleton.
For every space-time cell R = (tn−1, tn) × K we select polynomial degrees pR = pn,K ≥ 1 in time and qR =
qn,K ≥ 0 in space. This defines the discontinuous test space in the space-time cylinder

Wh =
∏
R∈Rh

PpR−1 ⊗ PqR(K;Rm) ⊂ P(Ih × Ωh;Rm) =
∏
R∈Rh

P(R;Rm) ⊂ L2(Q;Rm) ,

where Pp are the polynomials up to order p, Pq(K) are the polynomials up to order q in K, and P(R) are
polynomials of any degree in R.
Defining the discontinuous spaces

Yn,h =
∏
K∈Kh

Pqn,K
(K;Rm) ⊂ P(Ωh;Rm) ⊂ L2(Ω;Rm) , Yh = Y1,h + · · ·+ YN,h ,

we observe Wh ⊂ L2(0, T ;Yh), and in every time slice wh(t) ∈ Yn,h ⊂ Yh for all t ∈ (tn−1, tn) and wh ∈Wh.

4.2. The Petrov–Galerkin setting

Let Lh = Mh∂t +Dh + Ah : H1(0, T ;Yh) −→ L2(0, T ;Yh) be the linear mapping approximating the differential
operator L = M∂t +D +A with the following properties:

a) Mh ∈ L(Yh, Yh) is uniformly positive definite, i.e., cM > 0 exists with

(Mhyh,yh)Ω ≥ cM‖yh‖2W , yh ∈ Yh ; (46a)

b) Dh ∈ L(Yh, Yh) is monotone, i.e.,

(Dhyh,yh)Ω ≥ 0 , yh ∈ Yh ; (46b)

c) Ah ∈ L(Yh, Yh) is monotone and consistent, i.e.,

(Ahyh,yh)Ω ≥ 0 , yh ∈ Yh , (46c)

(Ahz,yh)Ω = (Az,yh)Ω ,

(Ahyh, z)Ω = −(yh, Az)Ω , z ∈ Yh ∩ D(A) . (46d)

The operators Mh, Dh, Ah do not depend on the time variable t ∈ (0, T ), i.e., they are defined in Yh ⊂ P(Ωh;Rm),
but the operators do not depend on the chosen local ansatz and test spaces.
In the next step we construct a suitable ansatz space Vh ⊂ P(Qh;Rm). In every time slice (tn−1, tn) let

Πn,h : L2(Ω;Rm) −→ Yn,h

be the weighted L2-projection defined by(
MhΠn,hy, zh

)
Ω

=
(
Mhy, zh

)
Ω
, y ∈ L2(Ω;Rm) , zh ∈ Yn,h
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corresponding to the norm

∥∥yh∥∥Yh
=
√(

Mhyh,yh
)

Ω
, yh ∈ Yh

For vh ∈ P(Ih×Ωh;Rm) let vn,h ∈ P([tn−1, tn]×Ωh;Rm) be the extension of vh|(tn−1,tn)×Ωh
to [tn−1, tn]. Then,

we define

Vh =
{

vh ∈
∏

R=(tn−1,tn)×K∈Rh

PpR ⊗ PqR(K;Rm) ⊂ P(Ih × Ωh;Rm) :

vh(0) = 0 , vn,h(tn−1) = Πn,hvn−1,h(tn−1) for n = 2, . . . , N
}
⊂ H1(0, T ;Yh) .

By construction, we have ∂tVh = Wh in Ih and dimVh = dimWh. Note that Vh includes homogeneous initial
data. For inhomogeneous initial data u0 we define the affine space

Vh(u0) =
{

vh ∈
∏

R=(tn−1,tn)×K∈Rh

PpR ⊗ PqR(K;Rm) ⊂ P(Ih × Ωh;Rm) :

vh(0) = Π1,hu0 for t = 0 , vn,h(tn−1) = Πn,hvn−1,h(tn−1) for n = 2, . . . , N
}
⊂ H1(0, T ;Yh) .

(47)
4.3. Inf-sup stability

Let
Πh : L2(Q;Rm) −→Wh

be the projection defined by(
MhΠhv,wh

)
Q

=
(
Mhv,wh

)
Q
, v ∈ L2(Q;Rm) , wh ∈Wh .

Note that ΠhMhvh = MhΠhvh and ΠhAhvh = AhΠhvh for vh ∈ L2(0, T ;Yh).
The analysis of the discretization is based on the norms∥∥wh

∥∥
Wh

=
√(

Mhwh,wh

)
Q
,
∥∥fh∥∥W∗h =

√(
M−1
h fh, fh

)
Q
, wh , fh ∈ L2(Q;Rm)

and ∥∥vh∥∥Vh
=
√∥∥vh∥∥2

Wh
+
∥∥ΠhM

−1
h Lhvh

∥∥2

Wh
, vh ∈ H1(0, T ;Yh) . (48)

Theorem 26. The bilinear form bh : H1(0, T ;Yh)× L2(Q;Rm) −→ R defined by bh(vh,wh) = (Lhvh,wh)Q is
inf-sup stable in Vh ×Wh satisfying

sup
wh∈Wh\{0}

bh(vh,wh)

‖wh‖Wh

≥ β ‖vh‖Vh
, vh ∈ Vh with β =

1√
4T 2 + 1

.

Thus, for given f ∈ L2(Q;Rm), a unique solution uh ∈ Vh of

(Lhuh,wh)Q = (f ,wh)Q , wh ∈Wh, (49)

exists satisfying the a priori bound ‖uh‖Vh
≤ β−1‖Πhf‖W∗h .

The stability constant β > 0 is the same as in the continuous case in Thm. 19.
The proof of the inf-sup stability is based on the following estimates.

Lemma 27. Let λn,k ∈ Pk, k = 0, 1, 2, . . ., be the orthonormal Legendre polynomials in L2(tn−1, tn). Then, we
have

(
t∂tλn,k, λn,k

)
(tn−1,tn)

≥ 0.

Proof. The orthonormal Legendre polynomials λn,k with respect to
(
·, ·
)

(tn−1,tn)
are given by scaling the or-

thogonal polynomials λ̃n,k

λn,k(t) = cn,kλ̃n,k(t) , λ̃n,k(t) = ∂kt
(
(t− tn−1)(t− tn)

)k
, cn,k = ‖λ̃n,k‖−1

(tn−1,tn) .
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For k = 0 we have ∂tλn,0 = 0 and thus
(
t∂tλn,0, λn,0

)
(tn−1,tn)

= 0. For k ≥ 1 we have

(
t∂tλn,k, λn,k

)
(tn−1,tn)

=
(
tcn,k∂

k+1
t

(
(t− tn−1)(t− tn)

)k
, λn,k

)
(tn−1,tn)

=
(
tcn,k∂

k+1
t t2k, λn,k

)
(tn−1,tn)

=
(
cn,kk∂

k
t t

2k, λn,k
)

(tn−1,tn)
= k

(
λn,k, λn,k

)
(tn−1,tn)

= k > 0

using t ∂k+1
t t2k = t

(
2k(2k − 1) · · · (k + 1)k tk−1

)
= k ∂kt t

2k. �

Lemma 28. Let X = (Xkn) ∈ RN×Nsym be a symmetric and positive semidefinite matrix, and Y = (Ykn) ∈ RN×N
be a positive semidefinite matrix. Then,

X : Y =

N∑
k,m=1

XkmYkm ≥ 0 .

Proof. Let (µn, wn), n = 1, . . . , N be a complete eigensystem of X with µn ≥ 0 and wn = (wnk)k=1,...,N ∈ RN ,

so that X =
∑N
n=1 µnwnw

>
n . Then, we have

X : Y =

N∑
k,m=1

XkmYkm =

N∑
k,m,n=1

µnwnkwnmYkm =

N∑
n=1

µnw
>
n Y wn ≥ 0 .

�

Lemma 29. We have for vh ∈ Vh

‖vh‖Wh
≤ 2T ‖ΠhM

−1
h Lhvh‖Wh

, vh ∈ Vh . (50)

This shows that Lem. 13 extends to the discrete estimate also with CL = 2T .

Proof. Set p = max
R∈Rh

pR. For vh ∈ Vh in every time slice (tn−1, tn) a representation

vn,h(t,x) =

p∑
k=0

λn,k(t)vn,k,h(x) , vn,k,h ∈ Yn,h , (t,x) ∈ (tn−1, tn)× Ωh

exists with vn,k,h(x) = 0 for (t,x) ∈ R = (tn−1, tn)×K and k > pR, so that

Πhvn,h(t,x) =

pR−1∑
k=0

λn,k(t)vn,k,h(x) =

p∑
k=0

λn,k(t)v̂n,k,h(x) , (t,x) ∈ R = (tn−1, tn)×K

with v̂n,k,h(x) = vn,k,h(x) for k < pR and v̂n,k,h(x) = 0 for k ≥ pR.
The proof of (50) relies on the application of Fubini’s theorem∫ T

0

∫ t

0

φ(s) dsdt =

∫ T

0

dT (t)φ(t) dt , φ ∈ L1(0, T ) (51)

and on estimates with respect to the weighting function in time dT (t) = T − t.
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In the first step, we show (
Mh∂tvh, dTvh

)
Q
≤
(
Mh∂tvh, dTΠhvh

)
Q
, (52)

0 ≤
(
ΠhAhvh, dTΠhvh

)
Q
, (53)

0 ≤
(
ΠhDhvh, dTΠhvh

)
Q
. (54)

Since Ah and Dh are monotone, we obtain (53) and (54) from Lem. 28 applied to

(
ΠhAhvh, dTΠhvh

)
Q

=

N∑
n=1

(
ΠhAhvn,h, dTΠhvn,h

)
(tn−1,tn)×Ω

=

N∑
n=1

∑
R=(tn−1,tn)×K

pR−1∑
k=0

pR−1∑
l=0

(
λn,k, dTλn,l

)
(tn−1,tn)

(
Ahvn,k,h,vn,l,h

)
K

=

N∑
n=1

p∑
k=0

p∑
l=0

(
λn,k, dTλn,l

)
(tn−1,tn)

(
Ahv̂n,k,h, v̂n,l,h

)
Ω
≥ 0 ,

(
ΠhDhvh, dTΠhvh

)
Q

=

N∑
n=1

∑
R=(tn−1,tn)×K

pR−1∑
k=0

pR−1∑
l=0

(
λn,k, dTλn,l

)
(tn−1,tn)

(
Dhvn,k,h,vn,l,h

)
K

=

N∑
n=1

p∑
k=0

p∑
l=0

(
λn,k, dTλn,l

)
(tn−1,tn)

(
Dhv̂n,k,h, v̂n,l,h

)
Ω
≥ 0 .

For k ≥ 1 we have
(
dT∂tλn,k, λn,k

)
(tn−1,tn)

= −
(
t∂tλn,k, λn,k

)
(tn−1,tn)

< 0 by Lem. 27, which gives(
dTMh∂tvh,vh −Πhvh

)
Q

=

N∑
n=1

(
dTMh∂tvh,vh −Πhvh

)
(tn−1,tn)×Ω

=

N∑
n=1

∑
R=(tn−1,tn)×K

pR∑
k=0

(
dT∂tλn,k, λn,pR

)
(tn−1,tn)

(
Mhvn,k,h,vn,pR,h

)
K

=

N∑
n=1

∑
R=(tn−1,tn)×K

(
dT∂tλn,pR , λn,pR

)
(tn−1,tn)

(
Mhvn,pR,h,vn,pR,h

)
K
≤ 0 .

Thus we obtain (52) by(
Mh∂tvh, dTvh

)
Q

=
(
dTMh∂tvh,vh

)
Q
≤
(
dTMh∂tvh,Πhvh

)
Q

=
(
Mh∂tvh, dTΠhvh

)
Q
.

Finally, we show the assertion (50). We have for k = 2, . . . , N∥∥vk,h(tk−1)
∥∥
Yh

=
∥∥Πk,hvk−1,h(tk−1)‖Yh

≤
∥∥vk−1,h(tk−1)‖Yh

,

so that for all t ∈ (tn−1, tn) using vh(0) = v1,h(0) = 0

∥∥vh(t)
∥∥2

Yh
=
∥∥vh(t)

∥∥2

Yh
+

n∑
k=2

(∥∥Πk,hvk−1,h(tk−1)‖2Yh
−
∥∥vk,h(tk−1)

∥∥2

Yh

)
−
∥∥v1,h(0)

∥∥2

Yh

≤
∥∥vh(t)

∥∥2

Yh
+

n∑
k=2

(∥∥vk−1,h(tk−1)‖2Yh
−
∥∥vk,h(tk−1)

∥∥2

Yh

)
−
∥∥v1,h(0)

∥∥2

Yh

=
∥∥vh(t)

∥∥2

Yh
−
∥∥vn,h(tn−1)

∥∥2

Yh
+

n−1∑
k=1

(∥∥vk,h(tk)
∥∥2

Yh
−
∥∥vk,h(tk−1)

∥∥2

Yh

)
=

∫ t

tn−1

∂s
(
Mhvn,h(s),vn,h(s)

)
Ω

ds+

n−1∑
k=1

∫ tk

tk−1

∂s
(
Mhvn,h(s),vn,h(s)

)
Ω

ds

= 2

∫ t

0

(
Mh∂svh(s),vh(s)

)
Ω

ds
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and thus using (51), (52), (53), and (54) we obtain (50) by

‖vh‖2Wh
=

∫ T

0

(
Mhvh(t),vh(t)

)
Ω

dt ≤ 2

∫ T

0

∫ t

0

(
Mh∂svh(s),vh(s)

)
Ω

dsdt

= 2

∫ T

0

dT (t)
(
Mh∂tvh(t),vh(t)

)
Ω

dt = 2
(
Mh∂tvh, dTvh

)
Q

≤ 2
(
Mh∂tvh, dTΠhvh

)
Q

= 2
(
MhΠh∂tvh, dTΠhvh

)
Q

= 2
(
ΠhMh∂tvh, dTΠhvh

)
Q
≤ 2
(
ΠhLhvh, dTΠhvh

)
Q

= 2
(
M−1
h ΠhLhvh,MhdTΠhvh

)
Q

= 2
(
ΠhM

−1
h Lhvh,MhdTΠhvh

)
Q

≤ 2 ‖ΠhM
−1
h Lhvh‖Wh

‖dTΠhvh‖Wh
≤ 2T ‖ΠhM

−1
h Lhvh‖Wh

‖vh‖Wh
.

�

Now we can prove Thm. 26.

Proof. (Thm. 26) For vh ∈ Vh \ {0} we have

bh(vh,wh) =
(
Lhvh,wh

)
Q

=
(
M−1
h Lhvh,wh

)
Wh

=
(
ΠhM

−1
h Lhvh,wh

)
Wh

,

and we test with wh = ΠhM
−1
h Lhvh, so that

sup
wh∈Wh\{0}

bh(vh,wh)

‖wh‖Wh

≥
bh(vh,ΠhM

−1
h Lhvh)

‖ΠhM
−1
h Lhvh‖Wh

= ‖ΠhM
−1
h Lhvh‖Wh

≥ (4T 2 + 1)−1/2‖vh‖Vh
.

using ‖vh‖2Vh
= ‖vh‖2Wh

+‖ΠhM
−1
h Lhvh‖2Wh

≤ (4T 2+1)‖ΠhM
−1
h Lhvh‖2Wh

inserting the estimate (50) in Lem. 29.
�

4.4. Convergence for strong solutions

For the error estimate with respect to the norm in Vh we need to extend the norm ‖ · ‖Vh
such that the error

can be evaluated in this norm. For sufficiently smooth functions the operator Ah can be extended by (40), so
that Lh and thus the norm in Vh is well-defined.

Theorem 30. Let u ∈ V be the strong solution of Lu = f , and let uh ∈ Vh be the approximation solving (49).
If the solution is sufficiently smooth, we obtain the a priori error estimate

‖u− uh‖Vh
≤ C

(
Mtp + Mxq

)(
‖∂p+1
t u‖Q + ‖Dq+1u‖Q

)
+ β−1

∥∥M−1/2
h (Mh −M)M−1/2

∥∥
∞‖∂tu‖W

+ β−1
∥∥M−1/2

h (Dh −D)M−1/2
∥∥
∞‖u‖W

for Mt, Mx and p, q ≥ 1 with Mt ≥ tn − tn−1, Mx ≥ diam(K), p ≤ pR and q ≤ qR (for all n,K,R), and with a
constant C > 0 depending on β = (4T 2 + 1)−1/2, on the material parameters in M , and on the mesh regularity.

Proof. For the solution we assume the regularity u ∈ Hp+1
(
0, T ; L2(Ω;Rm)

)
∩ L2

(
0, T ; Hq+1(Ω;Rm)

)
, hence

there exists an interpolant vh ∈ Vh such that

‖u− vh‖Vh
≤ C

(
Mtp + Mxq

)(
‖∂p+1
t u‖Q + ‖Dq+1u‖Q

)
. (55)
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Moreover, Ahu is well-defined and consistent satisfying (41). We have

bh(vh − uh,wh) = bh(vh,wh)− bh(uh,wh) = bh(vh,wh)− (f ,wh)Q

= bh(vh,wh)− b(u,wh)

= (Lhvh,wh)Q − (Lu,wh)Q

=
(
Lh(vh − u),wh

)
Q
−
(
Lu,wh

)
Q

+
(
Lhu,wh

)
Q

=
(
Lh(vh − u),wh

)
Q
−
(
(M −Mh)∂tu,wh

)
Q

−
(
(D −Dh)u,wh

)
Q
−
(
(A−Ah)u,wh

)
Q

=
(
MhΠhM

−1
h Lh(vh − u),wh

)
Q

−
(
MhM

−1
h (M −Mh)∂tu,wh

)
Q
−
(
MhM

−1
h (D −Dh)u,wh

)
Q

≤
(∥∥ΠhM

−1
h Lh(vh − u)

∥∥
Wh

+
∥∥M−1

h (M −Mh)∂tu‖Wh
+
∥∥M−1

h (D −Dh)u‖Wh

)
‖wh‖Wh

and thus the assertion follows from

‖u− uh‖Vh
≤ ‖u− vh‖Vh

+ ‖vh − uh‖Vh

≤ ‖u− vh‖Vh
+ β−1 sup

wh∈Wh\{0}

bh(vh − uh,wh)

‖wh‖Wh

≤ ‖u− vh‖Vh

+ β−1
(∥∥ΠhM

−1
h Lh(vh − u)

∥∥
Wh

+
∥∥M−1

h (M −Mh)∂tu
∥∥
Wh

+
∥∥M−1

h (D −Dh)u
∥∥
Wh

)
≤ (1 + β−1)‖u− vh‖Vh

+ β−1
∥∥M−1/2

h (M −Mh)∂tu
∥∥
Q

+ β−1
∥∥M−1/2

h (D −Dh)u
∥∥
Q

by the interpolation estimate (55) and∥∥M−1/2
h (M −Mh)∂tu

∥∥
Q

=
∥∥M−1/2

h (M −Mh)M−1/2M1/2∂tu
∥∥
Q
≤
∥∥M−1/2

h (M −Mh)M−1/2
∥∥
∞‖∂tu‖W . �

Remark 31. The estimate is derived for homogeneous initial and boundary conditions. It transfers to the
inhomogeneous case if initial and boundary data u0 and gj can be extended to H(L,Q), i.e., if û ∈ H(L,Q) exists
such that û(0, x) = u0(x) for x ∈ Ω and (Anû(t, x))j = gj(t, x) and for (t, x) ∈ (0, T )×Γk, k = 1, . . . ,m. Then,
the approximation uh ∈ Vh(u0) in the affine space (47) is computed by bh(uh,wh) = 〈`h,wh〉 for wh ∈ Wh,
and the strong solution with inhomogeneous initial and boundary data is given by u = ũ + û ∈ H(L,Q), where
ũ ∈ V solves Lũ = f − Lû. Then, the result in Thm. 30 can be extended.

Remark 32. Since the norm (48) in Vh + (H1(Q;Rm) ∩ V ) is discrete in the derivatives, the topology in the
space V with respect to this norm is equivalent to the topology in L2 with mesh dependent bounds for the norm
equivalence. Norm equivalence with respect to ‖ · ‖V is obtained in the limit: Let (Vh)h∈H be a shape regular
family of discrete spaces with 0 ∈ H such that (Vh∩V )h∈H is dense in V . Then, defining ‖v‖VH = suph∈H ‖v‖Vh

yields a norm, and for sufficiently smooth functions v ∈ H1(Q;Rm) ∩ V this norm is equivalent to ‖ · ‖V .

4.5. Convergence for weak solutions

Qualitative convergence estimates with respect to the norm in V ⊂ H(L,Q) require additional regularity, so
that these estimates do not apply to weak solutions with discontinuities or singularities. For weak solutions
without additional regularity we only can derive asymptotic convergence. Here, this is shown for simplicity only
for homogeneous boundary data. The given data are the right-hand side f ∈ L2(Q;Rm) and the initial value
u0 ∈ Z. We assume that Lem. 15 and dual consistency for Ah in Lem. 25 is satisfied.
In the first step, we show that the inf-sup stability of the Petrov–Galerkin method yields a uniform a priori
bound for the approximation. We define the approximation of the initial value u0,h by u0,h(t) = (1−t/t1)Πn,hu0

for t ∈ (0, t1) in the first time interval and u0,h(t) = 0 for t > t1, so that Vh(u0) = u0,h + Vh.

Lemma 33. The discrete solution uh ∈ Vh(u0) of the variational space-time equation

bh(uh,wh) =
(
f ,wh

)
Q
, wh ∈Wh

is bounded by

‖uh‖Wh
≤ 2T ‖M−1

h Πhf‖Wh
+ (1 + 2T ) ‖u0,h‖Vh

.
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Proof. For vh = uh − u0,h ∈ Vh the estimate ‖vh‖Wh
≤ 2T‖ΠhM

−1
h Lhvh‖Wh

in Lem. 29 together with(
ΠhM

−1
h Lhvh,wh

)
Wh

=
(
M−1
h Lhvh,wh

)
Wh

=
(
Lhvh,wh

)
Q

= bh(uh,wh)− bh(u0,h,wh)

=
(
f ,wh

)
Q
− bh(u0,h,wh) =

(
Πhf ,wh

)
Q
− bh(u0,h,wh)

for wh ∈Wh yields by duality

‖vh‖Wh
≤ 2T‖ΠhM

−1
h Lhvh‖Wh

= 2T sup
wh∈Wh\{0}

(
ΠhM

−1
h Lhvh,wh

)
Wh

‖wh‖Wh

= 2T sup
wh∈Wh\{0}

(
Πhf ,wh

)
Q
− bh(u0,h,wh)

‖wh‖Wh

≤ 2T
(
‖M−1

h Πhf‖Wh
+ ‖ΠhM

−1
h Lhu0,h‖Wh

)
,

so that

‖uh‖Wh
≤ ‖vh‖Wh

+ ‖u0,h‖Wh
≤ 2T

(
‖M−1

h Πhf‖Wh
+ ‖ΠhM

−1
h Lhu0,h‖Wh

)
+ ‖u0,h‖Wh

≤ 2T ‖M−1
h Πhf‖Wh

+ (1 + 2T ) ‖u0,h‖Vh
.

�

Next we show that the dual consistency of the DG operator implies dual consistency of the space-time method.
For simplicity, we assume that the parameters in M and D are piecewise constant on all cells K ∈ Kh, so that
M = Mh and D = Dh, which implies ‖zh‖Wh

= ‖zh‖W for zh ∈ L2(0, T ;Yh).

Lemma 34. We have

bh(vh,w) =
(
vh, L

∗w
)
Q
−
(
MΠ1,hu0,w

)
Ω
, vh ∈ Vh(u0) , w ∈Wh ∩ V ∗ . (56)

Proof. We obtain for vh ∈ Vh(u0) ⊂ H1(0, T ;Yh) and w ∈Wh ∩ V ∗

bh(vh,w) =
(
M∂tvh,w

)
Q

+
(
Dvh,w

)
Q

+
(
Ahvh,w

)
Qh

=
(
Mvh(T ),w(T )

)
Ω
−
(
Mvh(0),w(0)

)
Ω
−
(
vh,M∂tw

)
Q

+
(
vh, Dw

)
Q
−
(
vh, Aw

)
Q

=
(
vh, L

∗w
)
Q
−
(
MΠ1,hu0,w(0)

)
Ω
.

using M = Mh, D = Dh, integration by parts for vh,w ∈ H1(0, T ;Yh), w(T ) = 0 in V ∗, and the dual
consistency of the DG operator Ah with upwind flux (see Lem. 24 and Lem. 25 for acoustics). �

Let (Vh,Wh), h ∈ H ⊂ (0, h0), be a dense family of nested discretizations with Vh ⊂ Vh′ and Wh ⊂ Wh′ for
h′ < h, h, h′ ∈ H and 0 ∈ H. We assume that the assumptions in this section are fulfilled for all discretizations,
so that (Vh,Wh) is uniformly inf-sup stable by Thm. 26. We only consider the case P1(Qh;Rm) ⊂Wh, so that
Wh ∩H1(Q;Rm) includes the continuous linear elements and thus

⋃
h∈H(V ∗ ∩Wh) is dense in V ∗.

Theorem 35. Assume M = Mh, D = Dh, and that ‖u0,h‖Vh
≤ C is uniformly bounded for all h ∈ H. Then,

the discrete solutions (uh)h∈H are weakly converging to the weak solution u ∈W of the equation

(u, L∗z)Q =
(
f , z
)
Q

+
(
Mu0, z(0)

)
Ω
, z ∈ V∗ . (57)

Proof. By Thm. 26 uh−u0,h is uniformly bounded in Vh and thus, by Lem. 29, (uh)h∈H is uniformly bounded
in W , so that a subsequence H0 ⊂ H and a weak limit u ∈W exists, i.e.,

lim
h∈H0

(
uh,w

)
W

=
(
u,w

)
W
, w ∈W .

The assumption that (Wh ∩ V ∗)h∈H is dense in V ∗ ⊃ V∗ implies that for all z ∈ V∗ there exists a sequence
(wh)h∈H with wh ∈ Wh ∩ V ∗ and lim

h∈H
‖wh − z‖V ∗ = 0. This implies lim

h∈H
‖wh(0) − z(0)‖Y = 0, cf. Rem. 16.

Using the weak convergence of uh, the strong convergence of L∗wh, and Lem. 34 yields(
u, L∗z

)
Q

= lim
h∈H0

(
uh, L

∗z
)
Q

= lim
h∈H0

(
uh, L

∗wh

)
Q

= lim
h∈H0

(
bh(uh,wh

)
+
(
MΠ1,hu0,wh(0)

)
Ω

)
= lim
h∈H0

(
f ,wh

)
Q

+
(
Mu0, z(0)

)
Ω

=
(
f , z
)
Q

+
(
Mu0, z(0)

)
Ω
,
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so that u is a weak solution of (57). Since the weak solution is unique by Thm. 11 and Lem. 15, this shows that
the weak limit of all subsequences in H is the unique weak solution, so that the full sequence is convergent. �

Remark 36. Since we assume that (u0,h)h∈H is uniformly bounded in Vh, the initial value u0 extends to
H(L,Q), and the weak solution is a strong solution.
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4.6. Goal-oriented adaptivity

In order to find an efficient choice for the polynomial degrees (pR, qR), we introduce a dual-weighted residual
error indicator with respect to a suitable goal functional. Its construction is based on a dual-primal error repre-
sentation combined with a priori estimates constructed from an approximation of the dual solution. Note that
this corresponds to a problem backward in time, so that the resulting error indicator only refines regions of the
space-time domain which are relevant for the evaluation of the chosen goal functional.

Dual-primal error bound. Let E : W −→ R be a linear error functional. Our goal is to estimate and then to
reduce the error with respect to this functional. The dual solution u∗ ∈ V ∗ is defined by

(w, L∗u∗)Q = 〈E,w〉 , w ∈W .

For the local representation of E we define the pairing in R ∈ Rh

〈vR,wR〉∂R = (LvR,wR)R − (vR, L
∗wR)R , vR ∈ H(L,R) , wR ∈ H(L∗, R) .

Lemma 37. Let u ∈ V be the solution of Lu = f , and let uh ∈ Vh be the approximation solving (49). Then,
the error can be represented by

〈E,u− uh〉 =
∑
R∈Rh

((
f − Luh,u

∗)
R

+ 〈uh,u∗〉∂R
)
.

If the dual solution is sufficiently regular, the error is bounded for all wh ∈Wh by

∣∣〈E,u− uh〉
∣∣ ≤ N∑

n=1

∑
R=(tn−1,tn)×K

(∥∥f − (Mh∂t +A+Dh)uh
∥∥
R

∥∥u∗ −wh

∥∥
R

+
∑
F∈FK

∥∥AnK
uh,R −Aupw

nK
un,h

∥∥
(tn−1,tn)×F

∥∥u∗ −wh

∥∥
(tn−1,tn)×F

)

+

N−1∑
n=1

∥∥Mh

(
un,h(tn)−Πn+1,hun,h(tn)

)∥∥
Ω

∥∥u∗(tn)−wn+1,h(tn)
∥∥

Ω

+
∥∥M−1/2

h (M −Mh)M−1/2‖∞
N−1∑
n=1

∥∥un,h(tn)−Πn+1,hun,h(tn)‖Y ‖u∗(tn)‖Y

+
∥∥M−1/2

h (M −Mh)M−1/2‖∞
∥∥∂tuh∥∥W∥∥u∗∥∥W

+
∥∥M−1/2

h (D −Dh)M−1/2‖∞
∥∥uh∥∥W∥∥u∗∥∥W .

Proof. We have by definition of u∗

〈E,u− uh〉 = (u− uh, L
∗u∗)Q = (u, L∗u∗)Q − (uh, L

∗u∗)Q

= (Lu,u∗)Q − (uh, L
∗u∗)Q = (f ,u∗)Q −

∑
R∈Rh

(uh, L
∗u∗)R

= (f ,u∗)Q −
∑
R∈Rh

(
(Luh,u

∗)R − 〈uh,u∗〉∂R
)

=
∑
R∈Rh

((
f − Luh,u

∗)
R

+ 〈uh,u∗〉∂R
)
.
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Using uh(0) = 0 and u∗(T ) = 0, we obtain

N∑
n=1

∑
R=(tn−1,tn)×K

(M∂tun,h,u
∗)R + (Mun,h, ∂tu

∗)R =

N∑
n=1

∫ tn

tn−1

∂t(Mun,h,u
∗)Ω dt

=

N∑
n=1

(
Mun,h(tn),u∗(tn)

)
Ω
−
(
Mun,h(tn−1),u∗(tn−1)

)
Ω

=

N−1∑
n=1

(
M
(
un,h(tn)− un+1,h(tn)

)
,u∗(tn)

)
Ω

=

N−1∑
n=1

(
M
(
un,h(tn)−Πn+1,hun,h(tn)

)
,u∗(tn)

)
Ω

and in every time slice (tn−1, tn) we obtain, if the dual solution u∗ is sufficiently smooth satisfying u∗|∂Qh
∈

L2(∂Qh;Rm), for the restriction to the space-time skeleton∑
K∈Kh

(
Aun,h,u

∗)
(tn−1,tn)×K +

(
un,h, Au∗

)
(tn−1,tn)×K

=
∑
K∈Kh

(
AnK

un,h.K ,u
∗)

(tn−1,tn)×∂K

=
∑
K∈Kh

∑
F∈FK

(
AnK

un,h.K ,u
∗)

(tn−1,tn)×F

=
∑
K∈Kh

∑
F∈FK

(
AnK

un,h,K −Aupw
nK

un,h,u
∗)

(tn−1,tn)×F

where un,h,K is the extension of un,h|K to K. This gives, inserting (37),

∑
R∈Rh

〈uh,u∗〉∂R =

N∑
n=1

∑
R=(tn−1,tn)×K

(
Lun,h,u

∗)
R
−
(
un,h, L

∗u∗
)
R

=

N∑
n=1

∑
R=(tn−1,tn)×K

(
M∂tun,h,u

∗)
R

+
(
Mun,h, ∂tu

∗)
R

+
(
Aun,h,u

∗)
R

+
(
un,h, Au∗

)
R

=

N−1∑
n=1

(
M
(
un,h(tn)−Πn+1,hun,h(tn)

)
,u∗(tn)

)
Ω

+
∑

R=(tn−1,tn)×K

∑
F∈FK

(
AnK

uh,R −Aupw
nK

un,h,u
∗)

(tn−1,tn)×F ,

where uh,R is the extension of uh|R to R.
For the discrete solution uh ∈ Vh and any discrete test function wh ∈Wh we have(

f ,wh

)
Q

=
(
Lhuh,wh

)
Q

=
(
Mh∂tuh,wh

)
Q

+
(
Ahuh,wh

)
Q

+
(
Dhuh,wh

)
Q

=
(
Mh∂tuh,wh

)
Q

+
(
Dhuh,wh

)
Q

+

N∑
n=1

∑
R=(tn−1,tn)×K

((
Auh,wh

)
R

+
∑
F∈FK

(
Aupw

nK
un,h −AnK

uh,R,wh,R

)
(tn−1,tn)×F

)
,

so that

0 =

N∑
n=1

∑
R=(tn−1,tn)×K

((
Auh − f ,wh

)
R

+
(
Mh∂tuh,wh

)
R

+
(
Dhuh,wh

)
R

+
∑
F∈FK

(
Aupw

nK
un,h −AnK

uh,R,wh,R

)
(tn−1,tn)×F

)
.
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Together, this gives

〈E,u− uh〉 =
∑
R∈Rh

((
f − Luh,u

∗)
R

+ 〈uh,u∗〉∂R
)

=

N∑
n=1

∑
R=(tn−1,tn)×K

((
f − (Mh∂t +A+Dh)uh,u

∗)
R

−
(
(M −Mh)∂tuh,u

∗)
R
−
(
(D −Dh)uh,u

∗)
R

+
∑
F∈FK

(
AnK

uh,R −Aupw
nK

un,h,u
∗)

(tn−1,tn)×F

)

+

N−1∑
n=1

(
M
(
un,h(tn)−Πn+1,hun,h(tn)

)
,u∗(tn)

)
Ω

=

N∑
n=1

∑
R=(tn−1,tn)×K

((
f − (Mh∂t +A+Dh)uh,u

∗ −wh

)
R

+
∑
F∈FK

(
AnK

uh,R −Aupw
nK

un,h,u
∗ −wh

)
(tn−1,tn)×F

)

+

N−1∑
n=1

(
Mh

(
un,h(tn)−Πn+1,hun,h(tn)

)
,u∗(tn)−wn+1,h(tn)

)
Ω

+

N−1∑
n=1

(
(M −Mh)

(
un,h(tn)−Πn+1,hun,h(tn)

)
,u∗(tn)

)
Ω

−
(
(M −Mh)∂tuh,u

∗)
Q
−
(
(D −Dh)uh,u

∗)
Q

≤
N∑
n=1

∑
R=(tn−1,tn)×K

(∥∥f − (Mh∂t +A+Dh)uh
∥∥
R

∥∥u∗ −wh

∥∥
R

+
∑
F∈FK

∥∥AnK
uh,R −Aupw

nK
un,h

∥∥
(tn−1,tn)×F

∥∥u∗ −wh

∥∥
(tn−1,tn)×F

)

+

N−1∑
n=1

∥∥Mh

(
un,h(tn)−Πn+1,hun,h(tn)

)∥∥
Ω

∥∥u∗(tn)−wn+1,h(tn)
∥∥

Ω

+

N−1∑
n=1

∥∥M−1(M −Mh)
(
un,h(tn)−Πn+1,hun,h(tn)

)
‖Y ‖u∗(tn)‖Y

+
∥∥(M −Mh)∂tuh

∥∥
W∗

∥∥u∗∥∥
W
−
∥∥(D −Dh)uh

∥∥
W∗

∥∥u∗∥∥
W
.

This yields the assertion. �
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Dual-primal error indicator. For the evaluation of the error bound the exact solution u∗ of the dual problem
is required, and for wh an interpolation of u∗ can be inserted. Then, the interpolation errors

∥∥u∗ −wh

∥∥
R

and∥∥u∗ −wh

∥∥
(tn−1,tn)×F can be estimated by the regularity of the dual solution.

Since u∗ ∈ V ∗ cannot be computed exactly, it is approximated by u∗h ∈Wh solving the discrete dual solution

bh(vh,u
∗
h) = 〈E,vh〉 , vh ∈ Vh ,

and the regularity of the dual solution is estimated from the regularity of u∗h. Therefore, we compute the
L2 projection Π0

h : L2(Q;Rm) −→ P0(Qh;Rm) and the jump terms [Π0
hu
∗
h]F with [yh]F = yh,KF

− yh,K on
inner faces, ([yh]F )j = (Anyh)j for F ⊂ Γ∗j , and ([yh]F )j = 0 for F ⊂ ∂Ω \ Γ∗j . Then, the error indicator
ηh =

∑
R∈Rh

ηR for R = (tn−1, tn)×K is defined by

ηR =
(∥∥(Mh∂t +A+Dh)uh − f

∥∥
R

+
∥∥un,h(tn−1)−Πn,hun−1,h(tn−1)‖K

)
h

1/2
K

∥∥[Π0
hu
∗
h]F
∥∥

(tn−1,tn)×∂K

+
∥∥(AnK

−Aupw
nK

)
uh‖(tn−1,tn)×∂K

∥∥[Π0
hu
∗
h]F
∥∥

(tn−1,tn)×∂K .

Depending on threshold parameters 0 < ϑ0 < ϑ0 < 1 this results in the following p-adaptive algorithm:

1: choose low order polynomial degrees on the initial mesh
2: while maxR(pR) ≤ pmax and maxR(qR) ≤ qmax do
3: compute uh
4: compute u∗h and the projection Π0

hu
∗
h

5: compute ηR on every cell R
6: if the estimated error ηh is small enough, then STOP
7: mark space-time cell R for refinement if ηR > ϑ1 maxR′ ηR′

and for derefinement if ηR < ϑ0 maxR′ ηR′

8: increase/decrease polynomial degrees on marked cells
9: redistribute cells on processes for better load balancing
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4.7. Reliable error estimation for weak solutions

Finally, we derive a posteriori estimates for weak solutions based on local conforming reconstructions. Here we
consider the general case including inhomogeneous initial and boundary data, where initial data are included
in the definition of the affine ansatz space (47), and the DG formulation for boundary data is derived in (38),
see (45) for an example. For simplicity, we assume that the parameters in M and D are piecewise constant, so
that M = Mh and D = Dh.
For the data f ∈ L2(Q;Rm), u0 ∈ L2(Ω;Rm), gk ∈ L2((0, T )× Γk) defining the linear functional ` by

〈`, z〉 = (f , z)Q +
(
Mu0, z(0)

)
Ω
−

m∑
k=1

(
gk, zk

)
(0,T )×Γk

, z ∈ V∗ ,

we select piecewise polynomial approximations fh ∈ P(Qh;Rm), u0,h ∈ P(Ωh;Rm), and gk,h ∈ P((0, T ) × Γk)
defining the approximated linear functional `h by

〈`h, zh〉 = (fh, zh)Q +
(
Mu0,h, zh(0)

)
Ω
−

m∑
k=1

(
gk,h, zk,h

)
(0,T )×Γk

, zh ∈ V∗ .

We assume that ` is bounded by (29) so that a unique weak solution u ∈W of(
u, L∗z

)
Q

= 〈`, z〉 , z ∈ V∗

exists by Thm. 11 and Cor. 20. For the approximation uh ∈ Vh(u0,h) solving

bh(uh,wh) =
(
fh,wh

)
Q
−
(
Abnd

n gh,wh

)
(0,T )×∂Ω

, wh ∈Wh ,

we now construct a conforming reconstruction in a continuous finite element space V cf
h ⊂ H(L,Q) ∩ P(Qh;Rm)

as described in the following. Here, we set for the right-hand side gh = (gk,h)k=1,...,m ∈ L2((0, T ) × ∂Ω;Rm)
with gk,h = 0 on ∂Ω \ Γk.
The reconstruction is defined on local patches associated to the corners of the space-time mesh. Therefore,
let CK ⊂ K be the corner points in space of the elements K ∈ Kh such that K = conv CK , and define
Ch =

⋃
K∈Kh

CK . For all c ∈ Ch we define Kh,c =
{
K ∈ Kh : c ∈ CK

}
and open subdomains ωc ⊂ Ω

with ωc =
⋃
K∈Kh,c

K. This extends to space-time patches Q0,c = (0, t1) × ωc, Qn,c = (tn−1, tn+1) × ωc for

n = 1, . . . , N − 1, and QN,c = (tN−1, T )× ωc. Let ψn,c ∈ C0(Q) ∩ P(Qh) be a corresponding decomposition of

1 ≡
∑N
n=0

∑
c∈Ch ψn,c with suppψn,c = Qn,c. On every patch we define discrete conforming local affine spaces

V cf
n,c(u0,h,gh) =

{
vh ∈ V cf

h : supp(vh) ⊂ Qn,c ,
vh(0) = ψn,cu0,h in Ω if n = 0 ,

vh(tn−1) = 0 in Ω if n > 0 ,

vh(tn+1) = 0 in Ω if n < N ,

(Anvh)k = ψn,cgk,h on (0, T )× Γk , k = 1, . . . ,m ,

Anvh = 0 on (0, T )× (∂ωc \ ∂Ω)
}
.

In the following we assume V cf
n,c(u0,h,gh) 6= ∅, which can be achieved by a suitable choice of the data approxi-

mation u0,h and gk,h depending on the reconstruction space V cf
h .

Now, the local conforming reconstruction of the discrete solution uh is defined by ucf
h =

∑N
n=0

∑
c∈Ch ucf

n,c,

where ucf
n,c ∈ V cf

n,c(u0,h,gh) is the best approximation of ψn,cuh in the topology of W , i.e.,∥∥ψn,cuh − ucf
n,c

∥∥
W
≤
∥∥ψn,cuh − vn,c

∥∥
W
, vn,c ∈ V cf

n,c(u0,h,gh) ,

so that ucf
n,c is determined by a small local quadratic minimization problem with linear constraints.
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Lemma 38. The approximation error of the weak solution can be estimated by

∥∥u− uh
∥∥
W
≤
∥∥uh − ucf

h

∥∥
W

+ 2T
∥∥Lucf

h − fh
∥∥
W∗

+ β−1 sup
z∈V∗\{0}

〈`− `h, z〉
‖z‖V ∗

.

Proof. By construction we have for ucf
n,c ∈ V cf

n,c(u0,h,gh)

ucf
h (0) =

N∑
n=0

∑
c∈Ch

ψn,cu0,h = u0,h in Ω ,

(
Anucf

h

)
k

=

N∑
n=0

∑
c∈Ch

ψn,cgk,h = gk,h on (0, T )× Γk, k = 1, . . . ,m ,

so that for all z ∈ V∗ integration by parts and the boundary conditions in V∗ gives(
ucf
h , L

∗z
)
Q

=
(
Lucf

h , z
)
Q

+
(
Mucf

h (0), z(0)
)

Ω
−
(
Anucf

h , z
)

(0,T )×∂Ω

=
(
Lucf

h − fh, z
)
Q

+ 〈`h, z〉 .

Since L2(Q;Rm) = M−1L∗(V ∗) and V∗ ⊂ V ∗ is dense, we obtain by duality

‖u− ucf
h ‖W = sup

v∈L2(Q;Rm)\{0}

(
M(u− ucf

h ),v
)
Q

‖v‖W
= sup

z∈V∗ :L∗z 6=0

(
u− ucf

h , L
∗z
)
Q

‖M−1L∗z‖W

= sup
z∈V∗ :L∗z 6=0

(
Lucf

h − fh, z
)
Q

+ 〈`− `h, z〉
‖L∗z‖W∗

≤ sup
z∈V∗ :L∗z 6=0

∥∥Lucf
h − fh

∥∥
W∗

∥∥z∥∥
W

‖L∗z‖W∗
+ sup

z∈V∗ :L∗z6=0

〈`− `h, z〉
‖L∗z‖W∗

≤ 2T
∥∥Lucf

h − fh
∥∥
W∗

+ β−1 sup
z∈V∗ :L∗z6=0

〈`− `h, z〉
‖z‖V ∗

using the a priori estimate ‖z‖W ≤ 2T ‖L∗z‖W∗ from Rem. 16 with CL = 2T and ‖z‖V ∗ ≤ β−1‖L∗z‖W∗ with

β−1 =
√

1 + 4T 2 from Cor. 20, so that

‖u− uh‖W ≤ ‖u− ucf
h ‖W + ‖ucf

h − uh‖W

yields the assertion. �
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This lemma shows that the corresponding error estimator with local contributions

ηn,K =
( ∑

c∈CK

η2
n−1,c + η2

n,c

)1/2

, ηn,c =
(∥∥M1/2(ψn,cuh − ucf

n,c)
∥∥2

Qn,c
+ 2T

∥∥M−1/2(Lucf
h − fh)

∥∥2

Qn,c

)1/2

,

is reliable up to the data approximation error, i.e.,

∥∥u− uh
∥∥
W
≤
( N∑
n=0

∑
K∈Kh

η2
n,K

)1/2

+ β−1 sup
z∈V∗\{0}

〈`− `h, z〉
‖z‖V ∗

.

Bibliographic comments. This chapter is based on [Dörfler et al., 2016,Dörfler et al., 2019], where also nu-
merical results for the adaptive algorithm are presented. Further applications and several numerical applications
are reported in [Findeisen, 2016,Ziegler, 2019,Dörfler et al., 2020].
The extension to estimates for weak solutions is based on the construction of a right-inverse as it is done in [Ern
and Guermond, 2016] for conforming Petrov–Galerkin approximations in reflexive Banach spaces.
The estimate for the Legendre polynomials can also be obtained recursively using [Abramowitz and Stegun,
1964, Lem. 8.5.3], see, e.g., [Dörfler et al., 2016, Lem. 8].
The error estimation based on dual-weighted residuals transfers the approach in [Becker and Rannacher, 2001]
to our space-time framework, and for the general concepts on error estimation by conforming reconstructions
we refer to [Ern and Vohraĺık, 2015].
The results are closely related to the analysis of space-time discontinuous Galerkin methods for acoustics in
[Moiola and Perugia, 2018,Bansal et al., 2021, Imbert-Gérard et al., 2020]. Alternative concepts for space-time
discretizations for wave equations are collected in [Langer and Steinbach, 2019]. See also the results in [Banjai
et al., 2017,Gopalakrishnan et al., 2017] and more recently in [Perugia et al., 2020,Steinbach and Zank, 2020],
and the references therein.
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