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Getting and compiling the Code

The code can be obtained from

http://www.math.kit.edu/ianm3/seite/mfoseminar/en

Following README the code is installed by

cd FWI_Tutorial

mkdir build

cd build

cmake ..

make -j

and started in the directory FWI_Tutorial/build with

mpirun -n <procs> M++

using the default configuration file in ../conf/ specified in ../conf/m++conf.
In the following, we use procs = 4.
The logfiles are in log/, the plotting data in data/vtk/ and can be viewed with paraview. The seismogram
data in data/FWI/ are displayed with

python3 ../tools/seismogram_lib.py data/FWI/<sname1> data/FWI/<sname2> ...

A) Time stepping methods for DG approximations of the acoustic wave equation

We consider an acoustic wave ∂tv = ∇p and ∂tp = divv in Ω ⊂ (0, 4)× (−2.1, 6) ⊂ R2 , cf. Fig. 1. At t = 0 we
start with the initial values
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0

)
else.

for all x = (x1, x2)> ∈ Ω. The location in x2-direction of the plane wave is controlled by the variable ymid ∈ R.
The final time is T = 6.
Starting with

mpirun -n 4 M++ acoustic

paraview &

yields the results in Fig. 1 by loading the data P in data/vtk/ in paraview.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Figure 1. Solution for the pressure distribution of the acoustic wave propagation.
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We consider the linear goal functional in the region of interest S = {T} × (1, 3)× (−1, 0)

E(p,v) =
1

2

∫
S

p(T,x) dx

(a) Compare the results for the linear goal functional E(p,v) for different mesh size Mx, time step size
Mt, and polynomial degree q of the DG method. Therefore, modify in ../conf/acoustic.conf the
parameters level, dt, and deg.

(b) Convergence in space is tested with plevel < level and Scales= 1 with ScaleFactor= 1; convergence
in time is tested with plevel = level and Scales> 1 with ScaleFactor= 0.5. Select the parameters
(Mx,Mt) so that the discretization error in space and time is equilibrated.

(c) By comparing the results, estimate the asymptotic value for the goal functional. Then, find out which
parameters (Mx,Mt, q) are sufficient to obtain E(p,v) up to an accuracy of approx. 1%.

(d) Compare the results for different time integrators (implicit midpoint rule, classical explicit Runge-
Kutta method, polynomial Krylov method, and Arnoldi method with shift). Therefore, modify in
../conf/acoustic.conf the parameter rkorder and find out for q = 2, which parameters (Mx,Mt)
yield for E(p,v) up an accuracy of approx. 1%.

Challenge. Which configuration (Mx,Mt, q) and time integrator is optimal with respect to the computing time.

B) Adaptive space-time approximation of the acoustic wave equation

Now start for the example in A) the space-time method

mpirun -n 4 M++ spacetime_acoustic

paraview &

and compare space-time results in data/vtk/ with the time-stepping results. The number of adaptive cycles can
be set in ../conf/spacetime_acoustic.conf with refinement_steps, and the marking of cells is controlled
by the parameter theta. Time slices of the space-time solution P.vtk can be visualized with the clip method,
and the refinement plots show the distribution of the polynomial degree.

Challenge. Compute the value E(p,v) up to an accuracy of approx. 1% with the adaptive space-time method.
Find out by numerical experiments how many degrees of freedom in space and time are required and can be
saved in comparison with a computation on a uniform discretizations in time and space.

C) Solving the forward problem in seismic imaging

In this simple example, we consider the 2D acoustic wave equation ρ0∂tv = ∇p and ∂tp = κdivv + b with
constant density ρ0 and variable permeability κ. The first-order system is discretized with a discontinuous
Galerkin method of degree deg = q in space and by the implicit midpoint rule in time.
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Figure 2. The wave that is exited at S ∈ Ω propagates through the domain and is recorded
at the receiver positions R0, . . . , R9 ∈ Ω.

We start with an approximate point source b located at

source_x = 1.1;

source_y = 2.1;

Parameters of the configuration can be changed in ../conf/forward.conf.
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(a) Run the forward simulation with procs = 4 processes, e.g.,

mpirun -n 4 M++ forward

This creates snapshot plots of the wave fields in the directory data/vtk and seismograms in data/FWI

(with ../tools/rm_data, all previous results are removed).
Use the program paraview to visualize the pressure P and the material distribution Kappa and Rho

in data/vtk.
(b) Now test different source locations and compare the seismograms. Therefore, set different sname for

different source locations in the configuration file and compare

python3 ../tools/seismogram_lib.py data/FWI/<sname1> data/FWI/<sname2> ...

By adding -n to the call of seismogram_lib.py each trace gets scaled by its individual amplitude
(making differences more visible).

The parameter -t r when calling seismogram_lib.py calculates the relative seismogram differences.
For further options, see python3 ../tools/seismogram_lib.py -h.

How sensitive is this measurement? What is the maximal distance of the sources, so that the relative
difference of the seismograms is smaller than 0.8?

(c) In our test, we fix the density ρ and the background permeability κbg, and in a small region (cf. Fig. 2)
the permeability is changed to

kappa_inc = 1.5;

How sensitive is the measurement? Which difference of κbg and κinc is required, so that the relative
difference of the seismograms for the source position (1.1/2.1) is smaller than 0.5?

D) Convergence of the forward problem

Solving partial differential equations (PDEs) numerically yields an approximation of the true solution of the
PDE. Here, we consider how the approximation behaves under mesh refinement in space and time.
We use a uniform mesh of mesh width Mx, fixed time increments Mt, and a fixed polynomial degree in the ansatz
spaces. In ../conf/forward.conf, the discretization parameters are defined by

level = 4;

deg = 1;

dt = 0.01;

Use sname = automatic in the configuration file to let the program pick a name according to the discretization.
Further, reset the source position to source_x = 1.1, source_y = 2.1, and the inclusion to kappa_inc = 1.5.
Make a few tests with different discretization parameters and compare the seismograms.

(a) Run simulations for deg = 1, 2 and dt = 0.01 with level = 3, 4 and compare the resulting seismo-
grams to the reference solution provided by FWI/s_ref_1.1_2.1__kappa_inc_1.5.
Which convergence order do you observe by refining the level?

(b) Determine the convergence order in time by computing the solution for deg = 1, 2 on level = 4 using
different time step sizes.
Compare the relative differences of the seismograms for the time step sizes dt= 0.08, 0.04, 0.02, 0.01.

(c) Find a configuration which is accurate up to a relative difference in the seismograms smaller than 0.5
compared to the reference solution.

E) The inverse problem

We use the forward simulation to create synthetic data for the inverse problems. In this example, we use the
same discretization for both, generation of data and inversion.
The data for three shots are computed with

mpirun -n 4 M++ generate

and, starting with κ ≡ κ0, we recover the material distribution approximately by

mpirun -n 4 M++ invert

using CG-REGINN combining Newton’s method and conjugate gradients for the normal equation in every
Newton step.
Here, m = (ρ, κ) ∈ P ⊂ L∞(Ω;R2) are the material parameters,

y = (p,v) ∈ Y ⊂ C1
(
0, T ; H1(Ω)×H(div,Ω)

)
⊂ L2(Q;R× R2)

are the state variables in the space-time cylinder Q = (0, T )× Ω, and

Lmy = (ρ∂tv −∇p, ∂tp− κdivv)
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is the first-order system corresponding to the acoustic wave equation for the parameter distribution m = (ρ, κ).
This defines the parameter-to-wave-field map

F : P −→ Y , m 7−→ y with Lmy = (0, b) .

Given a set of space-time receivers R ⊂ Q, every wave solution defines a seismogram in S = RR. The
corresponding measurement operator

Ψ: L2(Q;R× R2) −→ S , y 7−→
∑

r∈R
(ϕr,y)Q

is defined by measurement kernels ϕr approximating point evaluations at r ∈ R.
Together, this defines the parameter-to-seismogram map Φ = Ψ ◦ F : P −→ S.
In this setting, the problem of Full-Waveform-Inversion reads as follows:

Given sobs ∈ S, find m ∈ P with Φ(m) = sδobs .

This problem is solved approximately by the Newton method.
Therefore, let Φ′(m) : P −→ S by the linearized parameter-to-seismogram map.

Algorithm 1 Newton’s method with approximate updates

1: Choose m0 ∈ P, k ← 0
2: while not converged do
3: rk ← sobs − Φ(mk) ∈ S
4: Select ϑk > 0.
5: Find Mmk ∈ P with ‖Φ′(mk)[Mmk]− rk‖ ≤ ϑk‖rk‖.
6: mk+1 ← mk + Mmk

7: k ← k + 1

Since the linearization in this application in general is ill-conditioned, the approximate update Mmk ∈ P is
computed by the CG iteration for the corresponding normal equation.

Algorithm 2 Conjugate gradient algorithm for Φ′(m)∗Φ′(m)[Mm] = Φ′(m)∗r

1: j ← 0, β ← 0, r0 ← r ∈ S
2: p0,Mm0 ← 0 ∈ P
3: while not converged do
4: j ← j + 1
5: d← Φ′(m)∗[rj−1] ∈ P
6: pj ← d+ β ‖d‖2 pj−1
7: q ← Φ′(m)[pj ] ∈ S
8: α← ‖d‖2/‖q‖2
9: Mmj ← Mmj−1 + αpj

10: rj ← rj−1 − α q
11: β ← 1/‖d‖2

In our example we fix the density ρ ≡ ρ0 and the a small number source functions bn (n = 0, 1, ..., Nshots − 1)
so that the inverse algorithm only tries to recover κ. In the Newton step k, we use the source function bn and
seismogram sn,obs alternating with n = k mod Nshots.

(a) Compare the seismograms in data/FWI/. How large is the relative difference in the observed seismogram
and the initial seismogram of the inversion?

(b) How many steps in the inverse method are required to obtain a relative difference in the seismograms
smaller than 0.1?

(c) Which accuracy can be obtain with the method? Why is the accuracy limited and what is required to
obtain better results?
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