

Module Handbook Techno-Mathematics Master 2016 (Master of Science (M.Sc.))

SPO 2016 Summer term 2023 Date: 20/04/2023

KIT DEPARTMENT OF MATHEMATICS

KIT – The Research University in the Helmholtz Association

www.kit.edu

Table Of Contents

1. Field of study structure	11
1.1. Master's Thesis	
1.2. Internship	11
1.3. Applied Mathematics	12
1.4. Electrical Engineering / Information Technology	17
1.5. Experimental Physics	
1.6. Chemical and Process Engineering	
1.7. Wildcard Technical Field	
1.8. Computer Science	18
1.9. Mathematical Specialization	
1.10. Interdisciplinary Qualifications	
1.11. Additional Examinations	
2. Modules	
2.1. Adaptive Finite Elemente Methods - M-MATH-102900	
2.2. Advanced Inverse Problems: Nonlinearity and Banach Spaces - M-MATH-102955	
2.3. Algebra - M-MATH-101315	
2.4. Algebraic Geometry - M-MATH-101724	
2.5. Algebraic Number Theory - M-MATH-101725	
2.6. Algebraic Topology - M-MATH-102948	
2.7. Algebraic Topology II - M-MATH-102953	
2.8. An Introduction to Periodic Elliptic Operators - M-MATH-105096	
2.9. Analytic and Algebraic Aspects of Group Rings - M-MATH-106305	
2.10. Analytical and Numerical Homogenization - M-MATH-105636	
2.10. Analyticat and Numerical Homogenization - M-MATH-105050	
2.12. Aspects of Geometric Analysis - M-MATH-103251	
2.12. Aspects of Geometric Analysis - M-MATH-103231	
2.14. Astroparticle Physics I - M-PHYS-102075	
2.14. Astroparticle Physics F - M-PHTS-102075	
2.15. Ballach Algebras - M-MATH-102915	
2.17. Basics of Nanotechnology I - M-PHYS-102097	
2.17. Basics of Nanotechnology II - M-PHYS-102100	
2.19. Bayesian Inverse Problems with Connections to Machine Learning - M-MATH-106328	
2.20. Bifurcation Theory - M-MATH-103259	
2.20. Biurcation meory - M-MATH-103259 2.21. Biopharmaceutical Purification Processes - M-CIWVT-103065	
2.22. Bott Periodicity - M-MATH-104349	
2.22. Bourdary and Eigenvalue Problems - M-MATH-102871	
2.23. Boundary Element Methods - M-MATH-1028/1	
•	
2.25. Boundary value problems for nonlinear differential equations - M-MATH-102876	
2.26. Brownian Motion - M-MATH-102904	
2.27. Classical Methods for Partial Differential Equations - M-MATH-102870	
2.28. Cognitive Systems - M-INFO-100819	
2.29. Combinatorics - M-MATH-102950	
2.30. Combustion Technology - M-CIWVT-103069	
2.31. Commutative Algebra - M-MATH-104053	
2.32. Comparison Geometry - M-MATH-102940	
2.33. Comparison of Numerical Integrators for Nonlinear Dispersive Equations - M-MATH-104426	
2.34. Complex Analysis - M-MATH-102878	
2.35. Compressive Sensing - M-MATH-102935	
2.36. Computational Fluid Dynamics - M-CIWVT-103072	
2.37. Computational Group Theory - M-MATH-106240	
2.38. Computer Architecture - M-INFO-100818	
2.39. Computer Graphics - M-INFO-100856	
2.40. Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems - M-MATH-102883	
2.41. Condensed Matter Theory I, Fundamentals - M-PHYS-102054	
2.42. Condensed Matter Theory I, Fundamentals and Advanced Topics - M-PHYS-102053	
2.43. Condensed Matter Theory II: Many-Body Theory, Fundamentals - M-PHYS-102313	
2.44. Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics - M-PHYS-102308	74

2.45. Continuous Time Finance - M-MATH-102860	
2.46. Control Theory - M-MATH-102941	
2.47. Convex Geometry - M-MATH-102864	
2.48. Deep Learning and Neural Networks - M-INFO-104460	
2.49. Differential Geometry - M-MATH-101317	
2.50. Discrete Dynamical Systems - M-MATH-105432	81
2.51. Discrete Time Finance - M-MATH-102919	
2.52. Dispersive Equations - M-MATH-104425	
2.53. Dynamical Systems - M-MATH-103080	84
2.54. Electromagnetics and Numerical Calculation of Fields - M-ETIT-100386	85
2.55. Electronic Properties of Solids I, with Exercises - M-PHYS-102089	87
2.56. Electronic Properties of Solids I, without Exercises - M-PHYS-102090	88
2.57. Electronic Properties of Solids II, with Exercises - M-PHYS-102108	
2.58. Electronic Properties of Solids II, without Exercises - M-PHYS-102109	90
2.59. Evolution Equations - M-MATH-102872	
2.60. Exponential Integrators - M-MATH-103700	
2.61. Extremal Graph Theory - M-MATH-102957	
2.62. Extreme Value Theory - M-MATH-102939	
2.63. Finite Element Methods - M-MATH-102891	
2.64. Forecasting: Theory and Practice - M-MATH-102956	96
2.65. Formal Systems - M-INFO-100799	97
2.66. Foundations of Continuum Mechanics - M-MATH-103527	
2.67. Fourier Analysis and its Applications to PDEs - M-MATH-104827	
2.68. Fractal Geometry - M-MATH-105649	
2.69. Functional Analysis - M-MATH-101320	
2.70. Functions of Matrices - M-MATH-102937	
2.71. Functions of Operators - M-MATH-102936	
2.72. Fuzzy Sets - M-INFO-100839	
2.73. Generalized Regression Models - M-MATH-102906	
2.74. Geometric Analysis - M-MATH-102923	
2.75. Geometric Group Theory - M-MATH-102867	
2.76. Geometric Group Theory II - M-MATH-102869	
2.77. Geometric Numerical Integration - M-MATH-102921	
2.78. Geometry of Schemes - M-MATH-102866	
2.79. Global Differential Geometry - M-MATH-102912	
2.80. Graph Theory - M-MATH-101336	
2.81. Group Actions in Riemannian Geometry - M-MATH-102954	
2.82. Harmonic Analysis - M-MATH-105324	114
2.83. Harmonic Analysis for Dispersive Equations - M-MATH-103545	115
2.84. Harmonic Analysis on Fractals - M-MATH-106287	
2.85. Heat Transfer II - M-CIWVT-103051	
2.86. High Temperature Process Engineering - M-CIWVT-103075	
2.87. Homotopy Theory - M-MATH-102959	
2.88. Infinite dimensional dynamical systems - M-MATH-103544	
2.89. Information Security - M-INFO-106015	
2.90. Integral Equations - M-MATH-102874	
2.91. Internet Seminar for Evolution Equations - M-MATH-102918	
2.92. Internship - M-MATH-102861	
2.93. Introduction into Particulate Flows - M-MATH-102943	
2.94. Introduction to Aperiodic Order - M-MATH-105331	
2.95. Introduction to Artificial Intelligence - M-INFO-106014	
2.95. Introduction to Artificial Intelligence - M-INFO-106014	128
2.95. Introduction to Artificial Intelligence - M-INFO-1060142.96. Introduction to Convex Integration - M-MATH-105964	128 129
 2.95. Introduction to Artificial Intelligence - M-INFO-106014 2.96. Introduction to Convex Integration - M-MATH-105964 2.97. Introduction to Cosmology - M-PHYS-102175 	128 129 130
 2.95. Introduction to Artificial Intelligence - M-INFO-106014 2.96. Introduction to Convex Integration - M-MATH-105964 2.97. Introduction to Cosmology - M-PHYS-102175 2.98. Introduction to Fluid Dynamics - M-MATH-105650 	128 129 130 131
 2.95. Introduction to Artificial Intelligence - M-INFO-106014 2.96. Introduction to Convex Integration - M-MATH-105964	128 129 130 131 132
 2.95. Introduction to Artificial Intelligence - M-INFO-106014	128 129 130 131 132 133
 2.95. Introduction to Artificial Intelligence - M-INFO-106014	128 129 130 131 132 133 134 135

2.105. Introduction to Microlocal Analysis - M-MATH-105838	. 137
2.106. Introduction to Scientific Computing - M-MATH-102889	. 138
2.107. Introduction to Stochastic Differential Equations - M-MATH-106045	139
2.108. Inverse Problems - M-MATH-102890	. 140
2.109. Key Competences - M-MATH-102994	. 141
2.110. Key Moments in Geometry - M-MATH-104057	142
2.111. L2-Invariants - M-MATH-102952	
2.112. Lie Groups and Lie Algebras - M-MATH-104261	
2.113. Lie-Algebras (Linear Algebra 3) - M-MATH-105839	
2.114. Localization of Mobile Agents - M-INFO-100840	
2.115. Markov Decision Processes - M-MATH-102907	
2.116. Master's Thesis - M-MATH-102917	
2.117. Mathematical Methods in Signal and Image Processing - M-MATH-102897	
2.118. Mathematical Methods of Imaging - M-MATH-103260	
2.119. Mathematical Modelling and Simulation in Practise - M-MATH-102929	
2.120. Mathematical Statistics - M-MATH-102909	
2.121. Mathematical Topics in Kinetic Theory - M-MATH-104059	
2.122. Maxwell's Equations - M-MATH-102885	
2.122. Maxwell's Equations - M-MATH-102805	
2.124. Medical Imaging Techniques I - M-ETIT-100384	
2.125. Medical Imaging Techniques I - M-ETIT-100385	
2.126. Methods of Signal Processing - M-ETIT-100580	
2.127. Metric Geometry - M-MATH-105931 2.128. Models of Mathematical Physics - M-MATH-102875	
2.129. Modern Experimental Physics I, Atoms, Nuclei and Molecules - M-PHYS-106331	
2.130. Modular Forms - M-MATH-102868	
2.131. Monotonicity Methods in Analysis - M-MATH-102887	
2.132. Multigrid and Domain Decomposition Methods - M-MATH-102898	
2.133. Neural Networks - M-INFO-100846	
2.134. Nonlinear Analysis - M-MATH-103539	
2.135. Nonlinear Control Systems - M-ETIT-100371	
2.136. Nonlinear Evolution Equations - M-MATH-102877	
2.137. Nonlinear Functional Analysis - M-MATH-102886	
2.138. Nonlinear Maxwell Equations - M-MATH-105066	
2.139. Nonlinear Maxwell Equations - M-MATH-103257	
2.140. Nonlinear Wave Equations - M-MATH-105326	
2.141. Nonparametric Statistics - M-MATH-102910	
2.142. Numerical Analysis of Helmholtz Problems - M-MATH-105764	
2.143. Numerical Complex Analysis - M-MATH-106063	
2.144. Numerical Continuation Methods - M-MATH-102944	
2.145. Numerical Linear Algebra for Scientific High Performance Computing - M-MATH-103709	
2.146. Numerical Linear Algebra in Image Processing - M-MATH-104058	
2.147. Numerical Methods for Differential Equations - M-MATH-102888	
2.148. Numerical Methods for Hyperbolic Equations - M-MATH-102915	
2.149. Numerical Methods for Integral Equations - M-MATH-102930	181
2.150. Numerical Methods for Maxwell's Equations - M-MATH-102931	
2.151. Numerical Methods for Time-Dependent Partial Differential Equations - M-MATH-102928	.183
2.152. Numerical Methods in Computational Electrodynamics - M-MATH-102894	.184
2.153. Numerical Methods in Fluid Mechanics - M-MATH-102932	. 185
2.154. Numerical Methods in Mathematical Finance - M-MATH-102901	.186
2.155. Numerical Methods in Mathematical Finance II - M-MATH-102914	187
2.156. Numerical Optimisation Methods - M-MATH-102892	. 188
2.157. Numerical Simulation in Molecular Dynamics - M-MATH-105327	
2.158. Optical Waveguides and Fibers - M-ETIT-100506	
2.159. Optimal Control and Estimation - M-ETIT-102310	
2.160. Optimisation and Optimal Control for Differential Equations - M-MATH-102899	
2.161. Optimization in Banach Spaces - M-MATH-102924	
2.162. Optimization of Dynamic Systems - M-ETIT-100531	
2.163. Parallel Computing - M-MATH-101338	
2.164. Particle Physics I - M-PHYS-102114	
*	

2.165. Pattern Recognition - M-INFO-100825	
2.166. Percolation - M-MATH-102905	
2.167. Physical Foundations of Cryogenics - M-CIWVT-103068	
2.168. Poisson Processes - M-MATH-102922	
2.169. Potential Theory - M-MATH-102879	
2.170. Probability Theory and Combinatorial Optimization - M-MATH-102947	
2.171. Process Modeling in Downstream Processing - M-CIWVT-103066	205
2.172. Processing of Nanostructured Particles - M-CIWVT-103073	206
2.173. Project Centered Software-Lab - M-MATH-102938	
2.174. Random Graphs - M-MATH-102951	
2.175. Random Graphs and Networks - M-MATH-106052	209
2.176. Real-Time Systems - M-INFO-100803	
2.177. Robotics I - Introduction to Robotics - M-INFO-100893	
2.178. Robotics III - Sensors and Perception in Robotics - M-INFO-104897	
2.179. Ruin Theory - M-MATH-104055	
2.180. Scattering Theory - M-MATH-102884	
2.181. Security - M-INFO-100834	
2.182. Selected Methods in Fluids and Kinetic Equations - M-MATH-105897	
2.183. Selected Topics in Harmonic Analysis - M-MATH-104435	
2.184. Seminar - M-MATH-102730	
2.185. Seminar Advanced Topics in Parallel Programming - M-INFO-101887	
2.186. Sobolev Spaces - M-MATH-102926	
2.187. Software Engineering II - M-INFO-100833	
2.188. Space and Time Discretization of Nonlinear Wave Equations - M-MATH-105966	
2.189. Spatial Stochastics - M-MATH-102903	
2.190. Special Topics of Numerical Linear Algebra - M-MATH-102920	
2.191. Spectral Theory - M-MATH-101768	
2.192. Spectral Theory of Differential Operators - M-MATH-102880	
2.192. Specific Theory of Differentiat operators in Martin 102000	
2.194. Splitting Methods - M-MATH-102933	
2.195. Splitting Methods for Evolution Equations - M-MATH-105325	
2.196. Statistical Learning - M-MATH-105840	
2.197. Statistical Thermodynamics - M-CIWVT-103059	
2.198. Steins Method with Applications in Statistics - M-MATH-105579	
2.199. Stochastic Control - M-MATH-102908	
2.200. Stochastic Differential Equations - M-MATH-102881	
2.201. Stochastic Geometry - M-MATH-102865	
2.202. Stochastic Information Processing - M-INFO-100829	
2.203. Stochastic Simulation - M-MATH-106053	
2.204. Structural Graph Theory - M-MATH-105463	
2.205. Supplementary Studies on Culture and Society - M-ZAK-106235	
2.206. Supplementary Studies on Sustainable Development - M-ZAK-106099	
2.207. Technical Optics - M-ETIT-100538	
2.208. Technomathematical Seminar - M-MATH-102863	
2.209. Telematics - M-INFO-100801	
2.209. Teternatics - M-INTO-100801	
2.210. Theoretical Optics - M-PHYS-102235	
2.21. Theoretical Optics - M-FITTS-102277	
2.213. Thermodynamics of Interfaces - M-CIWVT-103063	
-	
2.214. Time Series Analysis - M-MATH-102911	
2.215. Topological Data Analysis - M-MATH-105487 2.216. Topological Genomics - M-MATH-106064	
2.217. Topological Groups - M-MATH-105323	
2.218. Translation Surfaces - M-MATH-105973	
2.219. Traveling Waves - M-MATH-102927	
2.220. Uncertainty Quantification - M-MATH-104054	
2.221. Unit Operations and Process Chains for Food of Animal Origin - M-CIWVT-104421	
2.222. Unit Operations and Process Chains for Food of Plant Origin - M-CIWVT-104420	
2.223. Variational Methods - M-MATH-105093	
2.224. Wave Propagation in Periodic Waveguides - M-MATH-105462	

	2.225. Wavelets - M-MATH-102895	264
3.	Courses	
	3.1. Adaptive Finite Element Methods - T-MATH-105898	
	3.2. Advanced Inverse Problems: Nonlinearity and Banach Spaces - T-MATH-105927	266
	3.3. Algebra - T-MATH-102253	
	3.4. Algebraic Geometry - T-MATH-103340	268
	3.5. Algebraic Number Theory - T-MATH-103346	
	3.6. Algebraic Topology - T-MATH-105915	
	3.7. Algebraic Topology II - T-MATH-105926	
	3.8. An Introduction to Periodic Elliptic Operators - T-MATH-110306	
	3.9. Analytic and Algebraic Aspects of Group Rings - T-MATH-112777	
	3.10. Analytical and Numerical Homogenization - T-MATH-111272	274
	3.11. Applications of Topological Data Analysis - T-MATH-111290	275
	3.12. Aspects of Geometric Analysis - T-MATH-106461	276
	3.13. Aspects of Time Integration - T-MATH-105904	277
	3.14. Astroparticle Physics I - T-PHYS-102432	
	3.15. Banach Algebras - T-MATH-105886	279
	3.16. Basics Module - Self Assignment BAK - T-ZAK-112653	
	3.17. Basics Module - Self Assignment BeNe - T-ZAK-112345	
	3.18. Basics of Nanotechnology I - T-PHYS-102529	
	3.19. Basics of Nanotechnology II - T-PHYS-102531	
	3.20. Batteries and Fuel Cells - T-ETIT-100983	
	3.21. Bayesian Inverse Problems with Connections to Machine Learning - T-MATH-112842	
	3.22. Bifurcation Theory - T-MATH-106487	
	3.23. Biopharmaceutical Purification Processes - T-CIWVT-106029	
	3.24. Bott Periodicity - T-MATH-108905	
	3.25. Boundary and Eigenvalue Problems - T-MATH-105833	
	3.26. Boundary Element Methods - T-MATH-109851	
	3.27. Boundary Value Problems for Nonlinear Differential Equations - T-MATH-105847	
	3.28. Brownian Motion - T-MATH-105868	
	3.29. Classical Methods for Partial Differential Equations - T-MATH-105832	
	3.30. Cognitive Systems - T-INFO-101356	
	3.31. Combinatorics - T-MATH-105916	
	3.32. Combustion Technology - T-CIWVT-106104	
	3.33. Commutative Algebra - T-MATH-108398	
	3.34. Comparison Geometry - T-MATH-105917	
	3.35. Comparison of Numerical Integrators for Nonlinear Dispersive Equations - T-MATH-109040	
	3.36. Complex Analysis - T-MATH-105849	
	3.37. Compressive Sensing - T-MATH-105894	
	3.38. Computational Fluid Dynamics - T-CIWVT-106035	
	3.39. Computational Group Theory exam - T-MATH-112669	
	3.40. Computational Group Theory Tutorial - T-MATH-112670	
	3.41. Computer Architecture - T-INFO-101355	
	3.42. Computer Graphics - T-INFO-101393	
	3.43. Computer Graphics Pass - T-INFO-104313	
	3.44. Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems - T-MATH-105854	
	3.45. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 3.46. Condensed Matter Theory I, Fundamentals and Advanced Topics - T-PHYS-102558	
	3.47. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-102558	
	3.48. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560	
	3.49. Continuous Time Finance - T-MATH-105930	
	3.50. Control Theory - T-MATH-105909	
	3.51. Convex Geometry - T-MATH-105909	
	3.52. Deep Learning and Neural Networks - T-INFO-109124	
	3.53. Differential Geometry - T-MATH-102275	
	3.54. Discrete Dynamical Systems - T-MATH-102275	
	3.54. Discrete Time Finance - T-MATH-105839	
	3.56. Dispersive Equations - T-MATH-109001	
	3.57. Dynamical Systems - T-MATH-109001	
		JZ I

3.58. Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe - T- ZAK-112349	322
3.59. Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe - T-ZAK-112348	323
3.60. Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe - T-ZAK-112350	
3.61. Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe - T-ZAK-112347	
3.62. Electromagnetics and Numerical Calculation of Fields - T-ETIT-100640	326
3.63. Electronic Properties of Solids I, with Exercises - T-PHYS-102577	
3.64. Electronic Properties of Solids I, without Exercises - T-PHYS-102578	
3.65. Electronic Properties of Solids II, with Exercises - T-PHYS-104422	
3.66. Electronic Properties of Solids II, without Exercises - T-PHYS-104423	
3.67. Evolution Equations - T-MATH-105844	
3.68. Exponential Integrators - T-MATH-107475	
3.69. Extremal Graph Theory - T-MATH-105931 3.70. Extreme Value Theory - T-MATH-105908	
3.70. Extreme value meory - 1-MATH-105908	
3.72. Forecasting: Theory and Practice - T-MATH-105828	
3.73. Formal Systems - T-INFO-101336	
3.74. Foundations of Continuum Mechanics - T-MATH-107044	
3.75. Fourier Analysis and its Applications to PDEs - T-MATH-109850	
3.76. Fractal Geometry - T-MATH-111296	
3.77. Functional Analysis - T-MATH-102255	
3.78. Functions of Matrices - T-MATH-105906	
3.79. Functions of Operators - T-MATH-105905	
3.80. Fuzzy Sets - T-INFO-101376	
3.81. Generalized Regression Models - T-MATH-105870	
3.82. Geometric Analysis - T-MATH-105892	
3.83. Geometric Group Theory - T-MATH-105842	
3.84. Geometric Group Theory II - T-MATH-105875	
3.85. Geometric Numerical Integration - T-MATH-105919	
3.86. Geometry of Schemes - T-MATH-105841	350
3.87. Global Differential Geometry - T-MATH-105885	
3.88. Graph Theory - T-MATH-102273	352
3.89. Group Actions in Riemannian Geometry - T-MATH-105925	
3.90. Harmonic Analysis - T-MATH-111289	
3.91. Harmonic Analysis for Dispersive Equations - T-MATH-107071	
3.92. Harmonic Analysis on Fractals - T-MATH-112742	
3.93. Heat Transfer II - T-CIWVT-106067	
3.94. High Temperature Process Engineering - T-CIWVT-106109	
3.95. Homotopy Theory - T-MATH-105933	
3.96. In-depth Module - Doing Culture - Self Assignment BAK - T-ZAK-112655	
3.97. In-depth Module - Global Cultures - Self Assignment BAK - T-ZAK-112658	
3.98. In-depth Module - Media & Aesthetics - Self Assignment BAK - T-ZAK-112656	
3.99. In-depth Module - Spheres of Life - Self Assignment BAK - T-ZAK-112657	
3.100. In-depth Module - Technology & Responsibility - Self Assignment BAK - T-ZAK-112654	
3.101. Infinite dimensional dynamical systems - T-MATH-107070 3.102. Information Security - T-INFO-112195	
3.103. Integral Equations - T-MATH-105834	
3.104. Internet Seminar for Evolution Equations - T-MATH-105890	
3.105. Internship - T-MATH-105888	
3.106. Introduction into Particulate Flows - T-MATH-105911	
3.107. Introduction to Aperiodic Order - T-MATH-110811	
3.108. Introduction to Artificial Intelligence - T-INFO-112194	
3.109. Introduction to Convex Integration - T-MATH-112119	
3.110. Introduction to Cosmology - T-PHYS-102384	
3.111. Introduction to Fluid Dynamics - T-MATH-111297	
3.112. Introduction to Fluid Mechanics - T-MATH-112927	
3.113. Introduction to Geometric Measure Theory - T-MATH-105918	
3.114. Introduction to Homogeneous Dynamics - T-MATH-110323	
3.115. Introduction to Kinetic Equations - T-MATH-111721	
3.116. Introduction to Kinetic Theory - T-MATH-108013	380

3.117. Introduction to Matlab and Numerical Algorithms - T-MATH-105913	201
3.118. Introduction to Microlocal Analysis - T-MATH-111722 3.119. Introduction to Python - T-MATH-106119	
3.119. Introduction to Python - Programming Project - T-MATH-111851	
3.121. Introduction to Scientific Computing - T-MATH-105837	
3.122. Introduction to Stochastic Differential Equations - T-MATH-112234	
3.123. Inverse Problems - T-MATH-105835	
3.124. Key Moments in Geometry - T-MATH-108401	
3.125. L2-Invariants - T-MATH-105924	
3.126. Lie Groups and Lie Algebras - T-MATH-108799	
3.127. Lie-Algebras (Linear Algebra 3) - T-MATH-111723	
3.128. Localization of Mobile Agents - T-INFO-101377	
3.129. Markov Decision Processes - T-MATH-105921	
3.130. Master's Thesis - T-MATH-105878	
3.131. Mathematical Methods in Signal and Image Processing - T-MATH-105862	
3.132. Mathematical Methods of Imaging - T-MATH-106488	
3.133. Mathematical Modelling and Simulation in Practise - T-MATH-105889	
3.134. Mathematical Statistics - T-MATH-105872	
3.135. Mathematical Topics in Kinetic Theory - T-MATH-108403	
3.136. Maxwell's Equations - T-MATH-105856	
3.137. Medical Imaging - T-MATH-105861	
3.138. Medical Imaging Techniques I - T-ETIT-101930	
3.139. Medical Imaging Techniques II - T-ETIT-101931	
3.140. Methods of Signal Processing - T-ETIT-100694	
3.141. Metric Geometry - T-MATH-111933	
3.141. Metric deometry - 1-MATH-117933 3.142. Models of Mathematical Physics - T-MATH-105846	
3.142. Models of Mathematical Physics - 1-MATH-103646	
,	
3.144. Modular Forms - T-MATH-105843	
3.145. Monotonicity Methods in Analysis - T-MATH-105877	
3.146. Multigrid and Domain Decomposition Methods - T-MATH-105863	
3.147. Neural Networks - T-INFO-101383	
3.148. Nonlinear Analysis - T-MATH-107065	
3.149. Nonlinear Control Systems - T-ETIT-100980	
3.150. Nonlinear Evolution Equations - T-MATH-105848	
3.151. Nonlinear Functional Analysis - T-MATH-105876	
3.152. Nonlinear Maxwell Equations - T-MATH-106484	
3.153. Nonlinear Maxwell Equations - T-MATH-110283	417
3.154. Nonlinear Wave Equations - T-MATH-110806	418
3.155. Nonparametric Statistics - T-MATH-105873	419
3.156. Numerical Analysis of Helmholtz Problems - T-MATH-111514	420
3.157. Numerical Complex Analysis - T-MATH-112280	
3.158. Numerical Continuation Methods - T-MATH-105912	
3.159. Numerical Linear Algebra for Scientific High Performance Computing - T-MATH-107497	
3.160. Numerical Linear Algebra in Image Processing - T-MATH-108402	
3.161. Numerical Methods for Differential Equations - T-MATH-105836	
3.162. Numerical Methods for Hyperbolic Equations - T-MATH-105900	
3.163. Numerical Methods for Integral Equations - T-MATH-105901	
3.164. Numerical Methods for Maxwell's Equations - T-MATH-10590	
3.165. Numerical Methods for Time-Dependent Partial Differential Equations - T-MATH-105899	
3.166. Numerical Methods in Computational Electrodynamics - T-MATH-105860	
3.167. Numerical Methods in Fluid Mechanics - T-MATH-105800	
3.168. Numerical Methods in Mathematical Finance - T-MATH-105865	
3.169. Numerical Methods in Mathematical Finance II - T-MATH-105880	
3.170. Numerical Optimisation Methods - T-MATH-105858	
3.171. Numerical Simulation in Molecular Dynamics - T-MATH-110807	
3.172. Optical Waveguides and Fibers - T-ETIT-101945	
3.173. Optimal Control and Estimation - T-ETIT-104594	
3.174. Optimisation and Optimal Control for Differential Equations - T-MATH-105864	
3.175. Optimization in Banach Spaces - T-MATH-105893	
3.176. Optimization of Dynamic Systems - T-ETIT-100685	440

3.177. Oral Exam - Supplementary Studies on Culture and Society - T-ZAK-112659	661
3.178. Oral Exam - Supplementary Studies on Sustainable Development - T-ZAK-112351	
3.179. Parallel Computing - T-MATH-102271	
3.180. Particle Physics I - T-PHYS-102369	
3.181. Pattern Recognition - T-INFO-101362	
3.182. Percolation - T-MATH-105869	
3.182. Percolation - T-MATT-103809 3.183. Physical Foundations of Cryogenics - T-CIWVT-106103	
3.184. Poisson Processes - T-MATH-105922	
3.185. Potential Theory - T-MATH-105850	
3.185. Potential Theory - T-MATH-105850	
3.186. Practice Module - 1-2AK-112660 3.187. Probability Theory and Combinatorial Optimization - T-MATH-105923	
3.188. Process Modeling in Downstream Processing - T-CIWVT-106101	
3.189. Processing of Nanostructured Particles - T-CIWVT-106107	
3.190. Project Centered Software-Lab - T-MATH-105907	
3.191. Random Graphs - T-MATH-105929	
3.192. Random Graphs and Networks - T-MATH-112241	
3.193. Real-Time Systems - T-INFO-101340	
3.194. Robotics I - Introduction to Robotics - T-INFO-108014	
3.195. Robotics III - Sensors and Perception in Robotics - T-INFO-109931	
3.196. Ruin Theory - T-MATH-108400	
3.197. Scattering Theory - T-MATH-105855	
3.198. Security - T-INFO-101371	
3.199. Selected Methods in Fluids and Kinetic Equations - T-MATH-111853	
3.200. Selected Topics in Harmonic Analysis - T-MATH-109065	
3.201. Self-Booking-HOC-SPZ-ZAK-1-Graded - T-MATH-111515	
3.202. Self-Booking-HOC-SPZ-ZAK-2-Graded - T-MATH-111517	
3.203. Self-Booking-HOC-SPZ-ZAK-5-Ungraded - T-MATH-111516	
3.204. Self-Booking-HOC-SPZ-ZAK-6-Ungraded - T-MATH-111520	
3.205. Seminar Advanced Topics in Parallel Programming - T-INFO-103584	
3.206. Seminar Mathematics - T-MATH-105686	
3.207. Sobolev Spaces - T-MATH-105896	
3.208. Software Engineering II - T-INFO-101370	
3.209. Space and Time Discretization of Nonlinear Wave Equations - T-MATH-112120	
3.210. Spatial Stochastics - T-MATH-105867	
3.211. Special Topics of Numerical Linear Algebra - T-MATH-105891	
3.212. Specialisation Module - Self Assignment BeNe - T-ZAK-112346	477
3.213. Spectral Theory - Exam - T-MATH-103414	478
3.214. Spectral Theory of Differential Operators - T-MATH-105851	
3.215. Spin Manifolds, Alpha Invariant and Positive Scalar Curvature - T-MATH-105932	480
3.216. Splitting Methods - T-MATH-105903	481
3.217. Splitting Methods for Evolution Equations - T-MATH-110805	
3.218. Statistical Learning - T-MATH-111726	
3.219. Statistical Thermodynamics - T-CIWVT-106098	
3.220. Steins Method with Applications in Statistics - T-MATH-111187	485
3.221. Stochastic Control - T-MATH-105871	486
3.222. Stochastic Differential Equations - T-MATH-105852	487
3.223. Stochastic Geometry - T-MATH-105840	
3.224. Stochastic Information Processing - T-INFO-101366	
3.225. Stochastic Simulation - T-MATH-112242	
3.226. Structural Graph Theory - T-MATH-111004	
3.227. Technical Optics - T-ETIT-100804	
3.228. Technomathematical Seminar - T-MATH-105884	
3.229. Telematics - T-INFO-101338	
3.230. Theoretical Nanooptics - T-PHYS-104587	
3.231. Theoretical Optics - T-PHYS-104578	
3.232. Thermodynamics III - T-CIWVT-106033	
3.233. Thermodynamics of Interfaces - T-CIWVT-106100	
3.234. Time Series Analysis - T-MATH-105874	
3.235. Topological Data Analysis - T-MATH-111031	
3.236. Topological Genomics - T-MATH-112281	

3.237. Topological Groups - T-MATH-110802	503
3.238. Translation Surfaces - T-MATH-112128	
3.239. Traveling Waves - T-MATH-105897	
3.240. Uncertainty Quantification - T-MATH-108399	
3.241. Unit Operations and Process Chains for Food of Animal Origin - T-CIWVT-108996	
3.242. Unit Operations and Process Chains for Food of Plant Origin - T-CIWVT-108995	
3.243. Variational Methods - T-MATH-110302	510
3.244. Wave Propagation in Periodic Waveguides - T-MATH-111002	
3.245. Wavelets - T-MATH-105838	512

1 Field of study structure

Mandatory			
Master's Thesis	30 CR		
Internship This field will not influence the calculated grade of its parent.	10 CR		
Applied Mathematics	24 CR		
Technical Field (Election: 1 item)	Technical Field (Election: 1 item)		
Electrical Engineering / Information Technology	18-27 CR		
Experimental Physics	18-27 CR		
Chemical and Process Engineering	18-27 CR		
Wildcard Technical Field	18-27 CR		
Mandatory	•		
Computer Science	8-17 CR		
Mathematical Specialization	19 CR		
Interdisciplinary Qualifications This field will not influence the calculated grade of its parent.	2 CR		
Voluntary			
Additional Examinations This field will not influence the calculated grade of its parent.			

1.1 Master's Thesis

Mandatory		
M-MATH-102917	Master's Thesis	30 CR

1.2 Internship

Mandatory		
M-MATH-102861	Internship	10 CR

Credits 30

Credits 10

1.3 Applied Mathematics

Credits 24

Mandatory		
M-MATH-102891	Finite Element Methods	8 CR
Analysis (Election	at least 8 credits)	
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102878	Complex Analysis	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102885	Maxwell's Equations	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102918	Internet Seminar for Evolution Equations	8 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-103080	Dynamical Systems	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103539	Nonlinear Analysis	8 CR
M-MATH-103545	Harmonic Analysis for Dispersive Equations	8 CR
M-MATH-103544	Infinite dimensional dynamical systems	4 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory	4 CR
M-MATH-104425	Dispersive Equations	6 CR
M-MATH-104435	Selected Topics in Harmonic Analysis	3 CR
M-MATH-104827	Fourier Analysis and its Applications to PDEs	6 CR
M-MATH-105066	Nonlinear Maxwell Equations	8 CR
M-MATH-105101	Introduction to Homogeneous Dynamics	6 CR
M-MATH-105093	Variational Methods	8 CR
M-MATH-105324	Harmonic Analysis	8 CR
M-MATH-105326	Nonlinear Wave Equations	4 CR
M-MATH-105432	Discrete Dynamical Systems	3 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides	8 CR
M-MATH-105487	Topological Data Analysis	6 CR
M-MATH-105650	Introduction to Fluid Dynamics	3 CR
M-MATH-105651	Applications of Topological Data Analysis	4 CR

M-MATH-105964	Introduction to Convex Integration	3 CR
M-MATH-106287	Harmonic Analysis on Fractals ^{neu}	3 CR
M-MATH-106401	Introduction to Fluid Mechanics neu First usage possible from 4/20/2023.	6 CR
Elective Field App	lied Mathematics (Election: at least 8 credits)	
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102909	Mathematical Statistics	8 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102918	Internet Seminar for Evolution Equations	8 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-101315	Algebra	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102905	Percolation	5 CR
M-MATH-102933	Splitting Methods	5 CR
M-MATH-102938	Project Centered Software-Lab	4 CR
M-MATH-102944	Numerical Continuation Methods	5 CR
M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-102865	Stochastic Geometry	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR

M-MATH-101317	Differential Geometry	8 CR
M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102900	Adaptive Finite Elemente Methods	6 CR
M-MATH-102903	Spatial Stochastics	8 CR
M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102957	Extremal Graph Theory	4 CR
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR
M-MATH-102878	Complex Analysis	8 CR
M-MATH-102885	Maxwell's Equations	8 CR
M-MATH-102889	Introduction to Scientific Computing	8 CR
M-MATH-102895	Wavelets	8 CR
M-MATH-102896	Medical Imaging	8 CR
M-MATH-102914	Numerical Methods in Mathematical Finance II	8 CR
M-MATH-102868	Modular Forms	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102908	Stochastic Control	4 CR
M-MATH-102912	Global Differential Geometry	8 CR
M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102939	Extreme Value Theory	4 CR
M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102897	Mathematical Methods in Signal and Image Processing	8 CR
M-MATH-102901	Numerical Methods in Mathematical Finance	8 CR
M-MATH-102907	Markov Decision Processes	5 CR
M-MATH-102911	Time Series Analysis	4 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH-102860	Continuous Time Finance	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR
M-MATH-102919	Discrete Time Finance	8 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102934	Aspects of Time Integration	4 CR
M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-102959	Homotopy Theory	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR

M-MATH-103260	Mathematical Methods of Imaging	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103527	Foundations of Continuum Mechanics	3 CR
M-MATH-103539	Nonlinear Analysis	8 CR
M-MATH-103700	Exponential Integrators	6 CR
M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing	5 CR
M-MATH-103919	Introduction to Kinetic Theory	4 CR
M-MATH-104053	Commutative Algebra	8 CR
M-MATH-104054	Uncertainty Quantification	4 CR
M-MATH-104055	Ruin Theory	4 CR
M-MATH-104057	Key Moments in Geometry	5 CR
M-MATH-104058	Numerical Linear Algebra in Image Processing	6 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory	4 CR
M-MATH-104261	Lie Groups and Lie Algebras	8 CR
M-MATH-104349	Bott Periodicity	5 CR
M-MATH-104426	Comparison of Numerical Integrators for Nonlinear Dispersive Equations	4 CR
M-MATH-103540	Boundary Element Methods	8 CR
M-MATH-105066	Nonlinear Maxwell Equations	8 CR
M-MATH-105096	An Introduction to Periodic Elliptic Operators	3 CR
M-MATH-105101	Introduction to Homogeneous Dynamics	6 CR
M-MATH-105093	Variational Methods	8 CR
M-MATH-105325	Splitting Methods for Evolution Equations	6 CR
M-MATH-105327	Numerical Simulation in Molecular Dynamics	8 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides	8 CR
M-MATH-105579	Steins Method with Applications in Statistics	4 CR
M-MATH-105636	Analytical and Numerical Homogenization	6 CR
M-MATH-105649	Fractal Geometry	6 CR
M-MATH-105764	Numerical Analysis of Helmholtz Problems	3 CR
M-MATH-105840	Statistical Learning	8 CR
M-MATH-105966	Space and Time Discretization of Nonlinear Wave Equations	6 CR
M-MATH-106045	Introduction to Stochastic Differential Equations	4 CR
M-MATH-106052	Random Graphs and Networks	8 CR
M-MATH-106053	Stochastic Simulation	5 CR
M-MATH-106063	Numerical Complex Analysis	6 CR
M-MATH-106064	Topological Genomics	3 CR
M-MATH-106240	Computational Group Theory	8 CR
M-MATH-106328	Bayesian Inverse Problems with Connections to Machine Learning ^{neu} First usage possible from 4/20/2023.	4 CR
M-MATH-106305	Analytic and Algebraic Aspects of Group Rings neu First usage possible from 4/20/2023.	5 CR

1.4 Electrical Engineering / Information Technology

Credits

cieun
18-27

Technomathematical Seminar	3 CR
ring / Information Technology (Election: between 15 and 24 credits)	
Optimal Control and Estimation	3 CR
Nonlinear Control Systems	3 CR
Medical Imaging Techniques I	3 CR
Medical Imaging Techniques II	3 CR
Electromagnetics and Numerical Calculation of Fields	4 CR
Optical Waveguides and Fibers	4 CR
Optimization of Dynamic Systems	5 CR
Batteries and Fuel Cells	5 CR
Technical Optics	5 CR
Methods of Signal Processing	6 CR
	ring / Information Technology (Election: between 15 and 24 credits) Optimal Control and Estimation Nonlinear Control Systems Medical Imaging Techniques I Electromagnetics and Numerical Calculation of Fields Optical Waveguides and Fibers Optimization of Dynamic Systems Batteries and Fuel Cells Technical Optics

1.5 Experimental Physics

Credits 18-27

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR
Experimental Phy	sics (Election: between 15 and 24 credits)	
M-PHYS-106331	Modern Experimental Physics I, Atoms, Nuclei and Molecules ^{neu}	8 CR
M-PHYS-102053	Condensed Matter Theory I, Fundamentals and Advanced Topics	12 CR
M-PHYS-102054	Condensed Matter Theory I, Fundamentals	8 CR
M-PHYS-102075	Astroparticle Physics I	8 CR
M-PHYS-102089	Electronic Properties of Solids I, with Exercises	10 CR
M-PHYS-102090	Electronic Properties of Solids I, without Exercises	8 CR
M-PHYS-102097	Basics of Nanotechnology I	4 CR
M-PHYS-102100	Basics of Nanotechnology II	4 CR
M-PHYS-102108	Electronic Properties of Solids II, with Exercises	8 CR
M-PHYS-102109	Electronic Properties of Solids II, without Exercises	4 CR
M-PHYS-102114	Particle Physics I	8 CR
M-PHYS-102175	Introduction to Cosmology	6 CR
M-PHYS-102277	Theoretical Optics	6 CR
M-PHYS-102295	Theoretical Nanooptics	6 CR
M-PHYS-102308	Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics	12 CR
M-PHYS-102313	Condensed Matter Theory II: Many-Body Theory, Fundamentals	8 CR

1.6 Chemical and Process Engineering

Credits

18-27

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR
Chemical and Pro	cess Engineering (Election: between 15 and 24 credits)	
M-CIWVT-103051	Heat Transfer II	4 CR
M-CIWVT-103058	Thermodynamics III	6 CR
M-CIWVT-103059	Statistical Thermodynamics	6 CR
M-CIWVT-103063	Thermodynamics of Interfaces	4 CR
M-CIWVT-103065	Biopharmaceutical Purification Processes	6 CR
M-CIWVT-103066	Process Modeling in Downstream Processing	4 CR
M-CIWVT-103068	Physical Foundations of Cryogenics	6 CR
M-CIWVT-103069	Combustion Technology	6 CR
M-CIWVT-103072	Computational Fluid Dynamics	6 CR
M-CIWVT-103073	Processing of Nanostructured Particles	6 CR
M-CIWVT-103075	High Temperature Process Engineering	6 CR
M-CIWVT-104420	Unit Operations and Process Chains for Food of Plant Origin	7 CR
M-CIWVT-104421	Unit Operations and Process Chains for Food of Animal Origin	5 CR

1.7 Wildcard Technical Field

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR

1.8 Computer Science

Computer Science	e (Election: at least 1 item as well as between 8 and 17 credits)	
M-INFO-100799	Formal Systems	6 CR
M-INFO-100801	Telematics	6 CR
M-INFO-100803	Real-Time Systems	6 CR
M-INFO-104897	Robotics III - Sensors and Perception in Robotics	3 CR
M-INFO-100818	Computer Architecture	6 CR
M-INFO-100819	Cognitive Systems	6 CR
M-INFO-100825	Pattern Recognition	6 CR
M-INFO-100833	Software Engineering II	6 CR
M-INFO-100834	Security	6 CR
M-INFO-100846	Neural Networks	6 CR
M-INFO-100856	Computer Graphics	6 CR
M-INFO-100893	Robotics I - Introduction to Robotics	6 CR
M-INFO-100840	Localization of Mobile Agents	6 CR
M-INFO-100839	Fuzzy Sets	6 CR
M-INFO-101887	Seminar Advanced Topics in Parallel Programming	3 CR
M-INFO-104460	Deep Learning and Neural Networks	6 CR
M-INFO-100829	Stochastic Information Processing	6 CR
M-INFO-106014	Introduction to Artificial Intelligence neu	5 CR
M-INFO-106015	Information Security neu	5 CR

Credits 18-27

Credits 8-17

1.9 Mathematical Specialization

Mandatory		
M-MATH-102730	Seminar	3 CR
Elective Field Mat	hematical Specialization (Election: at least 16 credits)	I
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102909	Mathematical Statistics	8 CR
M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102918	Internet Seminar for Evolution Equations	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-101315	Algebra	8 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102905	Percolation	5 CR
M-MATH-102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102933	Splitting Methods	5 CR
M-MATH-102938	Project Centered Software-Lab	4 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-102944	Numerical Continuation Methods	5 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-101317	Differential Geometry	8 CR
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR
M-MATH-102865	Stochastic Geometry	8 CR

M-MATH-102870	Classical Methods for Partial Differential Equations	
	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102878 M-MATH-102885	Complex Analysis	8 CR
M-MATH-102885 M-MATH-102889	Maxwell's Equations Introduction to Scientific Computing	8 CR 8 CR
M-MATH-102889	Wavelets	
		8 CR
M-MATH-102896 M-MATH-102900	Medical Imaging Adaptive Finite Elemente Methods	8 CR 6 CR
M-MATH-102903	Spatial Stochastics Numerical Methods in Mathematical Finance II	8 CR
M-MATH-102914		8 CR
M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102939	Extreme Value Theory	4 CR
M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR
M-MATH-102957	Extremal Graph Theory	4 CR
M-MATH-102860	Continuous Time Finance	8 CR
M-MATH-102868	Modular Forms	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102897	Mathematical Methods in Signal and Image Processing	8 CR
M-MATH-102901	Numerical Methods in Mathematical Finance	8 CR
M-MATH-102907	Markov Decision Processes	5 CR
M-MATH-102908	Stochastic Control	4 CR
M-MATH-102911	Time Series Analysis	4 CR
M-MATH-102912	Global Differential Geometry	8 CR
M-MATH-102919	Discrete Time Finance	8 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102959	Homotopy Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR
M-MATH-102934	Aspects of Time Integration	4 CR
M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-103080	Dynamical Systems	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR

M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-103260	Mathematical Methods of Imaging	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103527	Foundations of Continuum Mechanics	3 CR
M-MATH-103539	Nonlinear Analysis	8 CR
M-MATH-103545	Harmonic Analysis for Dispersive Equations	8 CR
M-MATH-103700	Exponential Integrators	6 CR
M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing	5 CR
M-MATH-103919	Introduction to Kinetic Theory	4 CR
M-MATH-104053	Commutative Algebra	8 CR
M-MATH-104054	Uncertainty Quantification	4 CR
M-MATH-104055	Ruin Theory	4 CR
M-MATH-104057	Key Moments in Geometry	5 CR
M-MATH-104058	Numerical Linear Algebra in Image Processing	6 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory	4 CR
M-MATH-104261	Lie Groups and Lie Algebras	8 CR
M-MATH-104349	Bott Periodicity	5 CR
M-MATH-104425	Dispersive Equations	6 CR
M-MATH-104426	Comparison of Numerical Integrators for Nonlinear Dispersive Equations	4 CR
M-MATH-104435	Selected Topics in Harmonic Analysis	3 CR
M-MATH-104827	Fourier Analysis and its Applications to PDEs	6 CR
M-MATH-103540	Boundary Element Methods	8 CR
M-MATH-105066	Nonlinear Maxwell Equations	8 CR
M-MATH-105096	An Introduction to Periodic Elliptic Operators	3 CR
M-MATH-105101	Introduction to Homogeneous Dynamics	6 CR
M-MATH-105093	Variational Methods	8 CR
M-MATH-105323	Topological Groups	5 CR
M-MATH-105324	Harmonic Analysis	8 CR
M-MATH-105325	Splitting Methods for Evolution Equations	6 CR
M-MATH-105326	Nonlinear Wave Equations	4 CR
M-MATH-105327	Numerical Simulation in Molecular Dynamics	8 CR
M-MATH-105331	Introduction to Aperiodic Order	3 CR
M-MATH-105432	Discrete Dynamical Systems	3 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides	8 CR
M-MATH-105463	Structural Graph Theory	4 CR
M-MATH-105487	Topological Data Analysis	6 CR
M-MATH-105579	Steins Method with Applications in Statistics	4 CR
M-MATH-105636	Analytical and Numerical Homogenization	6 CR
M-MATH-105649	Fractal Geometry	6 CR
M-MATH-105650	Introduction to Fluid Dynamics	3 CR
M-MATH-105651	Applications of Topological Data Analysis	4 CR
M-MATH-105764	Numerical Analysis of Helmholtz Problems	3 CR
M-MATH-105837	Introduction to Kinetic Equations	3 CR
M-MATH-105838	Introduction to Microlocal Analysis	3 CR
M-MATH-105839	Lie-Algebras (Linear Algebra 3)	8 CR
M-MATH-105840	Statistical Learning	8 CR
M-MATH-105897	Selected Methods in Fluids and Kinetic Equations	3 CR
M-MATH-105931	Metric Geometry	8 CR
M-MATH-105964	Introduction to Convex Integration	3 CR
M-MATH-105966	Space and Time Discretization of Nonlinear Wave Equations	6 CR

M-MATH-105973	Translation Surfaces	8 CR
M-MATH-106045	Introduction to Stochastic Differential Equations	4 CR
M-MATH-106052	Random Graphs and Networks	8 CR
M-MATH-106053	Stochastic Simulation	5 CR
M-MATH-106063	Numerical Complex Analysis	6 CR
M-MATH-106064	Topological Genomics	3 CR
M-MATH-106240	Computational Group Theory	8 CR
M-MATH-106287	Harmonic Analysis on Fractals ^{neu}	3 CR
M-MATH-106328	Bayesian Inverse Problems with Connections to Machine Learning neu First usage possible from 4/20/2023.	4 CR
M-MATH-106305	Analytic and Algebraic Aspects of Group Rings neu First usage possible from 4/20/2023.	5 CR
M-MATH-106401	Introduction to Fluid Mechanics neu First usage possible from 4/20/2023.	6 CR

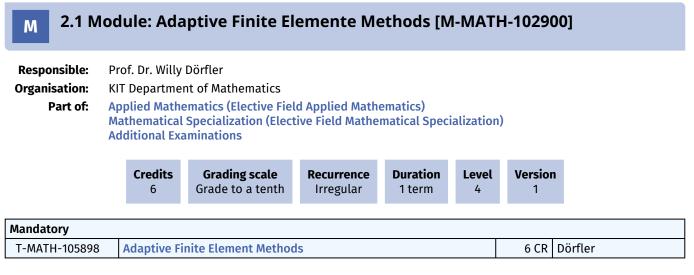
1.10 Interdisciplinary Qualifications

Credits

2

Interdisciplinary Qualifications (Election: at least 2 credits)				
M-MATH-102994	Key Competences	2 CR		

1.11 Additional Examinations


Additional Examin	ations (Election: at least 30 credits)	
M-MATH-101315	Algebra	8 CR
M-MATH-101317	Differential Geometry	8 CR
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102730	Seminar	3 CR
M-MATH-102860	Continuous Time Finance	8 CR
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102865	Stochastic Geometry	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102868	Modular Forms	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR
M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102878	Complex Analysis	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102885	Maxwell's Equations	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102889	Introduction to Scientific Computing	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102895	Wavelets	8 CR
M-MATH-102896	Medical Imaging	8 CR
M-MATH-102897	Mathematical Methods in Signal and Image Processing	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102900	Adaptive Finite Elemente Methods	6 CR
M-MATH-102901	Numerical Methods in Mathematical Finance	8 CR
M-MATH-102903	Spatial Stochastics	8 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102905	Percolation	5 CR
M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102907	Markov Decision Processes	5 CR

M-MATH-102908	Stochastic Control	4 CR
M-MATH-102908 M-MATH-102909	Mathematical Statistics	8 CR
M-MATH-102909 M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102910 M-MATH-102911	Time Series Analysis	4 CR
M-MATH-102911 M-MATH-102912	Global Differential Geometry	8 CR
M-MATH 102913	Banach Algebras Numerical Methods in Mathematical Finance II	3 CR
M-MATH 102914		8 CR
M-MATH 102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH 102918	Internet Seminar for Evolution Equations Discrete Time Finance	8 CR
M-MATH-102919		8 CR
M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102933	Splitting Methods	5 CR
M-MATH-102934	Aspects of Time Integration	4 CR
M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102938	Project Centered Software-Lab	4 CR
M-MATH-102939	Extreme Value Theory	4 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102944	Numerical Continuation Methods	5 CR
M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-102957	Extremal Graph Theory	4 CR
M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-102959	Homotopy Theory	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-103260	Mathematical Methods of Imaging	5 CR

M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-104053	Commutative Algebra	8 CR
M-MATH-104054	Uncertainty Quantification	4 CR
M-MATH-104055	Ruin Theory	4 CR
M-MATH-104057	Key Moments in Geometry	5 CR
M-MATH-104058	Numerical Linear Algebra in Image Processing	6 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory	4 CR
M-MATH-103527	Foundations of Continuum Mechanics	3 CR
M-MATH-103539	Nonlinear Analysis	8 CR
M-MATH-103545	Harmonic Analysis for Dispersive Equations	8 CR
M-MATH-103700	Exponential Integrators	6 CR
M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing	5 CR
M-MATH-103919	Introduction to Kinetic Theory	4 CR
M-MATH-104261	Lie Groups and Lie Algebras	8 CR
M-MATH-104349	Bott Periodicity	5 CR
M-MATH-104425	Dispersive Equations	6 CR
M-MATH-104426	Comparison of Numerical Integrators for Nonlinear Dispersive Equations	4 CR
M-MATH-104435	Selected Topics in Harmonic Analysis	3 CR
M-MATH-104827	Fourier Analysis and its Applications to PDEs	6 CR
M-MATH-103540	Boundary Element Methods	8 CR
M-MATH-105066	Nonlinear Maxwell Equations	8 CR
M-MATH-105096	An Introduction to Periodic Elliptic Operators	3 CR
M-MATH-105101	Introduction to Homogeneous Dynamics	6 CR
M-MATH-105093	Variational Methods	8 CR
M-MATH-105323	Topological Groups	5 CR
M-MATH-105324	Harmonic Analysis	8 CR
M-MATH-105325	Splitting Methods for Evolution Equations	6 CR
M-MATH-105326	Nonlinear Wave Equations	4 CR
M-MATH-105327	Numerical Simulation in Molecular Dynamics	8 CR
M-MATH-105331	Introduction to Aperiodic Order	3 CR
M-MATH-105432	Discrete Dynamical Systems	3 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides	8 CR
M-MATH-105463	Structural Graph Theory	4 CR
M-MATH-105487	Topological Data Analysis	6 CR
M-MATH-105579	Steins Method with Applications in Statistics	4 CR
M-MATH-105636	Analytical and Numerical Homogenization	6 CR
M-MATH-105649	Fractal Geometry	6 CR
M-MATH-105650	Introduction to Fluid Dynamics	3 CR
M-MATH-105651	Applications of Topological Data Analysis	4 CR
M-MATH-105837	Introduction to Kinetic Equations	3 CR
M-MATH-105838	Introduction to Microlocal Analysis	3 CR
M-MATH-105839	Lie-Algebras (Linear Algebra 3)	8 CR
M-MATH-105840	Statistical Learning	8 CR
M-MATH-105897	Selected Methods in Fluids and Kinetic Equations	3 CR
M-MATH-105931	Metric Geometry	8 CR
M-MATH-105964	Introduction to Convex Integration	3 CR
M-MATH-105966	Space and Time Discretization of Nonlinear Wave Equations	6 CR
M-MATH-105973	Translation Surfaces	8 CR
M-MATH-106045	Introduction to Stochastic Differential Equations	4 CR
M-MATH-106052	Random Graphs and Networks	8 CR

M-MATH-106053	Stochastic Simulation	5 CR
M-MATH-106063	Numerical Complex Analysis	6 CR
M-MATH-106064	Topological Genomics	3 CR
M-MATH-106240	Computational Group Theory	8 CR
M-MATH-106287	Harmonic Analysis on Fractals ^{neu}	3 CR
M-ZAK-106099	Supplementary Studies on Sustainable Development ^{neu}	19 CR
M-ZAK-106235	Supplementary Studies on Culture and Society ^{neu}	22 CR
M-MATH-106328	Bayesian Inverse Problems with Connections to Machine Learning neu First usage possible from 4/20/2023.	4 CR
M-MATH-106305	Analytic and Algebraic Aspects of Group Rings neu First usage possible from 4/20/2023.	5 CR
M-MATH-106401	Introduction to Fluid Mechanics neu First usage possible from 4/20/2023.	6 CR

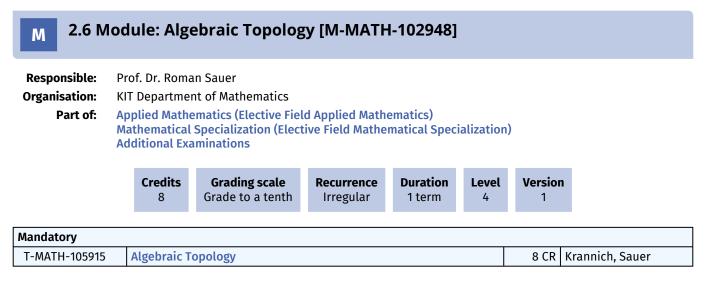
2 Modules

Prerequisites

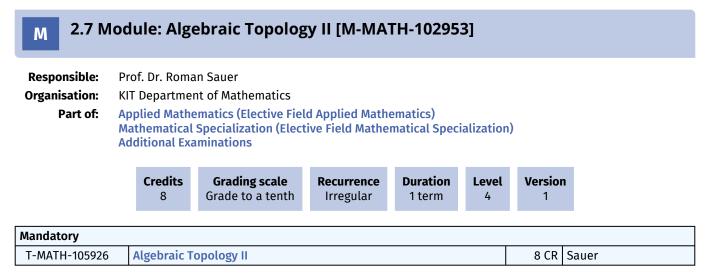
M 2.2 Module: Advanced Inverse Problems: Nonlinearity and Banach Spaces [M-MATH-102955]

Responsible: Organisation: Part of:	KIT Ap Ma	plied Mathe	nt of Mathematics ematics (Elective Fiel Specialization (Elect			ialization)	
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	l
Mandatory								
T-MATH-105927		Advanced Inverse Problems: Nonlinearity and Banach Spaces					5 CR	Ried

Prerequisites


M 2.3 M	odule: Al	gebra [M-MAT	H-101315]				
Responsible: Organisation: Part of:	Applied Ma Mathematic	nent of Mathematics thematics (Elective F	Field Applied Mathem ective Field Mathema		zation)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Level 4	Version 2	
Mandatory							
T-MATH-102253	Algebra					8 CR Kühnle	in

Prerequisites


None

M 2.4 M	lod	ule: Alge	ebraic Geomet	try [M-MAT	H-101724]		
Responsible:PD Dr. Stefan KühnleinOrganisation:KIT Department of MathematicsPart of:Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory								
T-MATH-103340		Algebraic G	eometry				8 CR	Herrlich, Kühnlein

M 2.5 M	od	ule: Algo	ebraic Numbei	r Theory [N	I-MATH-1	01725]		
Responsible: Organisation: Part of:	KIT Apj Ma	olied Mathe	nt of Mathematics ematics (Elective Field Specialization (Elect			alization)		
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-103346	1	Algebraic N	lumber Theory				8 CR Herrlich,	, Kühnlein

Prerequisites

Prerequisites

2.8 Module: An Introduction to Periodic Elliptic Operators [M-MATH-105096]

Responsible: Organisation: Part of:	KIT Apj Ma	Prof. Dr. Roland Griesmaier KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
		Credits 3	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Versio 1	1		
Mandatory										
T-MATH-110306	10306 An Introduction to Periodic Elliptic Operators							Griesmaier		

Prerequisites

None

M 2.9 Module: Analytic and Algebraic Aspects of Group Rings [M-MATH-106305]

Responsible: Organisation: Part of:	KIT Dep Applied Mather	r. Roman Sauer Dartment of Mathema d Mathematics (Election natical Specialization Dal Examinations (Us	ive Field Applie n (Elective Field	Mathematica								
	Credits 5											

Mandatory			
T-MATH-112777	Analytic and Algebraic Aspects of Group Rings	5 CR	Sauer

Competence Certificate

oral examination of ca. 30 minutes

Prerequisites none

Content

- group rings
- universal localizations
- Kaplansky conjectures
- property T

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Total workload: 150 hours

Recommendation

The module 'Introduction into Algebra and Number Theory' is strongly recommended. Some knowledge of spectral theory is recommended.

2.10 Module: Analytical and Numerical Homogenization [M-MATH-105636]

Responsible: Organisation:			s Hochbruck nt of Mathematics					
Part of:	Ma		ematics (Elective Fiel Specialization (Elect aminations			alization)	
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory								
T-MATH-111272		Analytical a	and Numerical Homo	genization			6 CR	Hochbruck

Prerequisites

none

Competence Goal

The topic of the lecture are numerical multiscale methods presented exemplarily for elliptic problems. Students know the basic analytical results for existence and uniqueness of the solution of multiscale problems and from homogenization theory. In addition, they know methods for the numerical approximation of multiscale and the homogenized solution. They are able to analyze the convergence of these methods and asses the pros and cons of the different approaches.

Content

- Analytical fundamentals (basic results from analysis for elliptic partial differential equations and from homogenization theory)
- Approximation of the homogenized solution(e.g. heterogeneous multiscale method)
- Approximation of the multiscale solution (e.g. local orthogonal decomposition)

Annotation

Upon request the lecture will be held in english.

M 2.11 Module: Applications of Topological Data Analysis [M-MATH-105651]

Responsible: Organisation: Part of:	KIT Ap Ma	plied Mathe thematical	tt nt of Mathematics ematics (Analysis) Specialization (Elect aminations	ive Field Mathe	matical Speci	alization))				
		Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1				
Mandatory											
T-MATH-111290		Applicatior	is of Topological Data	a Analysis			4 CR				

Prerequisites

None

M 2.12	Module: As	pects of Geom	netric Analy	ysis [M-M	ATH-10	3251]	
Responsible: Organisation:	Prof. Dr. Tobia	is Lamm nt of Mathematics					
Part of:	Applied Mathe Applied Mathe	ematics (Analysis) ematics (Elective Fie Specialization (Elect	ld Applied Math tive Field Mathe	ematics) matical Speci	ialization))	
	Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-106461	Aspects of	Geometric Analysis				4 CR L	amm

Competence Certificate

oral exam; duration: about 20 minutes

Prerequisites

none

Competence Goal

- The students have got to know topics of Geometric analysis.
- They are able to use and explain the techniques they have learned in the course.

Content

Classical or recent topics of Geometric analysis, for example

- Geometric evolution equations,
- Geometric variational problems,
- The theory of minimal surfaces,
- · Regularity of geometric objects,
- The isoperimetric problem,
- Spectral theory on manifolds.

Recommendation

Elementare Geometrie, Klassische Methoden partieller Differentialgleichungen/Partial differential equations, Functional analysis

M 2.13 M	Module:	Aspects of Tim	ne Integration [N	И-MATH- ⁻	102934]		
Responsible: Organisation: Part of:	KIT Depart Applied M Mathemat		s Field Applied Mathema lective Field Mathemat		ation)			
	Credits 4	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Level 4	Version 2		
Mandatory								
T-MATH-105904	Aspects	of Time Integration				4 CR Hochl	bruck, Jahnke	

2.14 Module: Astroparticle Physics I [M-PHYS-102075]											
Organisati	Responsible:Prof. Dr. Guido Drexlin Prof. Dr. Kathrin ValeriusOrganisation:KIT Department of Physics Experimental Physics (Experimental Physics)										
	Credits 8	5	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1			
Mandatory											
T-PHYS-10	2432	Ast	troparticle Physics I				8 CR	Drexlin, Val	erius		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students will be introduced to the basic concepts of astroparticle physics. The lecture teaches both the theoretical concepts and the experimental methods of this new dynamic field of work at the interface of elementary particle physics, cosmology and astrophysics. Students will learn to understand the concepts through concrete case studies from current research and will be enabled to apply the learned methods independently.

Methodological skills acquisition:

- Understanding of the fundamentals of experimental astroparticle physics.
- Recognition of methodological cross-connections to elementary particle physics, astrophysics, and cosmology.
- Acquisition of the ability to present a current research topic independently as well as in a team setting
- · Acquisition of the ability to implement the concepts and experimental methods in the master thesis

Content

The topics covered include a general introduction to the field with its fundamental issues, theoretical concepts and experimental methods. Corresponding to the very different energy scales (meV - 1020 eV) of astroparticle physics, the lecture is divided into a discussion of the processes in the thermal (low energies) and non-thermal (high energies) universe. A special focus of the lecture is a comprehensive presentation of modern experimental techniques, e.g. in the search for very rare processes. Based on this, in the second part of the lecture a comprehensive introduction to the "dark universe" and the search for dark matter is given.

The lecture is the basis of further lectures on this topic (Astroparticle Physics II).

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises(180 hours)

Recommendation

Basic knowledge from the lecture "Nuclei and Particles".

Literature

- Donald Perkins, Particle Astrophysics (Oxford University Press, 2. Auflage, 2009)
- Claus Grupen, Astroparticle Physics (Springer, 2005)
- Lars Bergström & Ariel Goobar, Cosmology and Particle Astrophysics (Wiley, 2. Auflage, 2006)
- Malcolm Longair, High Energy Astrophysics (Cambridge University Press, 3. Auflage, 2011)

M 2.15 I	M 2.15 Module: Banach Algebras [M-MATH-102913]										
Responsible:		PD Dr. Gerd Herzog									
Organisation:	KIT	KIT Department of Mathematics									
Part of:	App Ma	olied Mathe thematical	ematics (Analysis) ematics (Elective Fiel Specialization (Elect aminations			alization)				
		Credits 3	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Versior 1	1			
Mandatory											

Prerequisites

none

2.16 Module: Basics of Nanotechnology I [M-PHYS-102097] Μ **Responsible:** apl. Prof. Dr. Gernot Goll **Organisation: KIT Department of Physics** Part of: **Experimental Physics (Experimental Physics)** Credits Grading scale Duration Language Level Version Recurrence Grade to a tenth Each winter term 4 1 term German 4 1 Mandatory T-PHYS-102529 **Basics of Nanotechnology I** 4 CR Goll

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students deepen their knowledge in one area of nano-physics, master the relevant theoretical concepts and are familiar with basic techniques and measurement methods of nano-analytics and lithography.

Content

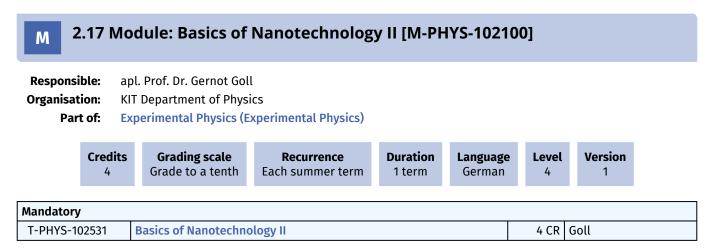
Introduction to central areas of nanotechnology;

Teaching of the conceptual, theoretical and, in particular, methodological fundamentals:

- Methods of imaging and characterization (nanoanalytics)
 Basic concepts of electron microscopy and associated analytical capabilities are covered in an introductory manner.
 Scanning probe techniques such as tunneling and force microscopy for the investigation and imaging of conductive and insulating sample surfaces, respectively, are discussed. Complementary spectroscopic capabilities of the scanning probe techniques will be explained.
- Methods of nanostructure fabrication (lithography and self-assembly)
 Along the individual process steps from coating and exposure to structure transfer by etching and vapor deposition, the methods used will be explained, their application limits discussed and current developments highlighted.

The lecture "Nanotechnology II" covers application areas and current research topics in the summer semester.

Workload


120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation. (90 hours)

Recommendation

Basic knowledge of solid state physics and quantum mechanics is expected.

Literature

For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

The student deepens his knowledge in the field of nanophysics, masters the relevant theoretical concepts and is familiar with the basic application areas of nanophysics. The student is able to interpret current data and figures from the scientific literature and to present the current state of research as well as important "open questions".

Content

Introduction to central areas of nanotechnology

Teaching of the conceptual, theoretical and especially methodological basics;

Applications and current developments in the fields of nanoelectronics, nanooptics, nanomechanics, nanotribology, biological nanostructures, self-organized nanostructures, among others.

In addition, the lecture "Fundamentals of Nanotechnology I" in the winter semester deals with methods of imaging, characterization and fabrication of nanostructures.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (90 hours)

Recommendation

Basic knowledge of solid state physics and quantum mechanics is expected.

Literature

For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.

M 2.	M 2.18 Module: Batteries and Fuel Cells [M-ETIT-100532]											
Organisati	Responsible:Prof. DrIng. Ulrike KrewerOrganisation:KIT Department of Electrical Engineering and Information TechnologyPart of:Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)											
	Credits 5	5	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1				
Mandatory												
T-ETIT-100	983	Ba	atteries and Fuel Cell	s			5 CR	Krewer				

Prerequisites

none

2.19 Module: Bayesian Inverse Problems with Connections to Machine Learning [M-MATH-106328]

Respons Organisat		TT-Prof. Dr. Sebastian Krumscheid KIT Department of Mathematics										
Par	Part of:Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/20/2023) Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/20/2023) Additional Examinations (Usage from 4/20/2023)											
	Credits 4Grading scale Grade to a tenthRecurrence Each summer termDuration 1 termLanguage EnglishLevel 4Version 1											
		s						Version 1				
Mandatory	4	S						Version 1				

Competence Certificate

oral exam of ca. 30 min

Prerequisites

None

Competence Goal

After completing the module's classes and the exam, students will be familiar with the theory of inverse problems. They will be able to apply the Bayesian framework to a given inverse problem and assess the

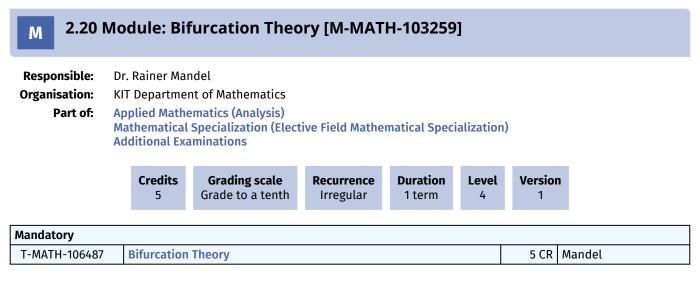
well-posedness of the Bayesian posterior. In addition, students will be able to describe the basics of several solution methods for accessing the Bayesian posterior, including approximation and machine-learning techniques, and their limitations. Finally, they will be able to name and discuss essential theoretical concepts for Bayesian inversion in Banach spaces and describe the suitable sampling-based solution techniques. In particular, the course prepares students to write a thesis in the field of Uncertainty Quantification.

Content

The course offers an introduction to the subject of statistical inversion, where, in its most basic form, the goal is to study how to estimate model parameters from data. We will introduce mathematical concepts and computational tools for systematically treating these inverse problems in a Bayesian framework, including an assessment of how uncertainties affect the solution. In the first part of the course, we will study the Bayesian framework for finite-dimensional inverse problems. While the first part will introduce some machine-learning ideas, the second part will address how machine learning is impacting, and has the potential to impact further on, the subject of inverse problems. In the final part of the course, we will generalize the Bayesian inverse problem theory to a Banach space setting and discuss sampling strategies for accessing the Bayesian posterior.

Topics covered include:

- Bayesian Inverse Problems and Well-Posedness
- The Linear-Gaussian Setting
- Optimization Perspective on Bayesian Inverse Problems
- Gaussian Approximation
- Markov Chain Monte Carlo
- Blending Inverse Problems and Machine-Learning
- Bayesian Inversion in Banach spaces


Module grade calculation

The grade of the module is the grade of the oral exam.

Workload total workload: 120 hours

Recommendation

The contents of the modules 'M-MATH-101321 - Introduction to Stochastics', 'M-MATH-103214 - Numerical Mathematics 1+2', and 'M-MATH-106053 - Stochastic Simulation' are recommended.

Prerequisites None

Annotation

Course is held in English

4

1

Mandatory			
T-CIWVT-106029	Biopharmaceutical Purification Processes	6 CR	Hubbuch

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites

None

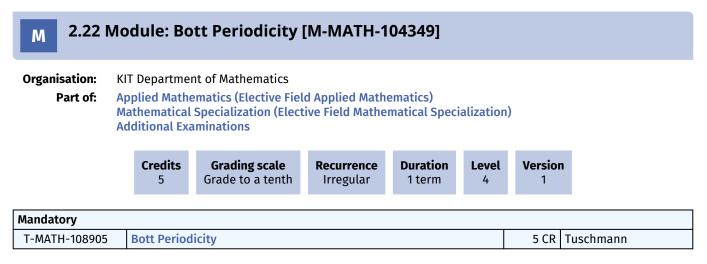
Competence Goal

Process development of biopharmaceutical processes

Content

Detailed discussion of biopharmaceutical purification processes

Workload


- Attendance time (Lecture): 60 h
- Homework: 90 h
- Exam Preparation: 30 h

Learning type

- 22705 Biopharmazeutische Aufarbeitungsverfahren, 3V
- 22706 Übung zu Biopharmazeutische Aufarbeitungsverfahren, 1Ü

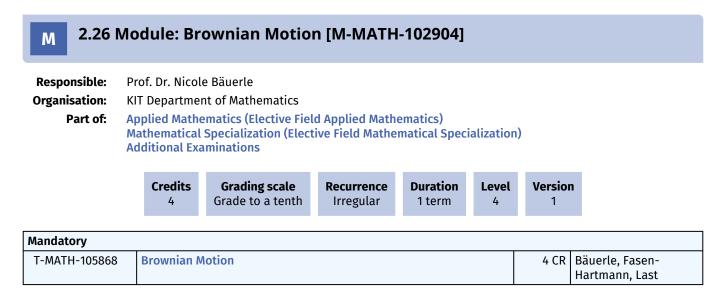
Literature

Vorlesungsskript

Prerequisites

None

M 2.23 I	Module:	Boundary and	l Eigenvalue Pro	blems [M	-MATH	-102871]			
Responsible: Organisation: Part of:	Prof. Dr. Wolfgang Reichel KIT Department of Mathematics Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations									
	Credits 8	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Level 4	Version 1				
Mandatory										
T-MATH-105833	Bounda	rry and Eigenvalue Pr	roblems			Lamn	Hundertmark, n, Plum, Reichel, aubelt			


2.24 Module: Boundary Element Methods [M-MATH-103540] Μ **Responsible:** PD Dr. Tilo Arens **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Version Recurrence Level 8 Grade to a tenth Irregular 1 term 1 4 Mandatory T-MATH-109851 **Boundary Element Methods** 8 CR Arens

Prerequisites

None

M 2.25 Module: Boundary value problems for nonlinear differential equations [M-MATH-102876]

Responsible: Organisation: Part of:	KIT Departme Applied Math Applied Math Mathematical	Prof. Dr. Wolfgang Reichel KIT Department of Mathematics Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1				
Mandatory T-MATH-105847	Boundary	/alue Problems for N	onlinear Differe	ntial Equatio	ns	8 CR P	lum, Reichel			

Prerequisites

none

M 2.27 Module: Classical Methods for Partial Differential Equations [M-MATH-102870]

Responsible: Prof. Dr. Michael Plum **Organisation:** KIT Department of Mathematics Part of: **Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations Credits **Grading scale** Recurrence Duration Level Version 8 Grade to a tenth Each winter term 1 term 4 1 Mandatory T-MATH-105832 **Classical Methods for Partial Differential Equations** 8 CR Frey, Hundertmark, Lamm, Plum, Reichel, Schnaubelt

M 2.28 Module: Cognitive Systems [M-INFO-100819]							
Responsible: Prof. Dr. Gerhard Neumann Prof. Dr. Alexander Waibel							
Organisation: KIT Department of Informatics							
Part of: Computer Science							
						_	
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
	-101356 Cognitive Systems 6 CR Neumann, Waibel						

2.29 Module: Combinatorics [M-MATH-102950]									
Responsible:Prof. Dr. Maria AkserOrganisation:KIT Department of MPart of:Applied MathematicalMathematical SpecialAdditional Examination				matics ctive Field Applied M)		
			Grading scale Grade to a tenth	Recurrence see Annotations	Duration 1 term	Language English	Level 4	Version 2	
Mandatory									
T-MATH-10	T-MATH-105916 Combinatorics						8 CR	Aksenovich	

Competence Certificate

The final grade is given based on the written final exam (3h).

By successfully working on the problem sets, a bonus can be obtained. To obtain the bonus, one has to achieve 50% of the points on the solutions of the exercise sheets 1-6 and also of the exercise sheets 7-12. If the grade in the final written exam is between 4,0 and 1,3, then the bonus improves the grade by one step (0,3 or 0,4).

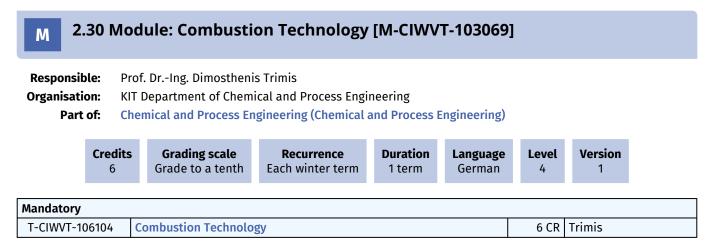
Prerequisites

none

Competence Goal

The students understand, describe, and use fundamental notions and techniques in combinatorics. They can analyze, structure, and formally describe typical combinatorial questions. The students can use the results and methods such as inclusion-exclusion, generating functions, Young tableaux, as well as the developed proof ideas, in solving combinatorial problems. In particular, they can analyze the existence and the number of ordered and unordered arrangements of a given size. The students understand and critically use the combinatorial methods. Moreover, the students can communicate using English technical terminology.

Content


The course is an introduction into combinatorics. Starting with counting problems and bijections, classical methods such as inclusion-exclusion principle and generating functions are discussed. Further topics include Catalan families, permutations, Young tableaux, partial orders, and combinatorial designs.

Module grade calculation

The grade of the module ist the grade of the written exam.

Annotation

- Regular cycle: every 2nd year, summer semester
- Course is held in English

Competence Certificate

Learning Control is an oral examination with a duration of about 20 minutes (section 4 subsection 2 SPO). Grade of the module is the grade of the oral examination.

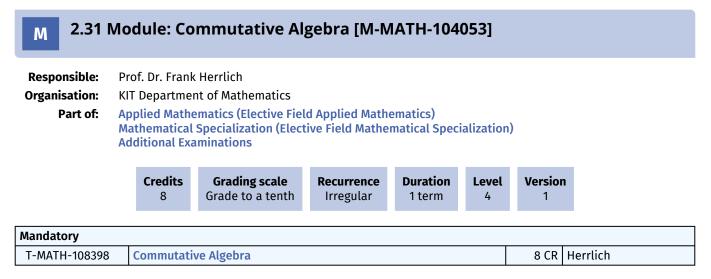
Prerequisites

None

Competence Goal

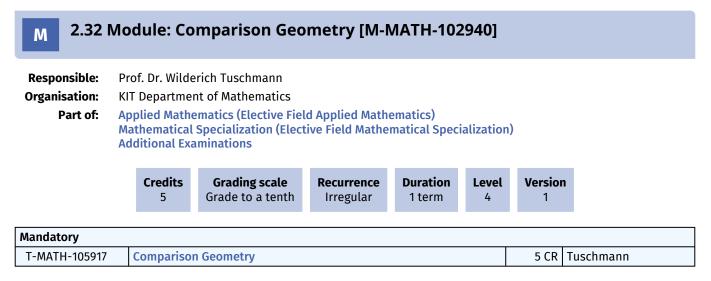
- The students are able to describe and explain the characteristics of the different flame types.
- The students can quantitatively estimate/calculate major combustion characteristics like flame temperature and flame velocity. They further understand the physicochemical mechanisms affecting flammability limits and quenching distances.
- The students understand and can assess the influence/interaction of turbulence, heat and mass transfer to reacting flows.
- The students understand the flame structure and the hierarchical structure of reaction kinetic mechanisms.
- The students understand and can assess the influence of interaction between different time scales of chemical kinetics and fluid flow in reacting flows.
- The students are able to assess and evaluate burner operability with regard to the application.

Content


- · Introduction and significance of combustion technology
- Thermodynamics of combustion: Mass and energy/enthalpy balances
- · Equilibrium composition
- Flame temperature
- Reaction mechanisms in combustion processes
- Laminar flame velocity and thermal flame theory
- Kinetics related combustion characteristics and experimental characterization: laminar flame velocity, flammability limits, ignition temperature, ignition energy, ignition delay time, quenching distance, flash point, octane and cetane number
- Turbulent flame propagation
- Industrial burner types

Workload

- Lectures and Exercises: 45 h
- Homework: 25 h
- Exam Preparation: 110 h


Literature

- K.K. Kuo: Principles of Combustion, John Wiley & Sons, Hoboken, New York 2005
- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 2006
- S.R. Turns: An Introduction to Combustion Concepts and Applications, McGraw-Hill, Boston 2000
- I. Glassman: Combustion, Academic Press, New York, London 1996

Prerequisites

None

Prerequisites

none

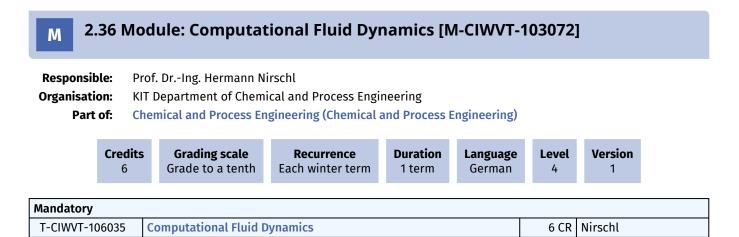
M 2.33 Module: Comparison of Numerical Integrators for Nonlinear Dispersive Equations [M-MATH-104426]

Part of: A	IT Departmer	rina Schratz nt of Mathematics ematics (Elective Fiel Specialization (Elect eminations		alization)		
А	Credits	Grading scale	Recurrence	Duration	Level	Version
	4	Grade to a tenth	Irregular	1 term	4	1
Mandatory						
T-MATH-109040	Comparison of Numerical Integrators for Nonlinear Dispersive 4 C Equations				4 CR	

Prerequisites

None

Content


We will compare numerical integrators (e.g., splitting methods, exponential integrators) for nonlinear dispersive equations such as the nonlinear Schrödinger equation and Kortweg-de Vries equation. We will analyze their convergence properties with regard to the regularity assumptions on the solution.

M 2.34 Module: Complex Analysis [M-MATH-102878]								
Responsible :	PD Dr. Gerd H	erzog						
Organisation:	KIT Departme	T Department of Mathematics						
Part of:	Applied Math Mathematical	Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations						
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1		
Mandatory								
T-MATH-105849	Complex Analysis 8 CR Herzog, Plum, Reichel, Schnaubelt, Tolksdorf							

Content

- infinite productsMittag-Leffler theorem
- Montel's theorem
 Riemann mapping theorem
 conformal mappings
- univalent (schlicht) functions
- automorphisms of some domains
- harmonic functions
- Schwarz reflection principle
- regular and singular points of power series

M 2.35 Module: Compressive Sensing [M-MATH-102935]								
Responsible: Organisation: Part of:	Organisation: KIT Department of Mathematics							
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Versior 1	1
Mandatory								
T-MATH-105894		Compressiv	ve Sensing				5 CR	Rieder

Competence Certificate

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

Learning the fundamentals of CFD for the calculation of flow problems.

Content

Navier-Stokes equitations, numerical schemes, turbulence, multiphase flows.

Workload

- Attendance time (Lecture): 64 h
- Homework: 56 h
- Exam Preparation: 601 h

Literature

Nirschl: Skript zur Vorlesung CFD Ferziger, Peric: Numerische Strömungsmechanik Oertel, Laurien: Numerische Strömungsmechanik

2.37 Module: Computational Group Theory [M-MATH-106240]

Responsible:	Dr. Mar	Dr. Marek Kaluba							
Organisation:	KIT Dep	KIT Department of Mathematics							
Part of:	Mathen	Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations							
	Credits	Grading scale	Recurrence	Duration	Language	Level	Version		

Irregular

Mandatory			
T-MATH-112670	Computational Group Theory Tutorial	2 CR	Kaluba
T-MATH-112669	Computational Group Theory exam	6 CR	Kaluba

1 term

English

4

Competence Certificate

coursework in the tutorial plus oral examination of ca. 20 minutes

Grade to a tenth

Prerequisites

none

Competence Goal

The aim of the course is to give a gentle introduction to group theory from a computational point of view. The students will learn not only the mathematical theory, but also how to think in terms of the computational feasibility. As a result students will develop computational understanding for questions within group theory.

After successful participation students can

8

- · understand the difference between construction and definition by property
- understand how scaling of the computational problems influences the choice of algorithms and data structures
- · choose the correct algorithms and data structures balancing speed and storage to obtain computational feasibility
- exploit the structure of permutation groups to quickly find (some or all) elements satisfying requested properties.
- understand the basics of the theory of automata and their role for computation in finitely presented groups
- use string-rewriting algorithms to potentially solve the word problem in (some) finitely presented groups.

Content

- 1. Group actions, orbits, stabilizers, Schreier vectors
- 2. Permutation groups, bases, Stabilizer chains, Schreier-Sims algorithm.
- 3. Broad overview of transitive groups, primitive groups
- 4. Finitely presented groups, their homomorphisms, quotients
- 5. Formal languages, and rewriting systems
- 6. Knuth-Bendix completion
- 7. Automata for problems in finitely presented groups
- 8. Coset enumeration, subgroups and their presentation

Module grade calculation

The module grade is the weighted average of the grade of the oral exam (weight 75%) and the grade of the tutorial (weight 25%).

The assessment of the tutorial can have different forms, which will be determined during the course, e.g. a seminar talk or a programming task (documented by a report and the source code).

Workload

total workload: 240 hours Attendance: 90 h

• lectures and tutorials including the examination

Self studies: 150 h

- follow-up and deepening of the course content,
- work on problem sheets and programming tasks
- literature study and internet research on the course content,
- preparation for the module examination

Recommendation

Some basic understanding of group theory and programming are strongly recommended.

2.38 Module: Computer Architecture [M-INFO-100818] Μ **Responsible:** Prof. Dr. Wolfgang Karl **Organisation:** KIT Department of Informatics Part of: **Computer Science** Credits Language Version Grading scale Duration Level Recurrence Grade to a tenth 6 Each summer term 1 term German 4 1 Mandatory T-INFO-101355 **Computer Architecture** 6 CR Karl

M 2.39 Module: Computer Graphics [M-INFO-100856]

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Carsten Dachsbacher KIT Department of Informatics Computer Science

Cred	 Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory						
T-INFO-101393	Computer Graphics	6 CR	Dachsbacher			
T-INFO-104313	Computer Graphics Pass	0 CR	Dachsbacher			

I

2.40 Module: Computer-Assisted Analytical Methods for Boundary and Μ **Eigenvalue Problems [M-MATH-102883]**

Responsible: Organisation:		Prof. Dr. Michael Plum KIT Department of Mathematics						
Part of:	Applied Mathemat	athematics (Analysis) athematics (Elective Fie ical Specialization (Elec l Examinations			ialization)			
	Credit 8	ts Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1		
Mandatory								
T-MATH-105854	Computer-Assisted Analytical Methods for Boundary and8 CREigenvalue Problems							

Shnirman

2.41 Module: Condensed Matter Theory I, Fundamentals [M-PHYS-102054] Μ

Responsible:	Prof. Dr. Markus Garst
	Prof. Dr. Alexander Mirlin
	Prof. Dr. Alexander Shnirman
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language English	Level 4	Version 1	
Mandatory								
T-PHYS-10	2559	Condensed Matter Theory I, Fundamentals 8 CR Garst, Mirlin				Garst, Mirlin,		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a limited class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- · Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in an external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

Literature

- C. Kittel, Einführung in die Festkörperphysik (Oldenburg, 1980) / Introduction to Solid State Physics.
- C. Kittel, Quantum Theory of Solids.
- N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, N.Y 1976).
- J.H. Ziman, Principles of the Theory of Solids (Cambridge, Univ. Press, 1972).
- A. A. Abrikosov, Fundamentals of the Theory of Metals

A 2.42 Module: Condensed Matter Theory I, Fundamentals and Advanced Topics [M-PHYS-102053]

Responsible:	Prof. Dr. Markus Garst
	Prof. Dr. Alexander Mirlin
	Prof. Dr. Alexander Shnirman
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

	Credits 12	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language English	Level 4	Version 1	
Mandatory								
T-PHYS-102558		Condensed Matter Theory I, Fundamentals and Advanced Topics					Garst, Mirlir Shnirman	

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102054 - Condensed Matter Theory I, Fundamentals must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a broader class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in the external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction;
- Superconductivity: BCS theory, electrodynamics of superconductors, Ginzburg-Landau theory.

Workload

360 hours consisting of attendance time (90 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (270 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

Literature

- C. Kittel, Einführung in die Festkörperphysik (Oldenburg, 1980) / Introduction to Solid State Physics.
- C. Kittel, Quantum Theory of Solids.
- N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, N.Y 1976).
- J.H. Ziman, Principles of the Theory of Solids (Cambridge, Univ. Press, 1972).
- A. A. Abrikosov, Fundamentals of the Theory of Metals

M 2.43 Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals [M-PHYS-102313]

Responsible:	Prof. Dr. Markus Garst Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian
Organisation: Part of:	KIT Department of Physics Experimental Physics (Experimental Physics)

	Credits 8	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	Level 4	Version 1		
Mandatory									
T-PHYS-104591		Condensed Matter Theory II: Many-Body Systems, Fundamentals					Garst, Mirlin, Narozhnyy, Schmalian		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics must not have been started.

Competence Goal

Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a limited class of advanced problems in the field of condensed matter physics.

Content

Estimated structure of the lecture:

- 1. Green's functions for non-interacting particles
- 2. Many-body Green's functions
- 3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
- 4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
- 5. Functional formulation of many-body theory
- 6. Superconducting systems
- 7. Non-equilibrium systems and Keldysh technique
- 8. Many-body systems in one dimension

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.

Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischenPhysik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle sysytems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
- G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid.

A 2.44 Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics [M-PHYS-102308]

Responsi		: Prof. Dr. Markus Garst Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian						
Organisation: KIT Department of Physics								
Part	t of:	Experimental Physics (Experimental Physics)						
	Credi	ts	Grading scale	Recurrence	Duration	Language	Level	Version

Mandatory		
	Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics	Garst, Mirlin, Narozhnyy, Schmalian

1 term

English

4

1

Each summer term

Competence Certificate

12

Grade to a tenth

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals must not have been started.

Competence Goal

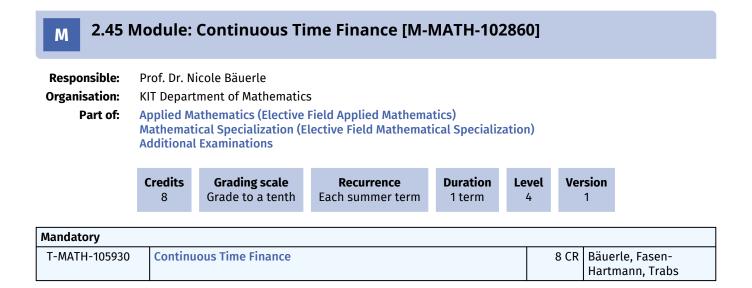
Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a broader class of advanced problems in the field of condensed matter physics.

Content

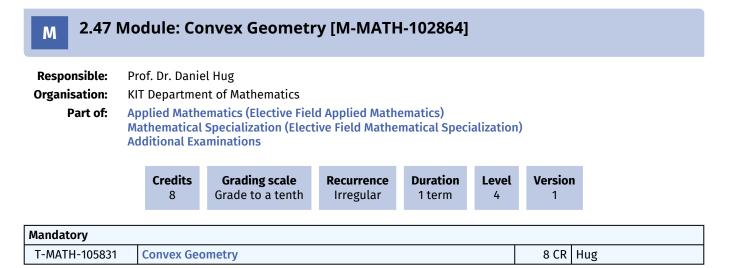
Estimated structure of the lecture:

- 1. Green's functions for non-interacting particles
- 2. Many-body Green's functions
- 3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
- 4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
- 5. Functional formulation of many-body theory
- 6. Superconducting systems
- 7. Non-equilibrium systems and Keldysh technique
- 8. Many-body systems in one dimension
- 9. Kondo effect
- 10. Strongly correlated electrons: Hubbard model and Mott metal-insulator transition
- 11. Introduction to mesoscopic physics

Workload


360 hours consisting of attendance time (90 hours), follow-up of the lecture incl. exam preparation and working on the exercises (270 hours)

Recommendation


In general this lecture should be attended after Theory of Condensed Matter I.

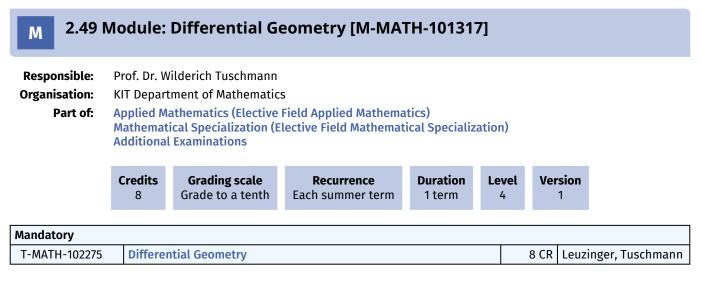
Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischenPhysik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle sysytems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
- G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid.

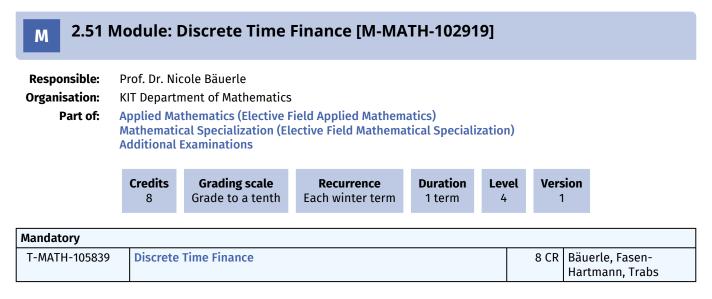
M 2.46	Мос	dule: Co	ontrol Theory [M-MATH-1()2941]			
Responsible:	Pro	of. Dr. Rolar	nd Schnaubelt					
Organisation:	KIT Department of Mathematics							
Part of: Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105909 Control Theory 6 CR Schnaub							Schnaubelt	

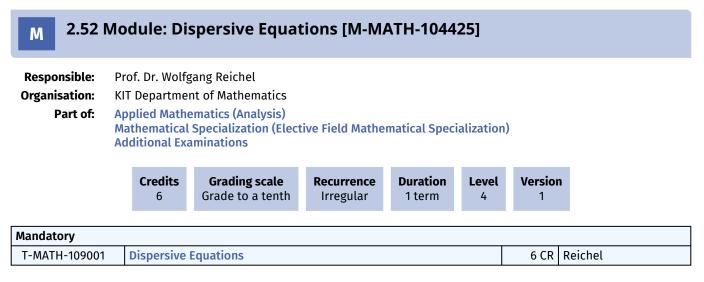
Competence Goal

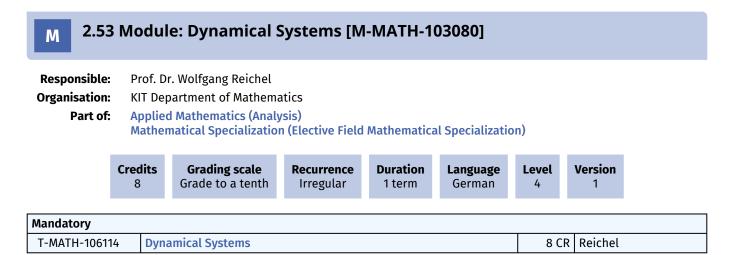
The students


- know fundamental combinatorial, geometric and analytic properties of convex sets and convex functions and apply these to related problems,
- are familiar with fundamental geometric and analytic inequalities for functionals of convex sets and their applications to geometric extremal problems and can present central ideas and techniques of proofs,
- know selected integral formulas for convex sets and the required results on invariant measures.
- know how to work self-organized and self-reflexive.

Content


1. Convex Sets


- 1.1. Combinatorial Properties
- 1.2. Support and Separation Properties
- 1.3. Extremal Representations
- 2. Convex Functions
- 2.1. Basic Properties
- 2.2. Regularity
- 2.3. Support Function
- 3. Brunn-Minkowski Theory
- 3.1. Hausdorff Metric
- 3.2. Volume and Surface Area
- 3.3. Mixed Volumes
- 3.4. Geometric Inequalities
- 3.5. Surface Area Measures
- 3.6. Projection Functions
- 4. Integralgeometric Formulas
- 4.1. Invariant Measures
- 4.2. Projection and Section Formulas


2.48 Module: Deep Learning and Neural Networks [M-INFO-104460] Μ **Responsible:** Prof. Dr. Alexander Waibel **Organisation: KIT Department of Informatics** Part of: **Computer Science** Credits Grading scale Duration Version Recurrence Language Level Grade to a tenth 6 Each summer term 1 term German 4 1 Mandatory T-INFO-109124 **Deep Learning and Neural Networks** 6 CR | Waibel

2.50 Module: Discrete Dynamical Systems [M-MATH-105432]								
Responsible:PD Dr. Gerd HerzogOrganisation:KIT Department of MathematicsPart of:Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
	Credits 3	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-MATH-11095	52 Dis	crete Dynamical Syste	ems			3 C	R Herzog	

M 2.54 Module: Electromagnetics and Numerical Calculation of Fields [M-ETIT-100386]

Responsible:	Prof. DrIng. Thomas Zwick
Organisation:	KIT Department of Electrical Engineering and Information Technology
Part of:	Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

Credits 4	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language English	Level 4	Version 2		
Mandatory								
T-ETIT-100640		4 CR	Zwick					

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students with very different background in electromagnetic field theory will be brought to a high level of comprehension. They will understand the concept of electric & magnetic fields and of electric potential & vector potential and they will be able to solve simple problems of electric & magnetic fields using mathematics. They will understand the equations and solutions of wave creation and wave propagation. Finally the student will have learnt the basics of numerical field calculation and be able to use software packages of numerical field calculation in a comprehensive and critical way.

The student will

- be able to deal with all quantities of electromagnetic field theory (E, D, B, H, J, M, P, ...), in particular: how to calculate and how to measure them,
- derive various equations from the Maxwell equations to solve simple field problems (electrostatics, magnetostatics, steady currents, electromagnetics),
- be able to deal with the concept of field energy density and solve practical problems using it (coefficients of capacitance and coefficients of inductance),
- be able to derive and use the wave equation, in particular: to solve problems how to create a wave and calculate solutions of wave propagation through various media,
- be able to outline the concepts, the main application areas and the limitations of methods of numerical field calculation (FDM, FDTD, FIM, FEM, BEM, MoM, TLM)
- be able to use one exemplary software package of numerical field calculation and solve simple practical problems with it.

Content

This course first gives a comprehensive recap of Maxwell equations and important equations of electromagnetic field theory. In the second part the most important methods of numerical field calculation are introduced.

Maxwell's equations, materials equations, boundary conditions, fields in ferroelectric and ferromagnetic materials

electric potentials, electric dipole, Coulomb integral, Laplace and Poisson's equation, separation of variables in cartesian, cylindrical and spherical coordinates

Dirichlet Problem, Neumann Problem, Greens function, Field energy density and Poynting vector,

electrostatic field energy, coefficients of capacitance, vector potential, Coulomb gauge, Biot-Savart-law, magnetic field energy, coefficients of inductance magnetic flux and coefficients of mutual inductance, field problems in steady electric currents,

law of induction, displacement current

general wave equation for E and H, Helmholtz equation

skin effect, penetration depth, eddy currents

retarded potentials, Coulomb integral with retarded potentials

wave equation for potential and Vector potential and A, Lorentz gauge, plane waves

Hertzian dipole, near field solution, far field solution

transmission lines, fields in coaxial transmission lines

waveguides, TM-waves, TE-waves

finite difference method FDM

finite difference - time domain FDTD, Yee 's algorithm

finite difference - frequency domain

finite integration method FIM

finite element method FEM

boundary element method BEM, Method of Moments (MOM), Transmission Line Matrix Methal (TLM),

solving large systems of linear equations

basic rules for good numerical field calculation

The lecturer reserves the right to alter the contents of the course without prior notification.

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (3 h 15 appointments each) = 45 h

Self-study (4 h 15 appointments each) = 60 h

Preparation / post-processing = 20 h

Total effort approx. 125 hours = 4 LP

Recommendation

Fundamentals of electromagnetic field theory.

Literature

Matthew Sadiku (2001), Numerical Techniques in Electromagnetics. CRC Press, Boca Raton, 0-8493-1395-3 Allen Taflove and Susan Hagness (2000), Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston, 1-58053-076-1 Nathan Ida and Joao Bastos (1997), Electromagnetics and calculation of fields. Springer Verlag, New York, 0-387-94877-5 Z. Haznadar and Z. Stih (2000), Electromagnetic Fields, Waves and Numerical Methods. IOS Press, Ohmsha, 1 58603 064 7 M.V.K. Chari and S.J. Salon (2000), Numerical Methods in Electromagnetism, Academic Press, 0 12 615760 X

M 2.55 Module: Electronic Properties of Solids I, with Exercises [M-PHYS-102089]

Responsible:	Prof. Dr. Matthieu Le Tacon
	Prof. Dr. Wolfgang Wernsdorfer
	Prof. Dr. Wulf Wulfhekel
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

Credits 10Grading scale Grade to a tenthRecurrence Each winter term	Duration	Language	Level	Version
	1 term	English	4	1

Mandatory							
T-PHYS-102577	Electronic Properties of Solids I, with Exercises		Le Tacon, Wernsdorfer, Wulfhekel				

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102090 - Electronic Properties of Solids I, without Exercises must not have been started.

Competence Goal

Students will be familiar with the most common experimental methods for studying the electronic properties of condensed matter and some of the key theoretical concepts that underlie them. They master the basic tools for studying and understanding heat transport, scattering mechanisms, phase transitions, and magnetism. Exercises will reinforce the acquired knowledge and apply it to classical condensed matter problems.

Content

- Metal and insulators: Band structure, Fermi surface
- Electronic and heat transport scattering mechanisms
- Phase transitions: Landau theory, critical exponents
- Atomic magnetism and magnetic interactions
- Magnetic structures, dynamics

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

300 hours consisting of attendance time (75 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (225 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics and statistical physics is assumed.

Literature

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter

M 2.56 Module: Electronic Properties of Solids I, without Exercises [M-PHYS-102090]

Responsible:	Prof. Dr. Matthieu Le Tacon
	Prof. Dr. Wolfgang Wernsdorfer
	Prof. Dr. Wulf Wulfhekel
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language English	Level 4	Version 1
Mandatony							

Mandatory		
T-PHYS-102578	Electronic Properties of Solids I, without Exercises	Le Tacon, Wernsdorfer, Wulfhekel

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102089 - Electronic Properties of Solids I, with Exercises must not have been started.

Competence Goal

Students will be familiar with the most common experimental methods for studying the electronic properties of condensed matter and some of the key theoretical concepts that underlie them. They will master the basic tools for studying and understanding heat transport, scattering mechanisms, phase transitions, and magnetism.

Content

- Metal and insulators: Band structure, Fermi surface
- · Electronic and heat transport scattering mechanisms
- · Phase transitions: Landau theory, critical exponents
- · Atomic magnetism and magnetic interactions
- Magnetic structures, dynamics

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation (180 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics and statistical physics is assumed.

Literature

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter

M 2.57 Module: Electronic Properties of Solids II, with Exercises [M-PHYS-102108]

Responsible:	Prof. Dr. Matthieu Le Tacon
	Dr. Johannes Rotzinger
	Prof. Dr. Alexey Ustinov
	Prof. Dr. Wolfgang Wernsdorfer
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each summer term	1 term	English	4	1
Mandatory						

· ······		
T-PHYS-104422	Electronic Properties of Solids II, with Exercises	Le Tacon, Rotzinger, Ustinov, Wernsdorfer

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102109 - Electronic Properties of Solids II, without Exercises must not have been started.

Competence Goal

Students know the physical properties of superconductivity, a thermodynamic state of the electronic system of solids. They understand classical and modern experimental findings as well as basic theoretical models, such as the concept of the energy gap or the quasiparticle, which is also commonly used outside superconductivity. They apply the acquired knowledge to specific problems. The students are able to familiarize themselves with current literature on the subject of superconductivity.

Content

Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

- V.V. Schmidt, "The Physics of Superconductors: Introduction to Fundamentals and Applications", Springer (1997), ISBN 978-3540612438
- M. Tinkham, "Introduction to Superconductivity: Vol I", Dover Publ. (2004), ISBN: 978-0486435039
- W. Buckel und R. Kleiner, "Supraleitung: Grundlagen und Anwendungen", Wiley-VCH (2004), ISBN: 978-3527403486

M 2.58 Module: Electronic Properties of Solids II, without Exercises [M-PHYS-102109]

Responsible:	Prof. Dr. Matthieu Le Tacon Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer
Organisation:	KIT Department of Physics
Part of:	Experimental Physics (Experimental Physics)

	Credits 4	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	Level 4	Version 1	
Mandatory	/							
T-PHYS-1	04423	Electronic Properties	of Solids II, without Ex	ercises			Le Tacon, Ro Ustinov, We	

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102108 - Electronic Properties of Solids II, with Exercises must not have been started.

Competence Goal

Students know the physical properties of superconductivity, a thermodynamic state of the electronic system of solids. They understand classical and modern experimental findings as well as basic theoretical models, such as the concept of the energy gap or the quasiparticle, which is also commonly used outside of superconductivity. Students are able to familiarize themselves with current literature on superconductivity.

Content

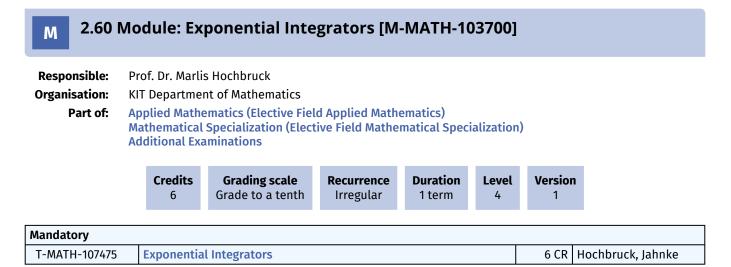
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of the lecture incl. exam preparation (90 hours)


Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

- V.V. Schmidt, "The Physics of Superconductors: Introduction to Fundamentals and Applications", Springer (1997), ISBN 978-3540612438
- M. Tinkham, "Introduction to Superconductivity: Vol I", Dover Publ. (2004), ISBN: 978-0486435039
- W. Buckel und R. Kleiner, "Supraleitung: Grundlagen und Anwendungen", Wiley-VCH (2004), ISBN: 978-3527403486

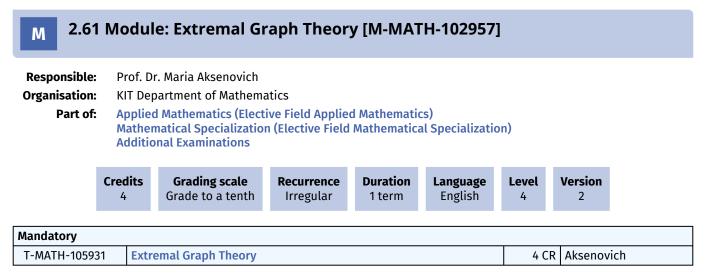
M 2.59 I	Module: E	volution Equati	ions [M-MA	TH-10287	2]		
Responsible: Organisation: Part of:	KIT Departn Applied Mat Applied Mat Mathematic	and Schnaubelt tent of Mathematics hematics (Analysis) hematics (Elective Fiel al Specialization (Elect xaminations			alization)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory							
T-MATH-105844	Evolutior	Equations				8 CR	Frey, Kunstmann, Schnaubelt

Competence Certificate

Oral exam of approximately 20 minutes

Prerequisites

None


Content

In this class we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems.

The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highly oscillatory problems with purely imaginary eigenvalues of large modulus.

Apart from motivating the construction of exponential integrators for various classes of problems, our main intention in this class is to present the mathematics behind these methods. We will derive error bounds that are independent of stiffness or highest frequencies in the system.

Since the implementation of exponential integrators requires the evaluation of the product of a matrix function with a vector, we will briefly discuss some possible approaches as well.

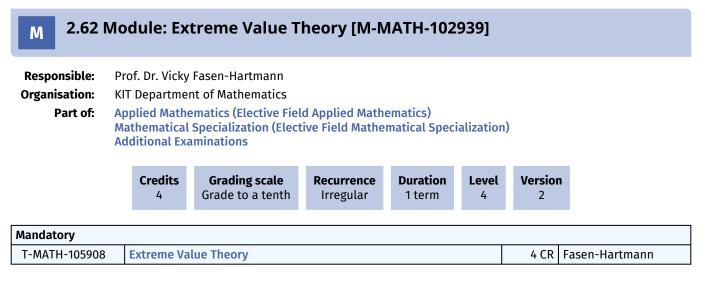
Competence Certificate

The final grade is given based on an oral exam (approx. 30 min.).

Competence Goal

The students understand, describe, and use fundamental notions and techniques in extremal graph theory. They can analyze, structure, and formally describe typical combinatorial questions. The students understand and use Szemeredi's regularity lemma and Szemeredi's theorem, can use probabilistic techniques, such as dependent random choice and multistep random colorings, know the best bounds for the extremal numbers of complete graphs, cycles, complete bipartite graphs, and bipartite graphs with bounded maximum degree. They understand and can use the Ramsey theorem for graphs and hypergraphs, as well as stepping-up techniques for bounding Ramsey numbers. Moreover, the students know and understand the behavior of Ramsey numbers for graphs with bounded maximum degree. The students can communicate using English technical terminology.

Content


The course is concerned with advanced topics in graph theory. It focuses on the areas of extremal functions, regularity, and Ramsey theory for graphs and hypergraphs. Further topics include Turán's theorem, Erdös-Stone theorem, Szemerédi's lemma, graph colorings and probabilistic techniques.

Annotation

Course is held in English

Recommendation

Basic knowledge of linear algebra, analysis and graph theory is recommended.

M 2.63 I	Module: F	inite Element	Methods [M-M	1ATH-102	891]		
Responsible: Organisation: Part of:	KIT Departn	ly Dörfler ristian Wieners nent of Mathematics thematics (mandato					
	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Level 4	Versio 1	n
Mandatory							
T-MATH-105857	Finite Ele	ement Methods				Jā	örfler, Hochbruck, ahnke, Rieder, /ieners

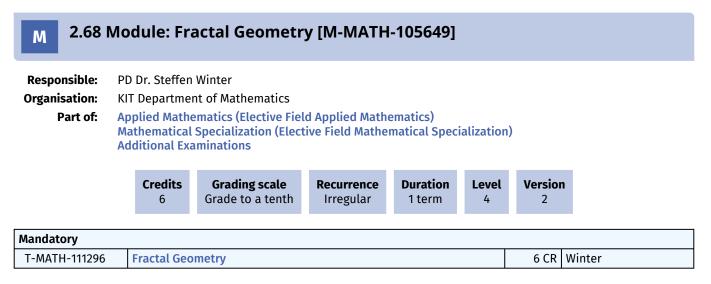
2.64 Module: Forecasting: Theory and Practice [M-MATH-102956] Μ **Responsible:** Prof. Dr. Tilmann Gneiting **Organisation: KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics)** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Language Version Recurrence Level 8 Grade to a tenth English Irregular 2 terms 2 4 Mandatory T-MATH-105928 **Forecasting: Theory and Practice** 8 CR Gneiting

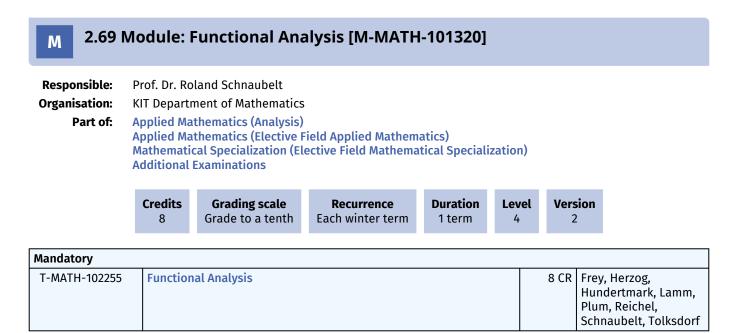
Prerequisites

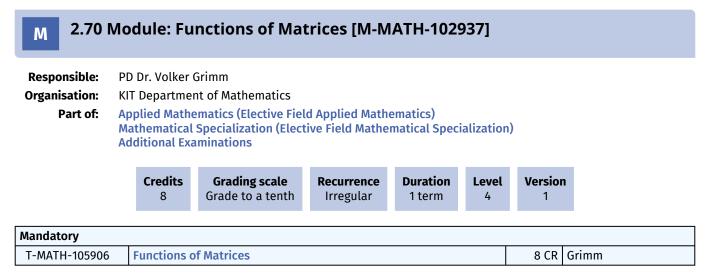
None

Annotation

- Regular cycle: every 2nd year, starting winter semester 16/17
- Course is held in English

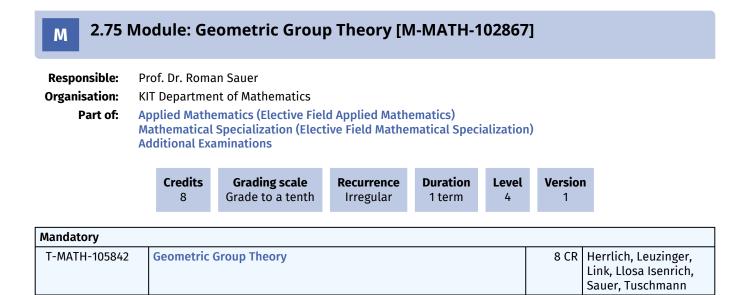

M 2.	.65 Mc	odule: Formal Sy	/stems [M-INFC)-100799]			
Responsik Organisati Part	ion: K	rof. Dr. Bernhard Becke IT Department of Infor omputer Science					
	Credits 6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
mandatory							

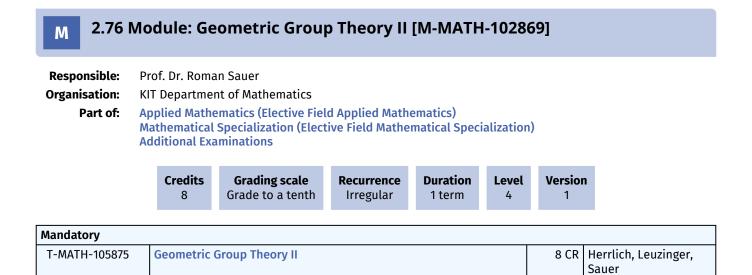

M 2.66 Module: Foundations of Continuum Mechanics [M-MATH-103527]


Responsible: Organisation:		nristian Wieners ment of Mathematics					
Part of:	Mathemat	athematics (Elective Fie ical Specialization (Elec Examinations			ialization))	
	Credi 3	Grading scale Grade to a tenth	Recurrence Once	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-107044	Founda	tions of Continuum Mec	hanics			3 CR \	Wieners

Prerequisites

M 2.67 I	Module: F	ourier Analysis	and its Ap	plication	s to PD	Es [M-N	IATH-104827]
Responsible:	TT-Prof. Dr. >						
Organisation:	KIT Departm	ent of Mathematics					
Part of:		hematics (Analysis) al Specialization (Elect xaminations	tive Field Mathe	matical Spec	ialization)	1	
	Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 3	
Mandatory							
T-MATH-109850	Fourier Ar	alysis and its Applica	tions to PDEs			6 CR	_iao

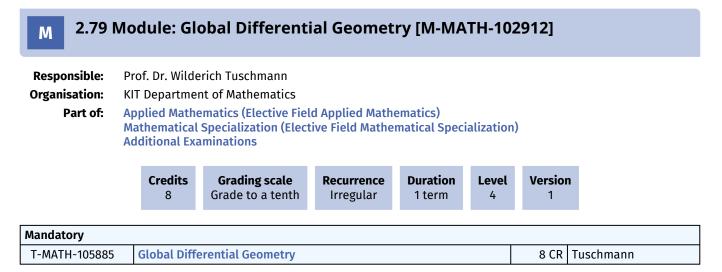

M 2.71	Мо	dule: Fu	nctions of Ope	erators [M-	MATH-10	2936]		
Responsible: Organisation: Part of:	KI Ap Ma	plied Mathe	nt of Mathematics ematics (Elective Fiel Specialization (Elect			alization)	I	
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105905		Functions o	f Operators				6 CR	

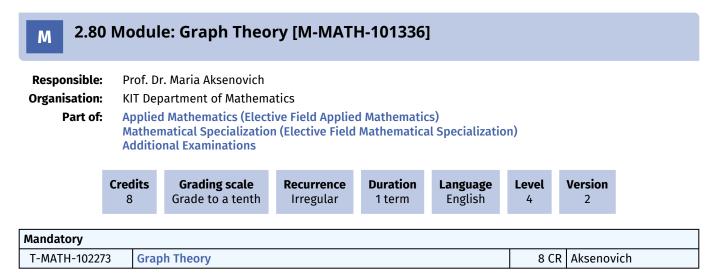

M 2	2.72 Ma	odule: Fuzzy Set	ts [M-INFO-10083	39]			
Responsi Organisat Par	t ion: KI	rof. DrIng. Uwe Hane T Department of Infor Computer Science					
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory	6			2	•••		Version 1

2.73 Module: Generalized Regression Models [M-MATH-102906] Μ **Responsible:** PD Dr. Bernhard Klar **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Level Version Recurrence Grade to a tenth 4 Irregular 1 term 2 4 Mandatory T-MATH-105870 **Generalized Regression Models** 4 CR Ebner, Fasen-Hartmann, Klar, Trabs

Prerequisites

2.74 Module: Geometric Analysis [M-MATH-102923]									
Responsible:	Prof. Dr. Tobias Lamm								
Organisation:	KIT	KIT Department of Mathematics							
Part of:	Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1		
Mandatory									
T-MATH-105892	2 Geometric Analysis						8 CR	Lamm	





2.77 Module: Geometric Numerical Integration [M-MATH-102921] Μ **Responsible:** Prof. Dr. Tobias Jahnke **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Version Level Recurrence Grade to a tenth 6 Irregular 1 term 1 4 Mandatory T-MATH-105919 **Geometric Numerical Integration** 6 CR Hochbruck, Jahnke

Prerequisites

M 2.78 I	Мос	dule: Ge	ometry of Sch	emes [M-N	IATH-102	866]		
Responsible: Organisation: Part of:	KIT App Mat	olied Mathe thematical	Kühnlein nt of Mathematics ematics (Elective Fiel Specialization (Elect aminations			alization)		
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105841	0	Geometry o	of Schemes				8 CR Her	rlich, Kühnlein

Competence Certificate

The final grade is given based on the written final exam (3h).

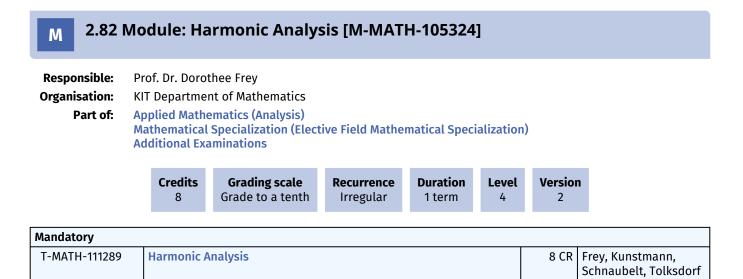
By successfully working on the problem sets, a bonus can be obtained. To obtain the bonus, one has to achieve 50% of the points on the solutions of the exercise sheets 1-6 and also of the exercise sheets 7-12. If the grade in the final written exam is between 4,0 and 1,3, then the bonus improves the grade by one step (0,3 or 0,4).

Prerequisites

None

Competence Goal

The students understand, describe and use fundamental notions and techniques in graph theory. They can represent the appropriate mathematical questions in terms of graphs and use the results such as Menger's theorem, Kuratowski's theorem, Turan's theorem, as well as the developed proof ideas, to solve these problems. The students can analyze graphs in terms of their characteristics such as connectivity, planarity, and chromatic number. They are well positioned to understand graph theoretic methods and use them critically. Moreover, the students can communicate using English technical terminology.


Content

The course Graph Theory treats the fundamental properties of graphs, starting with basic ones introduced by Euler and including the modern results obtained in the last decade. The following topics are covered: structure of trees, paths, cycles and walks in graphs, minors, unavoidable subgraphs in dense graphs, planar graphs, graph coloring, Ramsey theory, and regularity in graphs.

Annotation

- Regular cycle: every 2nd year, winter semester
- Course is held in English

M 2.81 I	Мос	dule: Gr	oup Actions in	Riemanni	an Geom	etry [N	-MATH-102954]	
Responsible:	Pro	f. Dr. Wilde	erich Tuschmann					
Organisation:	KIT	Departmer	nt of Mathematics					
Part of:	Mat		ematics (Elective Fiel Specialization (Elect aminations			ialization)		
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105925	0	Group Actic	ons in Riemannian Ge	eometry			5 CR Tuschmann	

Content

- Fourier series
- Fourier transform on L1 and L2
- Tempered distributions and their Fourier transform
- Explizit solutions of the Heat-, Schrödinger- and Wave equation in Rn
- the Hilbert transform
- the interpolation theorem of Marcinkiewicz
- Singular integral operators
- the Fourier multiplier theorem of Mihlin

M 2.83 Module: Harmonic Analysis for Dispersive Equations [M-MATH-103545]

apl. Prof. D	r. Peer Kunstmann					
KIT Departr	ment of Mathematics					
Mathemati	cal Specialization (Elec	tive Field Mathe	matical Spec	ialization))	
Credit: 8	s Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Harmoni	ic Analysis for Dispersiv	ve Equations			8 CR	Kunstmann
	KIT Depart Applied Ma Mathemati Additional Credit 8	Additional Examinations Credits 8 Grading scale Grade to a tenth	KIT Department of Mathematics Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathe Additional Examinations Credits Grading scale Recurrence	KIT Department of Mathematics Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathematical Specialization (Elective Field Mathematical Specializational Examinations Credits Grading scale 8 Grade to a tenth Irregular 1 term	KIT Department of Mathematics Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations Credits Grading scale 8 Grade to a tenth Irregular 1 term 4	KIT Department of Mathematics Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations Credits Grading scale 8 Grade to a tenth Irregular 1 term 4 1

Prerequisites

None

Content

Fourier transform, Fourier multipliers, interpolation, singular integral operators, Mihlin's Theorem, Littlewood-Paley decomposition, oscillating integrals, dispersive estimates, Strichartz estimates, nonlinear equations.

2.84 Module: Harmonic Analysis on Fractals [M-MATH-106287] Μ **Responsible:** Prof. Dr. Dorothee Frey **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Analysis)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Grading scale Credits Recurrence Duration Language Version Level Grade to a tenth 3 Once 1 term English 4 1 Mandatory T-MATH-112742 3 CR Frey Harmonic Analysis on Fractals

Prerequisites

none

Competence Goal

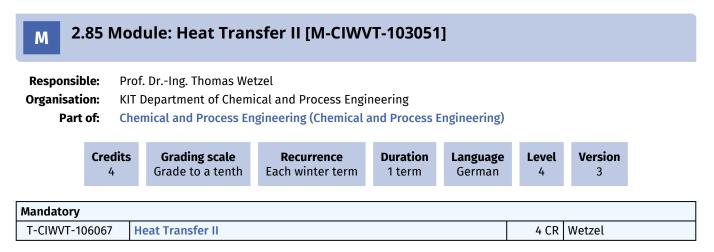
After the course, students will be able to discuss

- examples of fractals and their properties,
- different notions of fractal dimension and their relationships,
- · the interaction between metric and harmonic-analytic properties of fractals,
- selected recent developments in the harmonic analysis of fractals.

Content

This course aims to be an accessible introduction to fractals and selected aspects of their modern harmonic-analytic theory.

We first introduce examples of fractals and their dimension theory:


- fractals in nature, Cantor sets and Bernoulli convolutions, number-theoretic fractals, Brownian motion, Kakeya sets,
- · Hausdorff dimension, box dimension and intermediate dimensions,
- Fourier transforms of measures and Fourier dimension.

Then we study topics of recent research interest in harmonic analysis:

- Fourier restriction theorems on fractals,
- fractal uncertainty principles.

Recommendation

Some basic knowledge of functional analysis is recommended.

Competence Certificate

The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO). Module grade is the grade of the oral examination.

Prerequisites

None

Competence Goal

Students can deduce the basic differential equations of thermofluiddynamics and know possible simplifications. They know different analytical and numerical solution methods for the transient temperature field equation in quiescent media and are able to use them actively. Students are able to apply these solution methods independently to other heat conduction problems such as the heat transfer in fins and needles.

Content

Advanced topics in heat transfer:

Thermo-fluid dynamic transport equations, transient heat conduction; thermal boundary conditions; analytical methods (combination and separation of variables, Laplace transform); numerical methods (finite difference and volume methods); heat transfer in fins and needles

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h

Literature

Von Böckh/Wetzel: "Wärmeübertragung", Springer, 6. Auflage 2015 VDI-Wärmeatlas, Springer-VDI, 10. Auflage, 2011

6 CR Stapf

M 2.86 Module: High Temperature Process Engineering [M-CIWVT-103075]

Responsible:Prof. Dr.-Ing. Dieter StapfOrganisation:KIT Department of Chemical and Process EngineeringPart of:Chemical and Process Engineering (Chemical and Process Engineering)

High Temperature Process Engineering

	Credits	Grading scale	Recurrence	Duration	Language	Level	Version
	6	Grade to a tenth	Each summer term	1 term	German	4	1
Mandatory	1						

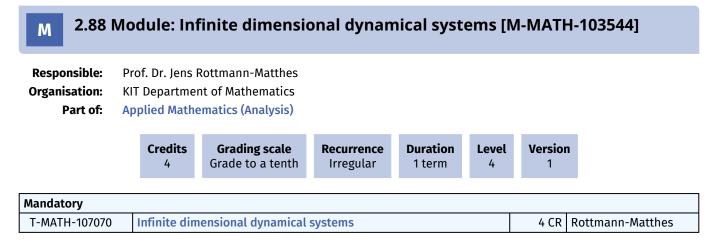
Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

T-CIWVT-106109

None


Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h

M 2.87	′ Mod	ule: Homotopy ⁻	Theory [M-	MATH-102	2959]			
Responsible: Organisation: Part of:	KIT I Appl Matl	Dr. Roman Sauer Department of Mathem lied Mathematics (Elect hematical Specializatio itional Examinations	tive Field Applie			on)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-MATH-10593	33 H	omotopy Theory				8 C	R Sauer	

None

M 2	.89 Mo	dule: Informat	ion Security [M-	INFO-106	015]			
Responsi Organisat Part	ion: Kl	of. Dr. Jörn Müller-Qua T Department of Infor Infor Science						
	Credits 5	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory	,							
T-INFO-11	2195	Information Security				5 CR	Müller-Quade	;

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-INFO-100834 - Security must not have been started.

M 2.90	Module: In	tegral Equatio	ns [M-MAT	H-102874]		
Responsible: Organisation: Part of:	Applied Math Applied Math	nt of Mathematics ematics (Analysis) ematics (Elective Fiel Specialization (Elect			ialization)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-105834	Integral Eq	uations					Arens, Griesmaier, Hettlich

M 2.91 Module: Internet Seminar for Evolution Equations [M-MATH-102918]

Responsible: Organisation:	KIT Departi	oland Schnaubelt ment of Mathematics						
Part of:	Applied Ma Mathemati		Field Applied Mathem lective Field Mathema		zation)			
	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Level 4	Vers 1	ion	
Mandatory								
T-MATH-105890	Internet	Seminar for Evolutio	on Equations				Frey, Kunstmar Schnaubelt	ın,

Competence Certificate

oral examination of ca. 30 minutes

Prerequisites

none

Module grade calculation

The grade of the module is the grade of the oral exam.

M 2.92	Мо	dule: Inte	ernship [M-M	1ATH-10286	51]			
Responsible: Organisation: Part of:	PC Kľ	of. Dr. Willy D) Dr. Markus N T Department ternship						
		Credits 10	Grading scale pass/fail	Recurrence Each term	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105888		Internship					10 CR	Dörfler, Neher

Workload

Gesamter Arbeitsaufwand: 300 Stunden.

Präsenzzeit: 270 Stunden im Unternehmen.

Selbststudium: 30 Stunden

- Ausarbeitung des Berichtes
- Vorbereitung und Halten der Präsentation

2.93 Module: Introduction into Particulate Flows [M-MATH-102943]

Responsible: Organisation:		of. Dr. Willy Departme	Dörfler nt of Mathematics					
Part of:	Ma		ematics (Elective Fiel Specialization (Elect aminations			alization))	
		Credits 3	Grading scale Grade to a tenth	Recurrence Once	Duration 1 term	Level 4	Version 1	1
Mandatory								
T-MATH-105911		Introduction into Particulate Flows 3 CR Dörfler						

Prerequisites

2.94 Module: Introduction to Aperiodic Order [M-MATH-105331] Μ **Responsible:** Prof. Dr. Tobias Hartnick **Organisation: KIT Department of Mathematics** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Level Version Recurrence Grade to a tenth 3 Irregular 1 term 4 1 Mandatory T-MATH-110811 **Introduction to Aperiodic Order** 3 CR Hartnick

Prerequisites

None

M 2.	95 Mc	dι	ıle: Introducti	ion to Artificial	Intellige	ence [M-IN	NFO-106	5014]	
Responsib Organisatio Part	Pi on: Ki	of. T D	of. Dr. Pascal Friede Dr. Gerhard Neumai epartment of Inform puter Science	nn					
	Credits 5	6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory									
T-INFO-112	194	Int	roduction to Artifici	ial Intelligence			5 CR	Friederich,	Neumann

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-INFO-100819 - Cognitive Systems must not have been started.

A 2.96 Module: Introduction to Convex Integration [M-MATH-105964]

Credits 3Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLanguage EnglishLevel 4Version 1	Responsible: Organisation: Part of:	KIT Dep Applied Mather	r. Wolfgang Reichel partment of Mathema d Mathematics (Analy natical Specialization nal Examinations	vsis)	Mathematica	al Specializatio	on)	
			•			•••		Version 1

Mandatory			
T-MATH-112119	Introduction to Convex Integration	3 CR	Zillinger

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The main aim of this lecture is to introduce students to convex integration as a tool to construct solutions to partial differential equations.

In particular, they will be able to

- · discuss the structure of convex integration algorithms,
- state major theorems and their relation,
- · discuss regularity of convex integration solutions and uniqueness,
- discuss building blocks of constructions and their properties.

Content

This lecture provides an introduction to the methods of convex integration and its applications:

- · for isometric immersions,
- for the m-well problem in elasticity,
- · for equations of fluid dynamics and
- higher regularity of convex integration solutions.

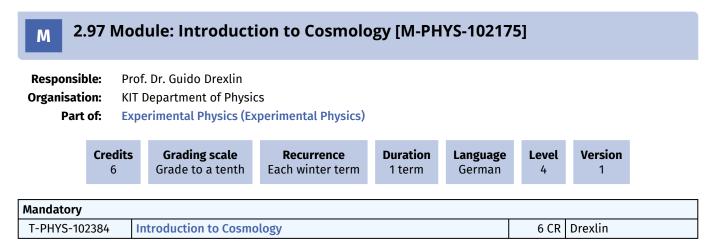
Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Total workload: 90 hours

Attendance: 30 h


lectures and examination

Self studies: 60 h

- · follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- preparation for the module examination

Recommendation

The modules "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

Students will be introduced to the basic concepts of cosmology. The lecture will provide both the theoretical concepts and an overview of modern experimental methods and observational techniques. The students will be enabled to understand the concepts by means of concrete case studies from modern cosmology and will be enabled to apply the learned methods in the context of later independent research.

Methodological Competency Acquisition:

- Understanding of the fundamentals of cosmology
- Recognition of methodological cross-connections to elementary particle physics and astroparticle physics.
- Acquisition of the ability to work independently on current research topics as preparation for the master thesis.

Content

The lecture offers an introduction to modern cosmology, which has taken an enormous upswing in recent years due to the use of state-of-the-art technologies (Planck satellite, galaxy surveys such as 2dF and SDSS) and accompanying computationally intensive simulations (Millennium). The large number of observations has led to the establishment of a so-called concordance model of cosmology, in which the contributions of dark energy and dark matter dominate the evolution of large-scale structures in the universe.

Starting from a description of the early universe with the supporting pillars of the Big Bang theory (Hubble expansion, nucleosynthesis, cosmic background radiation) and the phase transitions and symmetry breaking that occur in the process, the formation and evolution of large-scale structures in the universe up to today's "dark universe" is discussed (comparison of "top-down" with "bottom-up" models). Special attention is given to a detailed presentation of the most modern experimental techniques and methods of analysis, which have found their way into wide areas of physics.

The lecture thus provides a coherent picture of modern cosmology and discusses fundamental issues also in neighboring disciplines such as particle physics and astrophysics and can therefore be complemented with other lectures in the field of Experimental Astroparticle Physics and Experimental Particle Physics.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation

Basic knowledge from lecture "Nuclei and Particles

Literature

Will be mentioned in the lecture.

M 2.98 Module: Introduction to Fluid Dynamics [M-MATH-105650]

Prerequisites

None

Competence Goal

The main aim of this lecture is to introduce students to mathematical fluid dynamics. In particular, by the end of the course students will be able to

- discuss and explain the various formulations of the Euler equations and when these formulations are equivalent,
- state major theorems and their relation,
- discuss weak formulations, existence and uniqueness results.

Content

Mathematical description and analysis of fluid dynamics:

- physical motivation of the incompressible Euler and Navier-Stokes equations,
- Vorticity-Stream formulation and Eulerian and Lagrangian coordinates,
- Local existence theory and energy methods,
- Weak solutions and the Beale-Kato-Majda criterion.

Recommendation

Partial Differential Equations

2.99 Module: Introduction to Fluid Mechanics [M-MATH-106401] Μ **Responsible:** TT-Prof. Dr. Xian Liao **Organisation: KIT Department of Mathematics** Part of: Applied Mathematics (Analysis) (Usage from 4/20/2023) Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/20/2023) Additional Examinations (Usage from 4/20/2023) Grading scale Credits Recurrence Duration Language Version Level Grade to a tenth 6 Irregular 1 term English 4 1 Mandatory

Manuatory			
T-MATH-112927	Introduction to Fluid Mechanics	6 CR	Liao

Competence Certificate

The module examination takes the form of an oral examination of approx. 25 minutes.

Prerequisites

None

Competence Goal

Graduates can

- recognize the essential formulations of the partial differential equations in fluid mechanics and explain them using examples,
- use techniques to describe the weak and strong solutions for the Euler and Navier-Stokes equations, and show the existence, uniqueness and regularity results,
- name the special difficulties in the three-dimensional case,
- understand the concept of stratification and explain it using concrete examples.

Content

- Derivation of models, modeling
- Euler equations, Navier-Stokes equations
- Biot-Savart law, Leray-Hopf decomposition
- Wellposedness results
- Regularity results

Module grade calculation

The module grade is the grade of the oral exam.

Workload

total work load: 180 hours

Recommendation

The module *Functional Analysis* is strongly recommended.

2.100 Module: Introduction to Geometric Measure Theory [M-MATH-102949]

Responsible: Organisation: Part of:	KIT Ap Ma	PD Dr. Steffen Winter KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations						
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version	
Mandatory								
T-MATH-105918		Introductio	on to Geometric Meas	ure Theory			6 CR	

Prerequisites

M 2.101	Μ	odule: Ir	ntroduction to	Homogen	eous Dyn	amics	[M-MA	TH-105101]
Responsible: Organisation: Part of:	KI Ap	plied Mathe	s Hartnick It of Mathematics Imatics (Analysis) Imatics (Elective Fiel	d Applied Math	omatics)			
	Ma		Specialization (Elect			ializatior	1)	
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-110323		Introductio	n to Homogeneous [Dynamics			6 CR	Hartnick

None

M 2.102 Module: Introduction to Kinetic Equations [M-MATH-105837]

Responsible: Organisation: Part of:

Prof. Dr. Wolfgang Reichel KIT Department of Mathematics Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
3	Grade to a tenth	Irregular	1 term	English	4	2

Mandatory			
T-MATH-111721	Introduction to Kinetic Equations	3 CR	Zillinger

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Competence Goal

The main aim of this lecture is to introduce students to the theory of kinetic transport equations. In particular, by the end of the course students will be able to

- discuss properties of the free transport, Boltzmann and Vlasov-Poisson equations,
- state major theorems and their relation,
- · discuss notions of solutions and their properties,
- · discuss the effects of phase mixing and challenges of nonlinear equations.

Content

Mathematical description and analysis of kinetic transport equations:

- the free transport, Boltzmann and Vlasov-Poisson equations,
- linear theory, phase mixing and Landau damping,
- · equilibrium solutions and stability,
- nonlinear results and methods,
- renormalized solutions.

Module grade calculation

The module grade is the grade of the final oral exam.

Workload

Totel workload: 90 h

Attendance: 30 h

lectures and examination

Self studies: 60 h

- · follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- · preparation for the module examination

Recommendation

The course "Classical Methods for Partial Differential Equations" should be studied beforehand.

_

2.103 Module: Introduction to Kinetic Theory [M-MATH-103919] Μ **Responsible:** Prof. Dr. Martin Frank **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Grading scale Credits Duration Recurrence Language Level Version Grade to a tenth Each winter term English 4 1 term 4 1 Mandatory T-MATH-108013 **Introduction to Kinetic Theory** 4 CR Frank

Prerequisites

None

Competence Goal

After successfully taking part in the module's classes and exams, students have gained knowledge and abilities as described in the "Inhalt" section. Specifically, Students know common means of mesoscopic and macroscopic description of particle systems. Furthermore, students are able to describe the basics of multiscale methods, such as the asypmtotic analysis and the method of moments. Students are able to apply numerical methods to solve engineering problems related to particle systems. They can name the assumptions that are needed to be made in the process. Students can judge whether specific models are applicable to the specific problem and discuss their results with specialists and colleagues.

Content

- From Newton's equations to Boltzmann's equation
- Rigorous derivation of the linear Boltzmann equation
- Properties of kinetic equations (existence & uniqueness, H theorem)
- The diffusion limit
- From Boltzmann to Euler & Navier-Stokes
- · Method of Moments
- Closure techniques
- Selected numerical methods

Recommendation

Partial Differential Equations, Functional Analysis

M 2.104 Module: Introduction to Matlab and Numerical Algorithms [M-MATH-102945]

Responsible:	Dr. Daniel	Weiß					
Organisation:	KIT Depart	ment of Mathematics					
Part of:	Mathemati	athematics (Elective Fig ical Specialization (Ele Examinations			alization)	1	
	Credit 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
landatory							
T-MATH-105913		ction to Matlab and Nu				5 CR \	Neiß, Wieners

Prerequisites

M 2.105 Module: Introduction to Microlocal Analysis [M-MATH-105838]

Responsible:TT-Prof. Dr. Xian LiaoOrganisation:KIT Department of MathematicsPart of:Mathematical Specialization (Elective Field Mathematical Specialization)
Additional Examinations

3 Grade to a tenth Irregular 1 term English 4 1

Mandatory			
T-MATH-111722	Introduction to Microlocal Analysis	3 CR	Liao

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Competence Goal

- Students will become familiar with the notions of Fourier multipliers and pseudo-differential operators
- Students can state major theorems and their relation
- Students will understand the structure of the propagation of singularities by introducing the wave front set and apply them to the domain of partial differential equations, control theory, etc.

Content

- 1. Pseudo-differential operators
- 2. Symbolic calculus
- 3. Wavefront set
- 4. Propagation of singularities
- 5. Microlocal defective measure

Module grade calculation

The module grade is the grade of the final oral exam.

Workload

Totel workload: 90 h

Attendance: 30 h

lectures and examination

Self studies: 60 h

- follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- preparation for the module examination

Recommendation

The following courses should be studied beforehand: "Classical Methods for Partial Differential Equations" und "Functional Analysis".

M 2.106	Module	: Introduction	to Scientific Co	mputing	[M-MA	TH-10288	9]
Responsible:		/illy Dörfler obias Jahnke					
Organisation:	KIT Depart	ment of Mathematic	S				
Part of:	Mathemat		Field Applied Mathema lective Field Mathemat		ation)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Level 4	Version 2	
Mandatory							
T-MATH-105837	Introdu	ction to Scientific Co	mputing				r, Hochbruck, e, Rieder, rs

None

M 2.107 Module: Introduction to Stochastic Differential Equations [M-MATH-106045]

Responsible: Organisation: Part of:	KIT De Applie Mathe	Dr. Mathias Trabs epartment of Mathema ed Mathematics (Election ematical Specialization onal Examinations	ive Field Applie			on)	
	Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language English	Level 4	Version 1
Mandatory	34 Intr						

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The students will

- know fundamental examples for linear and non-linear stochastic differential equations,
- be able to apply basic solution concepts for stochastic differential equations,
- know fundamental theorems of stochastic calculus and will be able to apply these to stochastic differential equations.

Content

- 1. Introduction and recapitulation of stochastic integration, Itô's formula, Lévy Theorem
- 2. Burkholder-Davis-Gundy inequality
- 3. Existence and uniqueness of solutions of stochastic differential equations
- 4. Explicit solutions of linear stochastic differential equations
- 5. Change of the time scale of Brownian motion
- 6. Representation of continuous time martingales
- 7. Brownian martingales
- 8. Local and global solutions of stochastic differential equations
- 9. Girsanov Theorem

Module grade calculation

The module grade is the grade of the oral exam.

Workload

Total workload: 120 hours

Recommendation

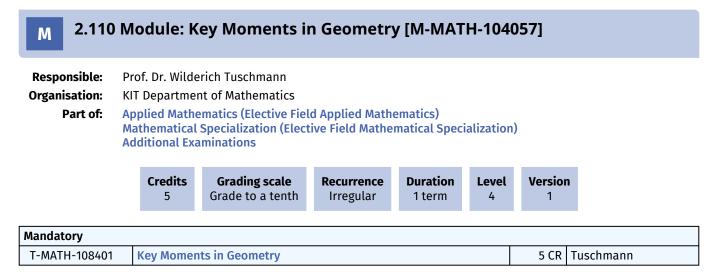
The contents of the module "Probability Theory" are strongly recommended. The module "Continuous Time Finance" is recommended.

2.108 Module: Inverse Problems [M-MATH-102890]									
Responsible: Organisation: Part of:	Prof. Dr. Roland Griesmaier KIT Department of Mathematics Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
	Credits 8	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Level 4	Version 1			
Mandatory									
T-MATH-105835	Inverse F	Problems					ns, Griesmaier, Llich, Rieder		

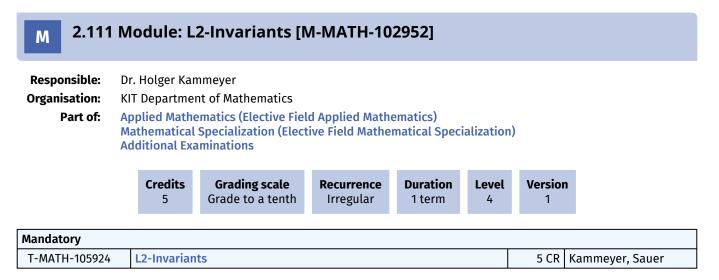
2.109 Module: Key Competences [M-MATH-102994] Μ

Organisation:

KIT Department of Mathematics Part of: Interdisciplinary Qualifications

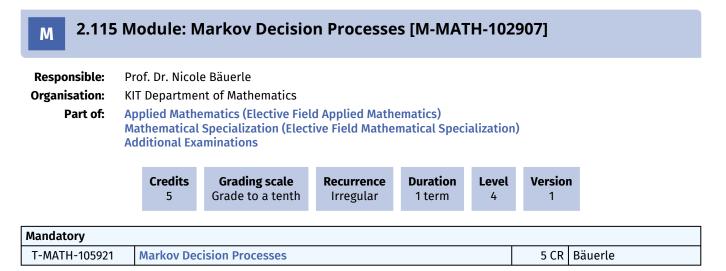

Election notes

For self assignment of taken interdisciplinary qualifications of HoC, ZAK or SPZ the 'Teilleistungen' with the title "Self Assignment HoC-ZAK-SPZ ..." have to be selected according to the grading scale, not graded or graded.


Key Competences (Election: at least 2 credits)							
T-MATH-106119	Introduction to Python	3 CR	Weiß				
T-MATH-111515	Self-Booking-HOC-SPZ-ZAK-1-Graded	2 CR					
T-MATH-111517	Self-Booking-HOC-SPZ-ZAK-2-Graded	2 CR					
T-MATH-111516	Self-Booking-HOC-SPZ-ZAK-5-Ungraded	2 CR					
T-MATH-111520	Self-Booking-HOC-SPZ-ZAK-6-Ungraded	2 CR					
T-MATH-111851	Introduction to Python - Programming Project	1 CR	Weiß				

Prerequisites

None


None

2.112 Module: Lie Groups and Lie Algebras [M-MATH-104261] Μ **Responsible:** Prof. Dr. Tobias Hartnick **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Language Version Recurrence Level 8 Grade to a tenth Irregular 1 term German 1 4 Mandatory T-MATH-108799 Lie Groups and Lie Algebras 8 CR Hartnick, Leuzinger

2.113 Module: Lie-Algebras (Linear Algebra 3) [M-MATH-105839] Μ **Responsible:** Prof. Dr. Tobias Hartnick **Organisation: KIT Department of Mathematics** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Version Recurrence Duration Level Language Grade to a tenth 8 Irregular 1 term German 4 1 Mandatory T-MATH-111723 Lie-Algebras (Linear Algebra 3) 8 CR

2.114 Module: Localization of Mobile Agents [M-INFO-100840] Μ **Responsible:** Prof. Dr.-Ing. Uwe Hanebeck **Organisation: KIT Department of Informatics** Part of: **Computer Science** Credits Grading scale Duration Version Recurrence Language Level Grade to a tenth 6 Each summer term 1 term German 4 1 Mandatory T-INFO-101377 **Localization of Mobile Agents** 6 CR Hanebeck

M 2.116	Module: M	laster's Thesis	5 [M-MATH-	102917]			
Responsible: Organisation: Part of:	PD Dr. Stefan KIT Departmer Master's Thesi	nt of Mathematics					
	Credits 30	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Level 4	Versior 1	1
Mandatory							
T-MATH-105878	Master's Th	esis				30 CR	Kühnlein

Modeled Conditions

The following conditions have to be fulfilled:

- You need to have earned at least 70 credits in the following fields:

 Wildcard Technical Field

 - Applied Mathematics
 - Internship

 - Chemical and Process Engineering
 Electrical Engineering / Information Technology
 Experimental Physics

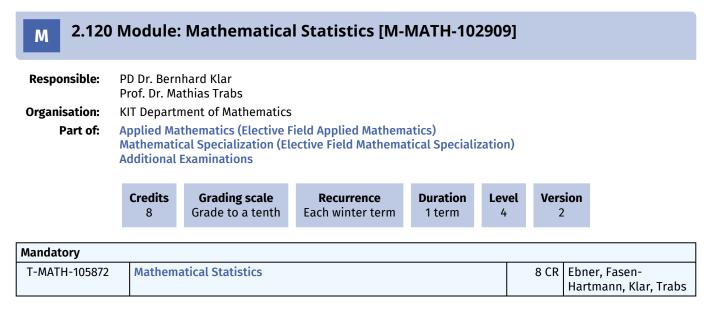
 - Computer Science
 - Mathematical Specialization
 - Interdisciplinary Qualifications

M 2.117 Module: Mathematical Methods in Signal and Image Processing [M-MATH-102897]

Credits 8Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLevel 4Version	Responsible: Organisation: Part of:	KIT Ap Ma	plied Mathe	nt of Mathematics ematics (Elective Fiel Specialization (Elect			ialization))	
				-				Version 1	1
	T-MATH-105862		Mathematical Methods in Signal and Image Processing 8 CR Rieder						

Prerequisites

2.118 Module: Mathematical Methods of Imaging [M-MATH-103260]


Responsible: Organisation:		of. Dr. Andre I Departme	eas Rieder nt of Mathematics				
Part of:	Ma		ematics (Elective Fiel Specialization (Elect aminations			alization)
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version
Mandatory							
T-MATH-106488		Mathematio	al Methods of Imagi	ng			5 CR

Prerequisites

M 2.119 Module: Mathematical Modelling and Simulation in Practise [M-MATH-102929]

Responsible: Organisation: Part of:	KIT App Mat	D Dr. Gudrun Thäter T Department of Mathematics Oplied Mathematics (Elective Field Applied Mathematics) Athematical Specialization (Elective Field Mathematical Specialization) Iditional Examinations									
	Credit 4										
Mandatory T-MATH-105889 Mathematical Modelling and Simulation in Practise 4 CR Thäter											

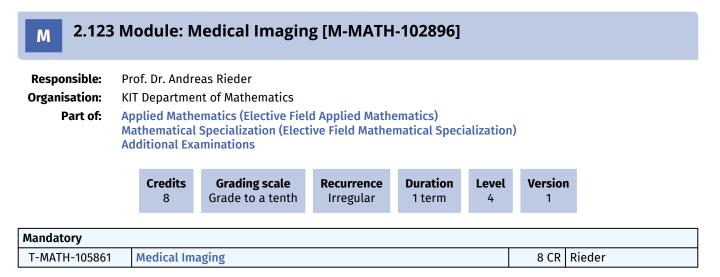
Prerequisites

M 2.121 Module: Mathematical Topics in Kinetic Theory [M-MATH-104059]

Responsible :	Prof.	Dr. Dirk H	lundertmark							
Organisation:	KIT D	epartmer	nt of Mathematics							
Part of:	Appli Math	ed Mathe ematical	ematics (Analysis) ematics (Elective Fiel Specialization (Elect eminations			alization)				
	(Credits 4Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLevel 4Version 1								
Mandatory										
T-MATH-108403	Ma	athematic	al Topics in Kinetic	Theory			4 CR	Hundertmark		

Prerequisites

None


Competence Goal

The students are familiar with the basic questions in kinetic theory and methodical approaches to their solutions. With the acquired knowledge they are able to understand the required analytical methods and are able to apply them to the basic equations in kinetic theory.

Content

- Boltzmann equation: Cauchy problem and properties of solutions
- entropy and H theorem
- equilibrium and convergence to equilibrium
- other models of kinetic theory

M 2.122	2 Mo	dule: N	laxwell's Equa	tions [M-M	ATH-1028	885]		
Responsible: Organisation: Part of:	KIT App App Mat	lied Mathe lied Mathe hematical	ettlich ht of Mathematics matics (Analysis) matics (Elective Fiel Specialization (Elect minations			alization)		
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Versior 1	1
Mandatory								
T-MATH-105856	N	laxwell's E	quations				8 CR	Arens, Griesmaier, Hettlich

2.124 Module: Medical Imaging Techniques I [M-ETIT-100384]										
Responsik Organisati Part	on: K	rof. Dr. Maria Francesca IT Department of Electi Actrical Engineering /	rical Engineering and		0,	/ Informat	ion Technol	.ogy)		
	Credits 3Grading scale Grade to a tenthRecurrence Each winter termDuration 1 termLanguage GermanLevel 4Version 1									
Mandatory										
T-ETIT-101	T-ETIT-101930 Medical Imaging Techniques I 3 CR Spadea									

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students have a thorough understanding of all methods of medical imaging with ionizing radiation. They know the physical basics, the technical solutions and the essential aspects when using imaging in medicine.

Content

- X-ray physics and technology of X-ray imaging
- Digital radiography, X-ray image intensifier, flat X-ray detectors
- Theory of imaging systems, modulation transfer function
- and quantum detection efficiency
- Computer tomography CT
- Ionizing radiation, dosimetry and radiation protection
- SPECT and PET

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h 15 appointments each) = 30 h

Self-study (3 h 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

3 CR Spadea

M 2.125 Module: Medical Imaging Techniques II [M-ETIT-100385]

Responsible:Prof. Dr. Maria Francesca SpadeaOrganisation:KIT Department of Electrical Engineering and Information TechnologyPart of:Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

	Credits	Grading scale	Recurrence	Duration	Language	Level	Version
	3	Grade to a tenth	Each summer term	1 term	German	4	1
Mandatory							

T-ETIT-101931 Medical Imaging Techniques II

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students have a thorough understanding of all methods of medical imaging without ionizing radiation. They know the physical basics, the technical solutions and the essential aspects when using imaging in medicine.

Content

- Ultrasound imaging
- Thermography
- Optical tomography
- Impedance tomography
- Imaging of bioelectric sources
- Endoscopy
- Magnetic resonance imaging
- Multi-modal imaging
- Molecular imaging

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h 15 appointments each) = 30 h

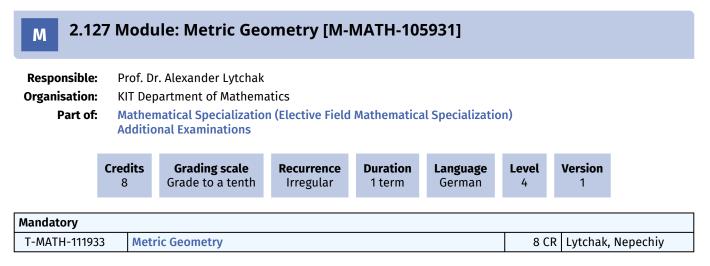
Self-study (3 h 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

Recommendation

The contents of the M-ETIT-100384 module are required.


6 CR Heizmann

M 2.126 Module: Methods of Signal Processing [M-ETIT-100540]										
Responsib Organisatio Part	on: KIT [•	zmann ical Engineering and I nformation Technolog			Informat	ion Technol	ogy)		
	Credits 6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1			
Mandatory										

Prerequisites

T-ETIT-100694

Methods of Signal Processing

Competence Certificate

oral examination of circa 20 minutes

Prerequisites

None

Module grade calculation

The module grade is the grade of the final oral exam.

M 2.128	Module: M	lodels of Math	nematical P	hysics [N	I-MATH	1-10287	5]
Responsible: Organisation: Part of:	Applied Mathe Applied Mathe	nt of Mathematics ematics (Analysis) ematics (Elective Fiel Specialization (Elect			alization)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-105846	MATH-105846 Models of Mathematical Physics						Hundertmark, Plum, Reichel

2.129 Module: Modern Experimental Physics I, Atoms, Nuclei and Molecules [M-PHYS-106331]

Responsible:Studiendekan PhysikOrganisation:KIT Department of PhysicsPart of:Experimental Physics (Experimental Physics)

	Credits 8	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory	Mandatory							
T-PHYS-1	T-PHYS-112846 Modern Experimental Physics I, Atoms, Nuclei and Molecules					8 CR	Studiendeka	an Physik

Competence Certificate

See components of this module

Prerequisites

M 2.130	M	odule: M	lodular Forms	[M-MATH-	102868]			
Responsible: Organisation: Part of:	KIT Ap Ma	plied Mathe thematical	Kühnlein nt of Mathematics ematics (Elective Fiel Specialization (Elect aminations			alizatio	n)	
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory								
T-MATH-105843		Modular Fo	orms				8 CR	Kühnlein

2.131 Module: Monotonicity Methods in Analysis [M-MATH-102887]

Credits 3Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLevel 4Version 1	Responsible: Organisation: Part of:	KIT App App Mat	olied Math olied Math chematical	erzog nt of Mathematics ematics (Analysis) ematics (Elective Fiel Specialization (Elect aminations			alization)	
				-		2 41 4 4 4 7		Version 1	•
	T-MATH-105877	Ν	Aonotonic	ity Methods in Analys	sis			3 CR	Herzog

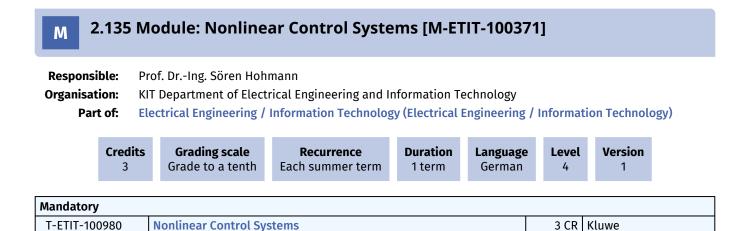
M 2.132 Module: Multigrid and Domain Decomposition Methods [M-MATH-102898]

CreditsGrading scaleRecurrenceDurationLevelVersion4Grade to a tenthOnce1 term41

Prerequisites

none

Competence Goal


The students became acquainted with multigrid and domain decomposition methods. They learn algorithms, results on convergence, and representative applications.

Content

- The two-grid method
- Classical multigrid theory
- Additive subspace correction method
- Multiplicative subspace correction method
- Multigrid methods for saddle point problems

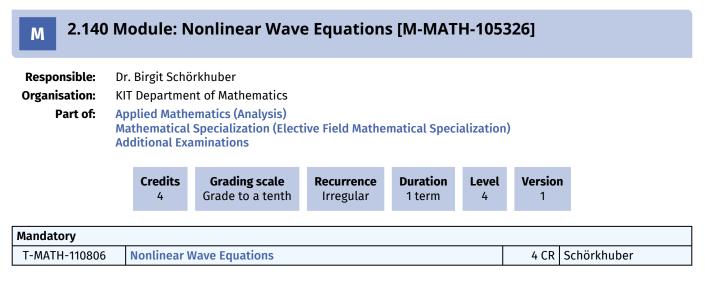
Μ	2.133	Module: Neura	ll Networks [M-l	NFO-100	846]				
Organi	onsible: isation: Part of:	Prof. Dr. Alexander W KIT Department of In Computer Science							
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German/Engli	Lev sh 4		Version 1	
Mandat	ory								
T-INFC)-101383	Neural Networks				6 CR	Waib	el	

M 2.134	Mo	dule: N	onlinear Anal	ysis [M-MA	TH-10353	9]		
Responsible: Organisation: Part of:	KIT E	•	s Lamm It of Mathematics matics (Analysis)					
Part OI.	Appl Math	ied Mathe nematical S	matics (Elective Fiel Specialization (Elect minations			alization)	1	
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-107065	N	onlinear A	nalysis				8 CR	Lamm

M 2.136	M	odule: N	onlinear Evolu	ution Equa	tions [M-l	MATH-	102877]
Responsible:	Pro	of. Dr. Rolan	id Schnaubelt					
Organisation:	KIT	Departmer	nt of Mathematics					
Part of:	Ap Ma	plied Mathe	ematics (Analysis) ematics (Elective Fiel Specialization (Elect eminations			ialization)		
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105848		Nonlinear E	volution Equations				8 CR	Frey, Schnaubelt

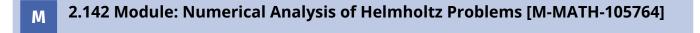
2.137 Module: Nonlinear Functional Analysis [M-MATH-102886] Μ **Responsible:** PD Dr. Gerd Herzog **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Analysis)** Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Recurrence Duration Level Version 3 Grade to a tenth Irregular 1 term 1 4 Mandatory T-MATH-105876 Nonlinear Functional Analysis 3 CR Herzog

M 2.13	88 Mod	ule: Nonlinear	Maxwell E	quations	[M-MATH-	105066	5]	
Responsible: Organisation:		Dr. Roland Schnaubelt partment of Mathema						
Part of:	Applie Mathe	ed Mathematics (Analy ed Mathematics (Electi ematical Specialization onal Examinations	ive Field Applie			on)		
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-MATH-11028	3 Nor	nlinear Maxwell Equat	ions			8 C	R Schnaub	elt


M 2.139	Mo	odule: N	onlinear Max	well Equati	ons [M-M	ATH-1	03257]	
Responsible: Organisation: Part of:	KIT App App Ma	Departmer olied Mathe olied Mathe	nd Schnaubelt Int of Mathematics Imatics (Analysis) Imatics (Elective Fiel Specialization (Election Iminations			alization))	
		Credits 3	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-106484	- 1	Nonlinear M	Naxwell Equations				3 CR	Schnaubelt

none

Content


- Short introduction to nonlinear contraction semigroups in Hilbert spaces and to the spaces H(curl) and H(div).
 Semilinear case:
- Maxwell's equations with linear material laws and nonlinear conductivity. Wellposedness by means of maximal monotone operators. Long-term behavior.
- Quasilinear case:

Maxwell's equations with nonlinear instantaneous material laws. Local wellposedness on the whole space via linearisation, apriori estimates and regularization. Blow-up examples. Outlook to results on domains.

2.141 Module: Nonparametric Statistics [M-MATH-102910] Μ **Responsible:** PD Dr. Bernhard Klar **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Version Recurrence Level Grade to a tenth 4 Irregular 1 term 2 4 Mandatory T-MATH-105873 **Nonparametric Statistics** 4 CR Ebner, Fasen-Hartmann, Klar, Trabs

Prerequisites

Responsible: Organisation: Part of:

TT-Prof. Dr. Barbara Verfürth KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization)

Credits 3Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLanguage GermanLevel 4Version 2
--

Mandatory			
T-MATH-111514	Numerical Analysis of Helmholtz Problems	3 CR	Verfürth

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Module grade calculation

The module grade is the grade of the final oral exam.

2.143 Module: Numerical Complex Analysis [M-MATH-106063] Μ **Responsible:** Prof. Dr. Marlis Hochbruck **Organisation: KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics)** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Language Version Recurrence Level 6 Grade to a tenth Irregular German 1 term 1 4 Mandatory T-MATH-112280 **Numerical Complex Analysis** 6 CR Hochbruck

Competence Certificate

oral exam of ca. 20 minutes

Prerequisites

none

Module grade calculation

The module grade ist the grade of the oral exam.

Workload

total workload: 180 h

2.144 Module: Numerical Continuation Methods [M-MATH-102944] Μ **Responsible:** Prof. Dr. Wolfgang Reichel **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Version Recurrence Level 5 Grade to a tenth Irregular 1 term 1 4 Mandatory T-MATH-105912 **Numerical Continuation Methods** 5 CR Reichel

Prerequisites

M 2.145 Module: Numerical Linear Algebra for Scientific High Performance Computing [M-MATH-103709]

Responsible: Prof. Dr. Hartwig Anzt **Organisation:** KIT Department of Mathematics **Applied Mathematics (Elective Field Applied Mathematics)** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Recurrence Duration Language Level Version Grade to a tenth 1 term 5 Irregular English 4 2 Mandatory T-MATH-107497 Numerical Linear Algebra for Scientific High Performance 5 CR Anzt Computing

Prerequisites

2.146 Module: Numerical Linear Algebra in Image Processing [M-Μ MATH-104058] **Responsible:** PD Dr. Volker Grimm **Organisation:** KIT Department of Mathematics Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Recurrence Duration Level Version Grade to a tenth 6 Irregular 1 term 4 1 Mandatory T-MATH-108402 Numerical Linear Algebra in Image Processing 6 CR Grimm

Prerequisites

Wieners

2.147 Module: Numerical Methods for Differential Equations [M-Μ MATH-102888] Prof. Dr. Willy Dörfler **Responsible:** Prof. Dr. Tobias Jahnke **Organisation:** KIT Department of Mathematics **Applied Mathematics (Elective Field Applied Mathematics)** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations Credits **Grading scale** Recurrence Duration Level Version 8 Grade to a tenth Each winter term 1 term 4 1 Mandatory T-MATH-105836 **Numerical Methods for Differential Equations** 8 CR Dörfler, Hochbruck, Jahnke, Rieder,

2.148 Module: Numerical Methods for Hyperbolic Equations [M-MATH-102915] Μ

CreditsGrading scaleRecurrenceDurationLevelVersion6Grade to a tenthIrregular1 term41	Responsible: Organisation: Part of:	KIT Ap Ma	plied Math	nt of Mathematics ematics (Elective Fiel Specialization (Elect		alizatior	1)	
				-		 	Version	1
	T-MATH-105900		Numerical	Methods for Hyperbo	lic Equations		6 CR	Dörfler

Prerequisites

none

Competence Goal

2.149 Module: Numerical Methods for Integral Equations [M-MATH-102930]

Responsible: Organisation: Part of:	KIT App Mat	lied Mathe hematical	ens nt of Mathematics ematics (Elective Fiel Specialization (Elect aminations			alization))	
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory								
T-MATH-105901	N	lumerical	Methods for Integral	Equations			8 CR	Arens, Hettlich

M 2.150	M	odule: N	umerical Met	hods for M	axwell's	Equati	ions [M-	MATH-102931]
Responsible:		of. Dr. Marlis of. Dr. Tobia	s Hochbruck s Jahnke					
Organisation:	KIT	Departmer	nt of Mathematics					
Part of:	Ma		ematics (Elective Fiel Specialization (Elect minations			ializatior	ו)	
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105920		Numerical I	Methods for Maxwell	's Equations			6 CR	Hochbruck, Jahnke

M 2.151 Module: Numerical Methods for Time-Dependent Partial Differential Equations [M-MATH-102928]

Responsible: Organisation: Part of:	KIT Ap Ma	Departmen	s Hochbruck nt of Mathematics ematics (Elective Fiel Specialization (Elect eminations			ialization)	
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105899		Numerical I Equations	Methods for Time-De	ependent Partia	l Differential		8 CR	Hochbruck, Jahnke

M 2.152 Module: Numerical Methods in Computational Electrodynamics [M-MATH-102894]

Responsible: Prof. Dr. Willy Dörfler **Organisation:** KIT Department of Mathematics Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Recurrence Duration Level Version Grade to a tenth 6 Irregular 1 term 4 1 Mandatory 6 CR T-MATH-105860 **Numerical Methods in Computational Electrodynamics** Dörfler, Hochbruck, Jahnke, Rieder, Wieners

Prerequisites

M 2.153	Мс	odule: N	umerical Met	hods in Flu	id Mecha	nics [N	1-MATH	I-102932]
Responsible:		f. Dr. Willy Dr. Gudrun						
Organisation:	KIT	Departmer	nt of Mathematics					
Part of:	Mat		matics (Elective Fiel Specialization (Elect minations			ialization)	1	
		Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105902	ľ	Numerical N	Methods in Fluid Med	chanics			4 CR	Dörfler, Thäter

2.154 Module: Numerical Methods in Mathematical Finance [M-MATH-102901]

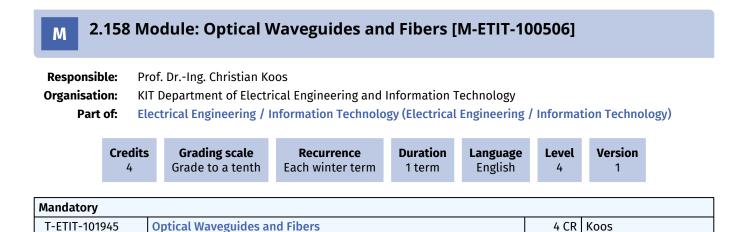
Responsible: Organisation:		f. Dr. Tobia Departme	as Jahnke nt of Mathematics					
Part of:	Mat	thematical	ematics (Elective Fiel Specialization (Elect aminations			alization))	
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105865	I	Numerical	Methods in Mathema	tical Finance			8 CR	Jahnk

Prerequisites

M 2.155 Module: Numerical Methods in Mathematical Finance II [M-MATH-102914]

CreditsGrading scaleRecurrenceDurationLevelVersion8Grade to a tenthIrregular1 term41	Responsible: Organisation: Part of:	KIT Ap Ma	plied Mathe thematical	as Jahnke nt of Mathematics ematics (Elective Fiel Specialization (Elect aminations			ialization))	
				-		2414101		Version	1
	Mandatory								
Mandatory	T-MATH-105880		Numerical	Methods in Mathema	tical Finance II			8 CR	Jah

Prerequisites


2.156 Module: Numerical Optimisation Methods [M-MATH-102892] Μ **Responsible:** Prof. Dr. Christian Wieners **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Level Version Recurrence 8 Grade to a tenth Irregular 1 term 1 4 Mandatory T-MATH-105858 Numerical Optimisation Methods 8 CR Dörfler, Hochbruck, Jahnke, Rieder, Wieners

M 2.157 Module: Numerical Simulation in Molecular Dynamics [M-MATH-105327]

Credits 8Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLanguage GermanLevel 4Version 1

Prerequisites

None

Com	petence	Certificate

Type of Examination: Oral exam

Duration of Examination: approx. 20 minutes

Modality of Exam: The written exam is offered continuously upon individual appointment.

Prerequisites None

Competence Goal

The students

- conceive the basic principles of light-matter-interaction and wave propagation in dielectric media and can explain the origin and the implications of the Lorentz model and of Kramers-Kronig relation,
- are able to quantitatively analyze the dispersive properties of optical media using Sellmeier relations and scientific databases,
- can explain and mathematically describe the working principle of an optical slab waveguide and the formation of guided modes,
- are able to program a mode solver for a slab waveguide in Matlab,
- are familiar with the basic principle of surface plasmon polariton propagation,
- know basic structures of planar integrated waveguides and are able to model special cases with semi-analytical approximations such as the Marcatili method or the effective-index method,
- are familiar with the basic concepts of numerical mode solvers and the associated limitations,
- are familiar with state-of-the-art waveguide technologies in integrated optics and the associated fabrication methods,
- know basic concepts of of step-index fibers, graded-index fibers and microstructured fibers,
- are able to derive and solve basic relations for step-index fibers from Maxwell's equations,
- are familiar with the concept of hybrid and linearly polarized fiber modes,
- can mathematically describe signal propagation in single-mode fibers design dispersion-compensated transmission links,
- conceive the physical origin of fiber attenuation effects,
- are familiar with state-of-the-art fiber technologies and the associated fabrication methods,
- can derive models for dielectric waveguide structures using the mode expansion method,
- conceive the principles of directional couplers, multi-mode interference couplers, and waveguide gratings,
- can mathematically describe active waveguides and waveguide bends.

Content

- 1. Introduction: Optical communications
- 2. Fundamentals of wave propagation in optics: Maxwell's equations in optical media, wave equation and plane waves, material dispersion, Kramers-Kroig relation and Sellmeier equations, Lorentz and Drude model of refractive index, signal propagation in dispersive media.
- 3. Slab waveguides: Reflection from a plane dielectric boundary, slab waveguide eigenmodes, radiation modes, interand intramodal dispersion, metal-dielectric structures and surface plasmon polariton propagation.
- 4. Planar integrated waveguides: Basic structures of integrated optical waveguides, guided modes of rectangular waveguides (Marcatili method and effective-index method), basics of numerical methods for mode calculations (finite difference- and finite-element methods), waveguide technologies in integrated optics and associated fabrication methods
- 5. Optical fibers: Optical fiber basics, step-index fibers (hybrid modes and LP-modes), graded-index fibers (infinitely extended parabolic profile), microstructured fibers and photonic-crystal fibers, fiber technologies and fabrication methods, signal propagation in single-mode fibers, fiber attenuation, dispersion and dispersion compensation
- 6. Waveguide-based devices: Modeling of dielectric waveguide structures using mode expansion and orthogonality relatons, multimode interference couplers and directional couplers, waveguide gratings, material gain and absorption in optical waveguides, bent waveguides

Module grade calculation

The module grade is the grade of the oral exam.

There is, however, a bonus system based on the problem sets that are solved during the tutorials: During the term, 3 problem sets will be collected in the tutorial and graded without prior announcement. If for each of these sets more than 70% of the problems have been solved correctly, a bonus of 0.3 grades will be granted on the final mark of the oral exam.

Workload

Total 120 h, hereof 45 h contact hours (30 h lecture, 15 h tutorial) and 75 h homework and self-studies.

Recommendation

Solid mathematical and physical background, basic knowledge of electrodynamics

Literature

B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics

G.P. Agrawal: Fiber-optic communication systems

C.-L. Chen: Foundations for guided-wave optics

Katsunari Okamoto: Fundamentals of Optical Waveguides

K. Iizuka: Elements of Photonics

2.159 Module: Optimal Control and Estimation [M-ETIT-102310] Μ **Responsible:** Prof. Dr.-Ing. Sören Hohmann **Organisation:** KIT Department of Electrical Engineering and Information Technology Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology) Credits Language **Grading scale** Duration Version Recurrence Level 3 Grade to a tenth Each summer term 1 term German 1 1 Mandatory T-ETIT-104594 **Optimal Control and Estimation** 3 CR Hohmann

Prerequisites

M 2.160 Module: Optimisation and Optimal Control for Differential Equations [M-MATH-102899]

Responsible: Organisation:		ristian Wieners nent of Mathematics					
Part of:	Mathematic	thematics (Elective Fie al Specialization (Elect Examinations			alization)		
	Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-105864	Optimisa	tion and Optimal Cont	rol for Different	ial Equations		4 CR	

Prerequisites

M 2.161 Module: Optimization in Banach Spaces [M-MATH-102924]

Responsible: Organisation: Part of:	KIT App App Mat	Departmen blied Mathe blied Mathe thematical	nd Griesmaier nt of Mathematics ematics (Analysis) ematics (Elective Fiel Specialization (Elect aminations			alization))	
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 2	1
Mandatory								
T-MATH-105893	(Optimizatio	on in Banach Spaces				5 CR	Griesmaier, Hettlich

Competence Certificate

The exam takes place in form of an oral examination of approximately 30 minutes.

Prerequisites

none

Competence Goal

The students can transfer properties from finite dimensional optimization problems to infinite dimensional cases. Furthermore, they can apply these results to problems from approximation theory, calculus of variation and optimal control. The students know about the main theorems and their proofs and can explain conclusions with the help of examples.

Content

Basics from Functional Analysis (in particular separation theorems, properties of convex functions and generalized derivatives), duality theory of convex problems, differentiable optimization problems (Lagrange multiplier), sufficient optimality conditions, existence results, applications in approximation theory, calculus of variation, and optimal control theory.

Module grade calculation

The grade of the module is the grade of the oral examination.

Workload

Total workload: 150 hours

Time of attendance: 60 hours


lecture including course related examinations

Self-study: 90 hours

- enhancement of course content by post-processing the lectures at home
- working on exercises
- enhancement of course content by additional literature and internet research
- · preparation of the course related modul-exam

Recommendation

Some basic knowledge of finite dimensional optimization theory and functional analysis is desirable.

Competence Certificate

The assessment consists of a written exam (120 min) taking place in the recess period.

Prerequisites

none

Competence Goal

- The students know as well the mathematical basics as the fundamental methods and algorithms to solve constraint and unconstraint nonlinear static optimization problems.

- They can solve constraint and unconstraint dynamic optimization by using the calculus of variations approach and the Dynamic Programming method.

- Also they are able to transfer dynamic optimization problem to static problems.

- The students know the mathematic relations, the pros and cons and the limits of the particular optimization methods.

- They can transfer problems from other fields of their studies in a convenient optimization problem formulation and they are able to select and implement suitable optimization algorithms for them by using common software tools.

Content

The module teaches the mathematical basics that are required to solve optimization problems. The first part of the lecture treats methods for solving static optimization problems. The second part of the lecture focuses on solving dynamic optimization problems by using the method of Euler-Lagrange and the Hamilton method as well as the dynamic programming approach.

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point stands for an amount of work of 30h of the student. The amount of work includes

1. presence in lecture/exercises/tutorial(optional) (2+1 SWS: 45h1.5 LP)

- 2. preparation/postprocessing of lecture/exercises (90h3 LP)
- 3. preparation/presence in the written exam (15h0.5 LP)

M 2.163	Module: F	Parallel Compu	ting [M-MA	TH-10133	38]		
Responsible:	PD Dr. Mathia Prof. Dr. Chris	as Krause stian Wieners					
Organisation:	KIT Departme	ent of Mathematics					
Part of:		ematics (Elective Fiel l Specialization (Elect caminations			alization)		
	Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-102271	Parallel Co	omputing				5 CR	Krause, Wieners

Prerequisites

None

M 2.164	Mo	dule: Particle l	Physics I [M-PH	YS-10211	4]		
Responsible:	Prof Prof Prof	. Dr. Torben Ferber . Dr. Ulrich Huseman . Dr. Markus Klute . Dr. Günter Quast or. Klaus Rabbertz	n				
Organisation:	KIT [Department of Physic	CS				
Part of:	Expe	erimental Physics (Ex	perimental Physics)				
Cre	dits	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level	Version

Mandatory			
T-PHYS-102369	Particle Physics I	8 CR	Ferber, Husemann, Klute, Quast, Rabbertz

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students can classify elementary particles and qualitatively analyze interactions between elementary particles using symmetries, Feynman diagrams and Lagrangian densities. Combining this knowledge with knowledge of elementary particle detection, students will be able to discuss the operation of modern particle physics detectors. Students will be able to interpret current data and figures from the scientific literature on particle physics and present the current state of research and important "open questions". Students will be able to apply techniques of statistical data analysis and Monte Carlo simulation to simple particle physics problems and perform basic characterization of silicon track detectors in the laboratory.

Content

Lecture:

- Basic concepts of particle physics
- Detectors and accelerators
- Basics of the Standard Model
- Tests of the electroweak theory
- Flavour physics
- QCD
- Physics at high transverse momenta
- Higgs physics
- · Physics of massive neutrinos
- Physics beyond the Standard Model

Practical exercises:

- Current methods of Monte Carlo simulation and data analysis in particle physics.
- Measurements on modern silicon track detectors.

Annotation

For students of the KIT Faculty of Computer Science: The exams in this module have to be registered via admissions from ISS (KIT Faculty of Computer Science). For this, an e-mail with matriculation numbers and name of the desired exam to Beratung-informatik.kit.edu is sufficient.

Workload

approx. 240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (180 hours)

Recommendation

Basic knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the bachelor's program in physics.

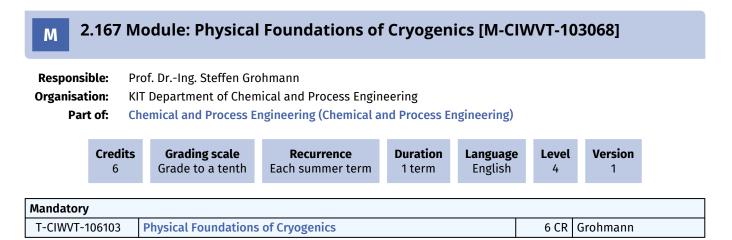
Literature

M. Thomson: Modern Particle Physics, Cambridge University Press (2013). D. Griffith: Introduction to Elementary Particles, Wiley (2008). A. Bettini: Introduction to Elementary Particle Physics, Cambridge University Press (2008). C. Berger: Elementarteilchenphysik, Springer (2006).

Additional references will be given in lecture.

2.165 Module: Pattern Recognition [M-INFO-100825] Μ **Responsible:** Prof. Dr.-Ing. Jürgen Beyerer **Organisation:** KIT Department of Informatics Part of: **Computer Science** Credits Language Grading scale Duration Version Recurrence Level Grade to a tenth 6 Each summer term 1 term German 4 2 Mandatory T-INFO-101362 **Pattern Recognition** 6 CR Beyerer, Zander

M 2.166	Mo	odule: P	ercolation [M-	MATH-1029	905]				
Responsible:Prof. Dr. Günter LastOrganisation:KIT Department of MathematicsPart of:Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations									
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 2		
Mandatory									
T-MATH-105869		Percolation					5 CR	Hug, Last, Winter	


Prerequisites

none

Competence Goal

The students

- are acquainted with basic models of discrete and continuum percolation,
- acquire the skills needed to use specific probabilistic and graph-theoretical methods for the analysis of these models,
- know how to work self-organised and self-reflexive.

Competence Certificate

The examination is an oral examination with a duration of 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Understanding of the mechanisms of entropy generation, and the interaction of the first and the second law in thermodynamic cycles; understanding of cryogenic material properties; application, analysis and assessment of real gas models for classical helium I; understanding of quantum fluid properties of helium II based on Bose-Einstein condensation, understanding of cooling principles at lowest temperatures.

Content

Relation between energy and temperature, energy transformation on microscopic and on macroscopic scales, physical definitions of entropy and temperature, thermodynamic equibria, reversibility of thermodynamic cycles, helium as classical and as quantum fluid, low-temperature material properties, cooling methods at temperatures below 1 K.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 45 h
- Exam Preparation: 90 h

Literature

Schroeder, D.V.: An introduction to thermal physics. Addison Wesley Longman (2000) Pobell; F.: Matter and methods at low temperatures. 3rd edition, Springer (2007)

2.168 Module: Poisson Processes [M-MATH-102922] Μ **Responsible:** Prof. Dr. Günter Last **Organisation: KIT Department of Mathematics** Applied Mathematics (Elective Field Applied Mathematics) Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Version Recurrence Level Grade to a tenth 5 Irregular 1 term 1 4 Mandatory T-MATH-105922 **Poisson Processes** 5 CR Fasen-Hartmann, Hug, Last, Winter

Competence Certificate

oral exam

Prerequisites

none

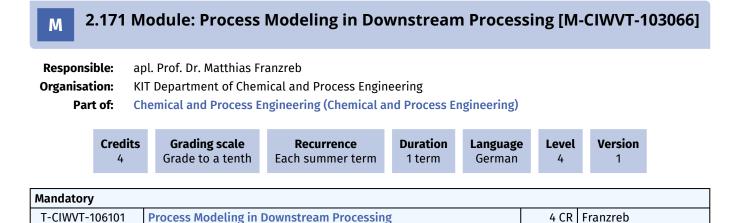
Competence Goal

The students know about important properties of the Poisson process. The focus is on probabilistic methods and results which are independent of the specific phase space. The students understand the central role of the Poisson process as a specific point process and as a random measure.

Content

- Distributional properties of Poisson processes
- The Poisson process as a particular point process
- stationary Poisson and point processes
- Random measures and Cox processes
- Poisson cluster processes and compound Poisson processes
- The spatial Gale-Shapley algorithm

Module grade calculation


Marking: grade of exam

M 2.169	Module: P	otential Theor	y [M-MATH	I-102879]			
Responsible:Prof. Dr. Roland GriesmaierOrganisation:KIT Department of MathematicsPart of:Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations							
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory							
T-MATH-105850	Potential T	heory				8 CR	Arens, Griesmaier, Hettlich, Reichel

M 2.170 Module: Probability Theory and Combinatorial Optimization [M-MATH-102947]

Responsible: Organisation: Part of:	KIT Ap	of. Dr. Daniel Hug T Department of Mathematics oplied Mathematics (Elective Field Applied Mathematics) athematical Specialization (Elective Field Mathematical Specialization)							
		thematical ditional Exa Credits 8		tive Field Mather Recurrence Irregular	matical Speci Duration 1 term	Level	Version 1		
Mandatory							_		
T-MATH-105923		Probability Theory and Combinatorial Optimization 8 CR Hug, Last							

Prerequisites

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students are able to sum up and explain equilibrium and kinetic equations relevant for chromatography modeling. They are able to explain the methods used for determination of equilibrium and kinetic parameters and can discuss examples. They are familiar with the principle of complex downstream processes, e.g. simulated moving beds, and can explain the differences to conventional chromatography. Using commercial software they are able to simulate chromatography processes and to analyze the results. On this basis they can optimize process parameters and fit them in order to meet given targets such as purity or yield. They can evaluate different processes and choose the variant for a given task.

Content

Fundamentals and practical examples of chromatography modeling, Design rules for Simulated Moving Beds, Design of Experiments (DOE)

Workload

- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h

M 2.172 Module: Processing of Nanostructured Particles [M-CIWVT-103073]

Responsible:Prof. Dr.-Ing. Hermann NirschlOrganisation:KIT Department of Chemical and Process EngineeringPart of:Chemical and Process Engineering (Chemical and Process Engineering)

	Credits 6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
datorv							

Mandatory			
T-CIWVT-106107	Processing of Nanostructured Particles	6 CR	Nirschl

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

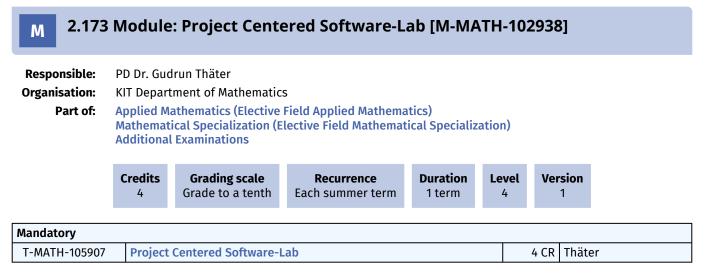
Ability to design a process technology for the manufacturing and production of nanoscale particles

Content

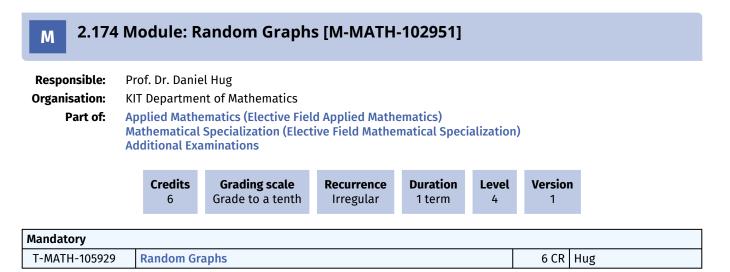
Development of technical process in particle engineering; particle characterisation, interface engineering, particle synthesis; Typical processes: grinding, mixing, ganulation, selective separation,

classifying; fundamentals of apparatus and devices; simulation techniques, simulation tools

Module grade calculation


The grade of the oral examination is the module grade.

Workload


- Attendance time (Lecture): 60 h
- Homework: 60 h
- Exam Preparation: 60 h

Literature

Skriptum zur Vorlesung

Prerequisites

Prerequisites

none

Annotation

cannot be completed together with M-MATH-106052 - Zufällige Graphen und Netzwerke

2.175 Module: Random Graphs and Networks [M-MATH-106052] Μ **Responsible:** Prof. Dr. Daniel Hug **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Grading scale Credits Duration Recurrence Language Version Level Grade to a tenth 8 Irregular 1 term English 4 1 Mandatory T-MATH-112241 **Random Graphs and Networks** 8 CR Hug

Competence Certificate

oral exam of ca. 30 min

Prerequisites

none

Content

In the course, models of random graphs and networks are presented and methods will be developed which allow to state and prove results about the structure of such models.

In particular, the following models are treated:

- Erdös--Renyi graphs
- Configuration models
- Preferential-Attachment graphs
- · Generalized inhomogeneous random graphs
- · Geometric random graphs

and the following methods are addressed:

- Branching processes
- Coupling arguments
- Probabilistic bounds
- Martingales
- Local convergence of random graphs

Module grade calculation

The grade of the module is the grade of the oral exam.

Annotation

can not be completed together with M-MATH-102951 - Random Graphs

Workload

Total workload: 240 hours

Recommendation

The contents of the module 'Probability Theory' are strongly recommended.

M 2	.176 M	lodule: Real-Tin	ne Systems [M-II	NFO-1008	03]		
Responsi Organisat Par	ion: KI	rof. DrIng. Thomas Lä T Department of Infor omputer Science	•				
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory	1						
T-INFO-10	1340	Real-Time Systems				6 CR	Längle

2.177 Module: Robotics I - Introduction to Robotics [M-INFO-100893]

Responsible:	Prof. DrIng. Tamim Asfour
Organisation:	KIT Department of Informatics
Part of:	Computer Science

Credits 6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German/English	Lev 4	el Version 3
Mandatory						
T-INFO-108014 Robotics I - Introduction to Robotics						Asfour

Competence Certificate

See partial achivements (Teilleistung)

Prerequisites

See partial achivements (Teilleistung)

Competence Goal

The student is able to apply the presented concepts to simple and realistic tasks from robotics. This includes mastering and deriving the mathematical concepts relevant for robot modeling. Furthermore, the student masters the kinematic and dynamic modeling of robot systems, as well as the modeling and design of simple controllers. The student knows the algorithmic basics of motion and grasp planning and can apply these algorithms to problems in robotics. He/she knows algorithms from the field of image processing and is able to apply them to problems in robotics. He/she is able to model and solve tasks as a symbolic planning problem. The student has knowledge about intuitive programming procedures for robots and knows procedures for programming and learning by demonstration.

Content

The lecture provides an overview of the fundamentals of robotics using the examples of industrial robots, service robots and autonomous humanoid robots. An insight into all relevant topics is given. This includes methods and algorithms for robot modeling, control and motion planning, image processing and robot programming. First, mathematical basics and methods for kinematic and dynamic robot modeling, trajectory planning and control as well as algorithms for collision-free motion planning and grasp planning are covered. Subsequently, basics of image processing, intuitive robot programming especially by human demonstration and symbolic planning are presented.

In the exercise, the theoretical contents of the lecture are further illustrated with examples. Students deepen their knowledge of the methods and algorithms by independently working on problems and discussing them in the exercise. In particular, students can gain practical programming experience with tools and software libraries commonly used in robotics.

Workload

Lecture with 3 SWS + 1 SWS Tutorial, 6 LP 6 LP corresponds to 180 hours, including 15 * 3 = 45 hours attendance time (lecture) 15 * 1 = 15 hours attendance time (tutorial) 15 * 6 = 90 hours self-study and exercise sheets 30 hours preparation for the exam

M 2.178 Module: Robotics III - Sensors and Perception in Robotics [M-INFO-104897]

Responsible:Prof. Dr.-Ing. Tamim AsfourOrganisation:KIT Department of InformaticsPart of:Computer Science

Cred 3	lits	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	Level 4	Version 1
Mandatory							
T-INFO-109931	F-INFO-109931 Robotics III - Sensors and Perception in Robotics						Asfour

Competence Certificate

See partial achivements (Teilleistung)

Prerequisites

See partial achivements (Teilleistung)

Competence Goal

The student can name the main sensor principles used in robotics.

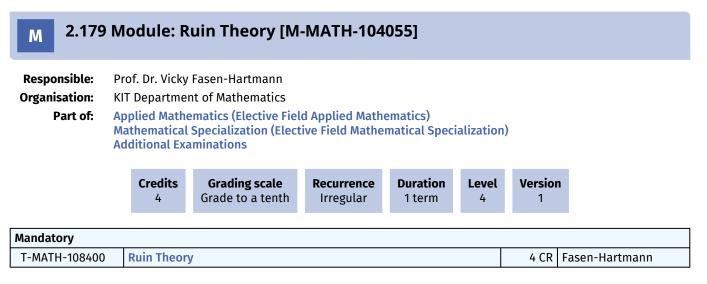
The student can explain the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and semantic scene understanding.

The student is able to propose and justify suitable sensor concepts for common tasks in robotics.

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object detection, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).


The second part of the lecture concentrates on the use and interpretation of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object detection, simultaneous localization and mapping (SLAM) and semantic scene understanding.

Workload

Lecture with 2 SWS, 3 LP 3 LP corresponds to 90 hours, including 15 * 2 = 30 hours attendance time 15 * 2 = 30 hours self-study 30 hours preparation for the exam

Recommendation

Attending the lecture Robotics I – Introduction to Robotics is recommended.

Prerequisites

None

M 2.180	Module: S	cattering Theo	ory [M-MAT	H-102884	1]		
Responsible:PD Dr. Frank HettlichOrganisation:KIT Department of MathematicsPart of:Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations							
	Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							
T-MATH-105855	Scattering	Theory					Arens, Griesmaier, Hettlich

M 2	2.181 N	lodule: Securi	ty [M-INFO-10083	4]				
Responsi Organisat Par	ion: K	rof. Dr. Jörn Müller-(IT Department of In omputer Science	•					
	Credits 6	Grading scale Grade to a tent	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory	,							
T-INFO-10	1371	Security					Hofheinz, Mi Quade	iller-

M 2.182 Module: Selected Methods in Fluids and Kinetic Equations [M-MATH-105897]

Responsible: Organisation: Part of:	KIT Ma	Prof. Dr. Wolfgang Reichel KIT Department of Mathematics Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations							
	Credi 3	its	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language English	Level 4	Version 1	
Mandatory									
T-MATH-111853		Selected Methods in Fluids and Kinetic Equations					3 CI	2	

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The main aim of this lecture is to introduce students to tools and techniques developed in recent years to analyze the evolution of fluids and kinetic equations.

The students will learn how to use these techniques and how to apply them to families of equations.

Content

In this lecture we discuss selected techniques and tools that have lead to significant progress in the analysis of fluids and kinetic eqautions.

These, for instance, include:

- energy methods and local well-posedness results (e.g. fixed point results, Osgood lemma)
- Newton iteration
- Cauchy-Kowalewskaya and ghost energy approaches

No prior knowledge of fluids or kinetic equations is required.

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Total workload: 90 hours

Attendance: 30 h

lectures and examination

Self studies: 60 h

- follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- preparation for the module examination

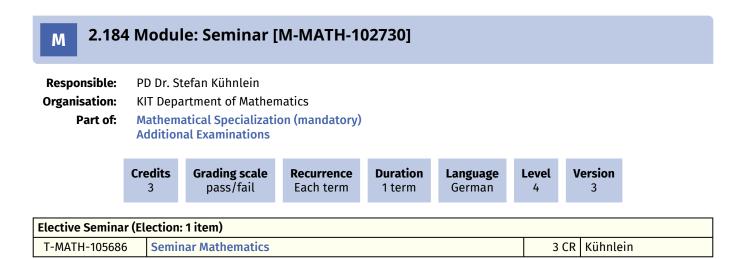
Recommendation

The modules "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

M 2.183 Module: Selected Topics in Harmonic Analysis [M-MATH-104435]

Responsible: Organisation:		Hundertmark ent of Mathematics					
Part of:		ematics (Analysis) l Specialization (Elect aminations	ive Field Mathe	matical Speci	alization))	
	Credits 3	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	1
Mandatory							
T-MATH-109065	Selected T	opics in Harmonic An	alysis			3 CR	Hundertmark

Prerequisites


None

Competence Goal

The students are familiar with the concepts of singular integral operators and weighted estimates in Harmonic Analysis. They know the relations between the BMO space and the Muckenhoupt weights and also how to use dyadic analysis operators to obtain estimates for Calderon-Zygmund operators.

Content

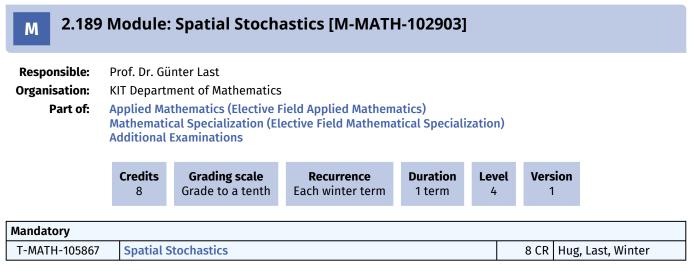
- Calderon-Zygmund and Singular Integral operators
- BMO space and Muckenhoupt weights
- Reverse Holder Inequality and Factorisation of Ap weights
- Extrapolation Theory and weighted norm inequalities for singular integral operators

M 2.185 Module: Seminar Advanced Topics in Parallel Programming [M-INFO-101887]

Responsible:Prof. Dr. Achim StreitOrganisation:KIT Department of InformaticsPart of:Computer Science

	Credits 3	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German/Englis	-	vel Version 4 1	
Mandat	ory	1						
T-INFO	-103584	Seminar Advanced		3 CR	Streit			

M 2.186	Мс	odule: S	obolev Spaces	[M-MATH-	102926]			
Responsible: Organisation: Part of:	KIT App App Mat	Departme blied Mathe blied Mathe thematical	nd Schnaubelt nt of Mathematics ematics (Analysis) ematics (Elective Fiel Specialization (Elect aminations			ialization)	
		Credits 5	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory								
T-MATH-105896	9	Sobolev Sp	aces				5 CR	Schnaubelt


M 2.	.187 N	100	dule: Software	Engineering II	[M-INFO	-100833]			
Responsik Organisati Part	Р оп: К	rof. IT D	DrIng. Anne Koziol Dr. Ralf Reussner Department of Inform <mark>puter Science</mark>						
	Credit: 6	s	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory									
T-INFO-101370 Software Engineering II 6 CR Koziolek, Re						eussner			

Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domaindriven design

M 2.188 Module: Space and Time Discretization of Nonlinear Wave Equations [M-MATH-105966]

Responsible: Organisation: Part of:	KIT Departr Applied Ma Mathematic	rlis Hochbruck nent of Mathematics thematics (Elective Fiel cal Specialization (Elect Examinations			alization)	
	Credit: 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory T-MATH-112120	Space ar	d Time Discretization o	of Nonlinear Wa	ve Equations		6 CR	Hochbruck

none

Competence Goal

The students are familiar with some basic spatial stochastic processes. They do not only understand how to deal with general properties of distributions, but also know how to describe and apply specific models (Poisson process, Gaussian random fields). They know how to work self-organised and self-reflexive.

Content

- Point processes
- Random measures
- Poisson processes
- Gibbs point processes
- Ralm distributions
- Spatial ergodic theorem
- Spectral Theory of random fields
- Gaussian fields

Recommendation

It is recommended to attend the following modules beforehand: Probability Theory

Neher

2.190 Module: Special Topics of Numerical Linear Algebra [M-MATH-102920]

Responsible: Organisation: Part of:	KIT Dep Applie Mather	partmer d Mathe matical	s Hochbruck ht of Mathematics ematics (Elective Fiel Specialization (Elect minations			alization)	
	Cr	redits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory T-MATH-105891	Spe	cial Top	ics of Numerical Line	ear Algebra			8 CR	Grimm, Hochbruck,

Prerequisites

none

M 2	.191	Мо	dule: Spectral	Theory [M-MAT	H-101768	3]			
Responsi Organisat Par		KIT App App Mat	f. Dr. Dorothee Frey Department of Mathe lied Mathematics (Ar lied Mathematics (El chematical Specializa litional Examinations	nalysis) ective Field Applied Ma tion (Elective Field Mat	athematics) thematical Sp	pecialization))		
	Cred 8	3333				Language German	Level 4	Version 1	
Mandatory	1								
T-MATH-1	03414	S	pectral Theory - Exa	m			8 CR	Frey, Herzog Kunstmann, Schnaubelt,	

Recommendation

It is recommended to attend the module 'Functional Analysis' previously.

Mandatory T-MATH-105851 **Additional Examinations**

Grading scale

Grade to a tenth

Spectral Theory of Differential Operators

Credits

8

M 2.192	Module: Spectral Theory of Differential Operators [M-MATH-102880]
Responsible:	Prof. Dr. Michael Plum
Organisation:	KIT Department of Mathematics
Part of:	Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization)

Recurrence

Irregular

Duration

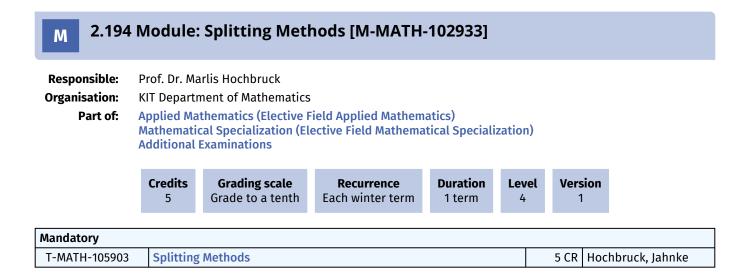
1 term

Level

4

Version

1


8 CR Plum

6 D:66

Techno-Mathematics Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 20/04/2023

2.193 Module: Spin Manifolds, Alpha Invariant and Positive Scalar Curvature [M-MATH-102958]

Responsible: Organisation: Part of:	KIT Ap Ma	Dep plied	. Wilderich Tuschma artment of Mathema Mathematics (Elect natical Specialization nal Examinations	atics ive Field Applie			n)	
	Credi 5	its	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1

2.195 Module: Splitting Methods for Evolution Equations [M-MATH-105325]

Responsible: Organisation:		of. Dr. Tobia Departme	as Jahnke nt of Mathematics					
Part of:	Ma	thematical	ematics (Elective Fiel Specialization (Elect aminations			alization))	
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	Ì
Mandatory								
T-MATH-110805		Splitting M	ethods for Evolution	Equations			6 CR	Jahn

Prerequisites

None

M 2.196	ō Module	: Statistical Lear	ning [M-MA	ATH-10584	40]		
Responsible:	Prof. Dr. M	athias Trabs					
Organisation:	KIT Depart	ment of Mathematics					
Part of:	Mathemati	athematics (Elective Fie ical Specialization (Elec Examinations			alization)		
	Credit 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1	
Mandatory							

Manualory			
T-MATH-111726	Statistical Learning	8 CR	Trabs

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The students will

- know the fundamental principles and problems of machine learning and can relate learning methods to these principles,
- · be able to explain how certain learning methods work and can apply them,
- · be able to devolop and to discuss a statistical analysis of certain learning methods,
- be able to understand independently and to apply new learning methods.

Content

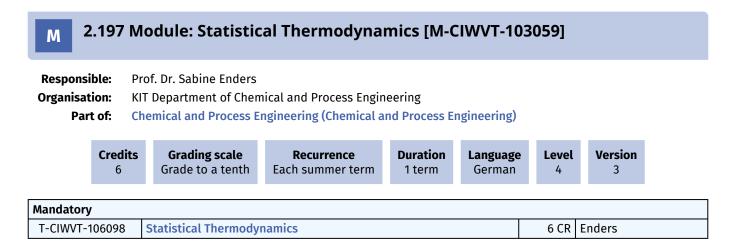
1 Regression

- 1.1 Empirical risk minimization
- 1.2 Lasso
- 1.3 Random forests
- 1.4 Neuronal networks
- 2 Classification
- 2.1 Bayes classifier
- 2.2 Logistic regression
- 2.3 Discriminant analysis
- 2.4 k nearest neighbour
- 2.5 Support vector machines
- 3 Unsupervised learning
- 3.1 Principal component analysis
- 3.2 Generative networks

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload


Total effort: 240 hours

The workload consists of:

- attendence time in lectures (including the exam): 90 hours
- self-study (including preparation and post-processing of lectures, solving of weekly excerises, preparation for the exam): 150 hours

Recommendation

The module "Probability Theory" is strongly recommended. The module "Statistics" (M-MATH-103220) is recommended.

Thermodynamics III

Modeled Conditions

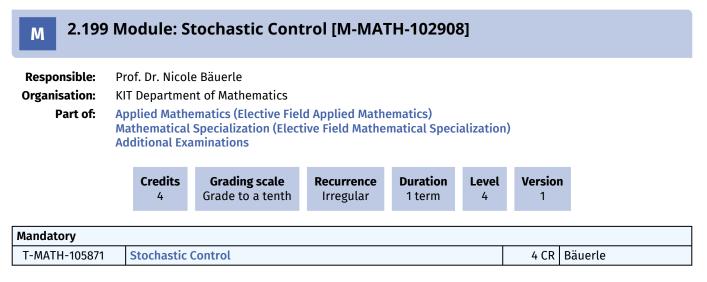
The following conditions have to be fulfilled:

1. The module M-CIWVT-103058 - Thermodynamics III must have been passed.

Competence Goal

The students are able to understand the basics of statistical mechanics and they are able to recognize the advantage and disadvantage for application in chemical engineering.

Content

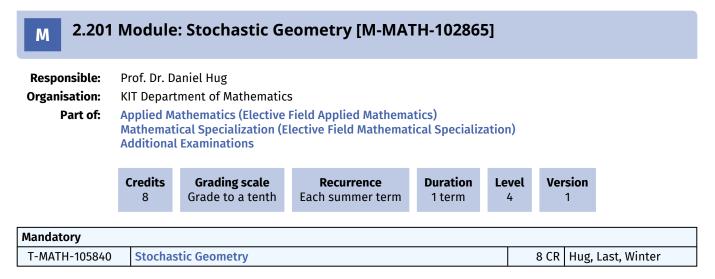

Boltzmann-method, Gibbs-method, real gases, quations of state, polymers

2.198 Module: Steins Method with Applications in Statistics [M-MATH-105579]

Responsible: Organisation: Part of:	KIT App Mat	Dr. rer. nat. Bruno Ebner KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations								
		Credits 4	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1			
Mandatory								Ebner, Hug		
T-MATH-111187	5	Steins Metl	nod with Application	Steins Method with Applications in Statistics						

Prerequisites

None


none

2.200 Module: Stochastic Differential Equations [M-MATH-102881] Μ **Responsible:** Prof. Dr. Dorothee Frey **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Recurrence Duration Level Version 8 Grade to a tenth Irregular 1 term 1 4

Mandatory			
T-MATH-105852	Stochastic Differential Equations	8 CR	Frey, Schnaubelt

Content

- Brownian motion
- Martingales and Martingal inequalities
- Stochastic integrals and Ito's formula
- Existence and uniqueness of solutions for systems of stochastic differential equations
- · Perturbation and stability results
- · Application to equations in financial mathematics, physics and engineering
- · Connection with diffusion equations and potential theory

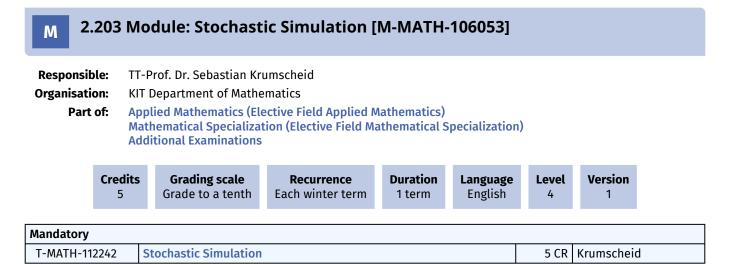
Competence Goal

The students

- · know the fundamental geometric models and characteristics in stochastic geometry,
- are familiar with properties of Poisson processes of geometric objects,
- know examples of applications of models of stochastic geometry,
- · know how to work self-organised and self-reflexive.

Content

- Random Sets
- Geometric Point Processes
- Stationarity and Isotropy
- Germ Grain Models
- Boolean Models
- Foundations of Integral Geometry
- Geometric densities and characteristics
- Random Tessellations


Recommendation

It is recommended to attend the module 'Spatial Stochastics' beforehand.

M 2.202 Module: Stochastic Information Processing [M-INFO-100829]

Responsible:Prof. Dr.-Ing. Uwe HanebeckOrganisation:KIT Department of InformaticsPart of:Computer Science

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1
Mandatory T-INFO-101366	Stochastic Informatio	n Processing			6 CP	Hanebeck

oral exam of ca. 30 min

Prerequisites

None

Competence Goal

After successfully taking part in the module's classes and the exam, students will be acquainted with sampling-based computational tools used to analyze systems with uncertainty arising in engineering,

physics, chemistry, and economics. Specifically, by the end of this course, students will be able to analyze the convergence of sampling algorithms and implement the discussed sampling methods for different

stochastic processes as computer codes. Understanding the advantages and disadvantages of different sampling-based methods, the students can, in particular, choose appropriate stochastic simulation

techniques and propose efficient sampling methods for a specific stochastic problem. In particular, they can name and discuss essential theoretical concepts, and understand the structure of the sampling-based computational methods. Finally, the course prepares students to write a thesis in the field of Uncertainty Quantification.

Content

The course covers mathematical concepts and computational tools used to analyze systems with uncertainty arising across various application domains. First, we will address stochastic modelling strategies to represent uncertainty in such systems. Then we will discuss sampling-based methods to assess uncertain system outputs via stochastic simulation techniques. The focus of this course will be on

the theoretical foundations of the discussed techniques, as well as their methodological realization as efficient computational tools. Topics covered include:

- Random variable generation
- Simulation of random processes
- Simulation of Gaussian random fields
- Monte Carlo method; output analysis
- Variance reduction techniques
- Rare event simulations
- Quasi Monte Carlo methods
- Markov Chain Monte Carlo methods (Metropolis-Hasting, Gibbs sampler)

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

total workload: 150 hours

Recommendation

The contents of the modules 'M-MATH-101321 - Introduction to Stochastics' and 'M-MATH-103214 – Numerical Mathematics 1+2' are recommended.

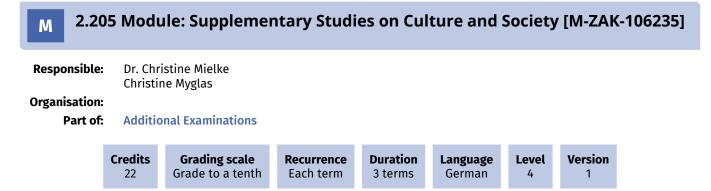
2.204 Module: Structural Graph Theory [M-MATH-105463] Μ **Responsible:** Prof. Dr. Maria Aksenovich **Organisation: KIT Department of Mathematics** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Version Recurrence Duration Language Level Grade to a tenth 4 Irregular 1 term English 4 1 Mandatory T-MATH-111004 **Structural Graph Theory** 4 CR Aksenovich

Prerequisites

None

Competence Goal

After successful completion of the course, the participants should be able to present and analyse main results in Structural Graph Theory. They should be able to establish connections between graph minors and other graph parameters, give examples, and apply fundamental results to related problems.


Content

The purpose of this course is to provide an introduction to some of the central results and methods of structural graph theory. Our main point of emphasis will be on graph minor theory and the concepts devised in Robertson and Seymour's intricate proof of the Graph Minor Theorem: in every infinite set of graphs there are two graphs such that one is a minor of the other.

Our second point of emphasis (time permitting) will be on Hadwiger's conjecture: that every graph with chromatic number at least r has a K_r minor. We shall survey what is known about this conjecture, including some very recent progress.

Recommendation

A solid background in the fundamentals of graph theory.

Election notes

With the exception of the final oral exam and the practice module, students have to self-record the achievements obtained in the Supplementary Studies on Culture and Society in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https:// campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bak.php. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements **both for your interdisciplinary qualifications and for the supplementary studies**, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the in-depth module, achievements have to be obtained in three different areas. The areas are as follows:

- Technology & Responsibility
- Doing Culture
- Media & Aesthetics
- Spheres of Life
- Global Cultures

You have to obtain two achievements with 3 credits each and one achievement with 5 credits. To self-record achievements in the in-depth module, you first have to elect the matching partial achievement.

<u>Note</u>: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §20 (2) of the regulations for the Supplementary Studies on Culture and Society. Your overall grade for the supplementary studies will thus be calculated as the average of the examantion grades, not as the average of the module grades.

Mandatory	Mandatory								
T-ZAK-112653	Basics Module - Self Assignment BAK	3 CR	Mielke, Myglas						
In-depth Module (Election: 3 items)									
T-ZAK-112654	In-depth Module - Technology & Responsibility - Self Assignment BAK	3 CR	Mielke, Myglas						
T-ZAK-112655	In-depth Module - Doing Culture - Self Assignment BAK	3 CR	Mielke, Myglas						
T-ZAK-112656	In-depth Module - Media & Aesthetics - Self Assignment BAK	3 CR	Mielke, Myglas						
T-ZAK-112657	In-depth Module - Spheres of Life - Self Assignment BAK	3 CR	Mielke, Myglas						
T-ZAK-112658	In-depth Module - Global Cultures - Self Assignment BAK	3 CR	Mielke, Myglas						
Mandatory									
T-ZAK-112660	Practice Module	4 CR	Mielke, Myglas						
T-ZAK-112659	Oral Exam - Supplementary Studies on Culture and Society	4 CR	Mielke, Myglas						

Competence Certificate

The monitoring is explained in the respective partial achievement.

They are composed of:

- minutes
- presentations
- a seminar paper
- an internship report
- an oral examination

After successful completion of the supplementary studies, the graduates receive a graded certificate and a KIT certificate.

The offer is study-accompanying and does not have to be completed within a defined period of time. Enrolment or acceptance for graduation must be present when registering for the final examination.

KIT students register for the supplementary studies by selecting this module in the student portal and self-checking a performance. In addition, registration for the individual courses is necessary, which is possible shortly before the beginning of each semester.

The course catalogue, statutes (study regulations), registration form for the oral exam, and guides for preparing the various written performance requirements can be found as downloads on the ZAK homepage at www.zak.kit.edu/begleitstudiumbak.

Competence Goal

Graduates of the Supplementary Studies on Culture and Society demonstrate a sound basic knowledge of conditions, procedures and concepts for analysing and shaping fundamental social development tasks in connection with cultural topics. They have gained a well-founded theoretical and practical insight into various cultural studies and interdisciplinary topics in the field of tension between culture, technology and society in the sense of an expanded concept of culture.

They are able to place the contents selected from the specialization module in the basic context as well as to analyse and evaluate the contents of the selected courses independently and exemplarily and to communicate about them scientifically in written and oral form. Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective.

Content

The Supplementary Studies on Culture and Society can be started from the 1st semester and is not limited in time. It comprises at least 3 semesters. The supplementary studies are divided into 3 modules (basics, in-depth studies, practice). A total of 22 credit points (ECTS) are earned.

The thematic elective areas of the supplementary studies are divided into the following 5 modules and their sub-topics:

Block 1Technology & Responsibility

Value change / ethics of responsibility, technology development / history of technology, general ecology, sustainability

Block 2Doing Culture

Cultural studies, cultural management, creative industries, cultural institutions, cultural policy

Block 3Media & Aesthetics

Media communication, cultural aesthetics

Block 4Spheres of Life

Cultural sociology, cultural heritage, architecture and urban planning, industrial science

Block 5Global Cultures

Multiculturalism / interculturalism / transculturalism, science and culture

Module grade calculation

The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

In-depth Module

- presentation 1 (3 ECTS)
- presentation 2 (3 ECTS)
- seminar paper incl. presentation (5 ECTS)
- oral examination (4 ECTS)

Annotation

With the Supplementary Studies on Culture and Society, KIT provides a multidisciplinary study offer as an additional qualification, with which the respective specialized study program is supplemented by interdisciplinary basic knowledge and interdisciplinary orientation knowledge in the field of cultural studies, which is becoming increasingly important for all professions.

Within the framework of the supplementary studies, students acquire in-depth knowledge of various cultural studies and interdisciplinary subject areas in the field of tension between culture, technology and society. In addition to high culture in the classical sense, other cultural practices, common values and norms as well as historical perspectives of cultural developments and influences are considered.

In the courses, conditions, procedures and concepts for the analysis and design of fundamental social development tasks are acquired on the basis of an expanded concept of culture. This includes everything created by humans - also opinions, ideas, religious or other beliefs. The aim is to develop a modern concept of cultural diversity. This includes the cultural dimension of education, science and communication as well as the preservation of cultural heritage. (UNESCO, 1982)

According to § 16 of the statutes, a reference and a certificate are issued by the ZAK for the supplementary studies. The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).

Workload

The workload is made up of the recommended number of hours for the individual modules:

- basic module approx. 90 h
- in-depth module approx. 340 h
- practical module approx. 120 h

total: approx. 550 h

Learning type

- lectures
- seminars
- workshops
- practical course

Literature

Recommended reading of primary and specialized literature will be determined individually by each instructor.

M 2.206 Module: Supplementary Studies on Sustainable Development [M-ZAK-106099]

Responsible :		istine Mielke ne Myglas					
Organisation: Part of:		onal Examinations					
	Credits 19	Grading scale Grade to a tenth	Recurrence Each term	Duration 3 terms	Language German	Level 4	Version 1

Election notes

With the exception of the final oral exam, students have to self-record the achievements obtained in the Supplementary Studies on Sustainable Development in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bene. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements **both for your interdisciplinary qualifications and for the supplementary studies**, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the elective module, you need to obtain 6 credits worth of achievements in two of the four areas:

- Sustainable Cities & Neighbourhoods
- Sustainable Assessment of Technology
- Subject, Body, Individual: The Other Side of Sustainability
- Sustainability in Culture, Economy & Society

Usually, two achievements with 3 credits each have to be obtained. To self-record achievements in the elective module, you first have to elect the matching partial achievement.

<u>Note</u>: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §19 (2) of the regulations for the Supplementary Studies on Sustainable Development. Your overall grade for the supplementary studies will thus be calculated as the average of the examantion grades, not as the average of the module grades.

Mandatory			
T-ZAK-112345	Basics Module - Self Assignment BeNe	3 CR	Myglas
Elective Module (E	lection: at least 6 credits)		
T-ZAK-112347	Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe	3 CR	
T-ZAK-112348	Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe	3 CR	
T-ZAK-112349	Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe	3 CR	
T-ZAK-112350	Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe	3 CR	
Mandatory			
T-ZAK-112346	Specialisation Module - Self Assignment BeNe	6 CR	Myglas
T-ZAK-112351	Oral Exam - Supplementary Studies on Sustainable Development	4 CR	

The monitoring is explained in the respective partial achievement .

They are composed of:

- protocols
- a reflection report
- presentations
- presentations
- the elaboration of a project work
- an individual term paper

Upon successful completion of the supplementary studies, graduates receive a graded report and a certificate issued by ZAK.

Prerequisites

The course is offered during the course of study and does not have to be completed within a defined period of time. Enrolment is required for all performance assessments of the modules of the supplementary studies. Participation in the supplementary studies is regulated by § 3 of the statutes.

KIT students register for the supplementary studies by selecting this module in the student portal and self-booking a performance. Registration for courses, performance assessments and examinations is regulated by § 6 of the Statutes and is usually possible shortly before the beginning of the semester.

The course catalogue, statutes (study regulations), registration form for the oral exam and guidelines for preparing the various written performance requirements can be found as downloads on the ZAK homepage at http://www.zak.kit.edu/begleitstudium-bene.

Competence Goal

Graduates of the supplementary studies in sustainable development acquire additional practical and professional competencies. Thus, the supplementary study program enables the acquisition of basics and initial experience in project management, trains teamwork skills, presentation skills and self-reflection, and also creates a fundamental understanding of sustainability that is relevant for all professional fields.

Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective. They are able to place the contents selected from the modules "Elective" and "Advanced" in the basic context as well as to independently and exemplarily analyse and evaluate the contents of the selected courses and to scientifically communicate about them in written and oral form.

Content

The supplementary study program Sustainable Development can be started from the 1st semester and is not limited in time. The wide range of courses offered by ZAK makes it possible to complete the program usually within three semesters. The supplementary studies comprise 19 credit points (LP). It consists of three modules: Basic Module, Elective Module and Advanced Module.

The thematic elective areas of the supplementary studies are divided into the following 4 modules and their subtopics in Module 2 (elective module):

Block 1 Sustainable Cities and Neighbourhoods

The courses provide an overview of the interaction of social, ecological, and economic dynamics in the microcosm of the city.

Block 2 Sustainability Assessment of Technology

Mostly based on ongoing research activities, methods and approaches of technology assessment are elaborated.

Block 3 Subject, Body, Individual: The other Side of Sustainability

Different approaches are presented to the individual perception, experience, shaping and responsibility of relationships to the environment and to oneself.

Block 4 Sustainability in Culture, Economy & Society

Courses usually have an interdisciplinary approach, but may also focus on one of the areas of culture, economics or society, both in application and in theory.

The core of the supplementary studies is a case study in the specialization area. In this project seminar, students conduct sustainability research with practical relevance themselves. The case study is supplemented by an oral examination with two topics from module 2 (elective module) and module 3 (in-depth module).

Module grade calculation

The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

Elective module

- Presentation 1 (3 ECTS)
- Presentation 2 (3 ECTS)

Advanced module

- individual term paper (6 ECTS)
- oral examination (4 ECTS)

Annotation

The Supplementary Studies on Sustainable Development at KIT is based on the conviction that a long-term socially and ecologically compatible coexistence in the global world is only possible if knowledge about necessary changes in science, economy and society is acquired and applied.

The interdisciplinary and transdisciplinary Studies on Sustainable Development enables diverse access to transformation knowledge as well as basic principles and application areas of sustainable development. According to the statutes § 16, a certificate is issued by the ZAK for the complementary studies.

The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).

In the specialised studies, modules and partial achievements can be recognised within the framework of the additional achievements or e.g. the interdisciplinary qualifications. This must be regulated via the respective subject study programme.

The focus is on experience- and application-oriented knowledge and competences, but theories and methods are also learned. The aim is to be able to represent one's own actions as a student, researcher and later decision-maker as well as an individual and part of society under the aspect of sustainability.

Sustainability is understood as a guiding principle to which economic, scientific, social and individual actions should be oriented. According to this, the long-term and socially just use of natural resources and the material environment for a positive development of global society can only be addressed by means of integrative concepts. Therefore, "education for sustainable development" in the sense of the United Nations programme plays just as central a role as the goal of promoting "cultures of sustainability". For this purpose, practice-centred and research-based learning of sustainability is made possible and the broad concept of culture established at ZAK is used, which understands culture as habitual behaviour, lifestyle and changing context for social actions.

The supplementary study programme conveys the basics of project management, trains teamwork skills, presentation skills and self-reflection. Complementary to the specialised studies at KIT, it creates a fundamental understanding of sustainability, which is important for all professional fields. Integrative concepts and methods are essential: in order to use natural resources in the long term and to shape the global future in a socially just way, not only different disciplines, but also citizens, practitioners and institutions must work together.

Workload

The workload is made up of the number of hours of the individual modules:

- Basic module approx. 180 h
- Elective module approx. 150 h
- Consolidation module approx. 180 h

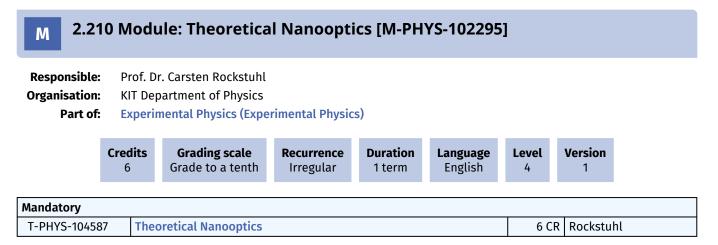
Total: approx. 510 h

Learning type

- lectures
- seminars
- workshops

Literature

Recommended reading of primary and specialist literature is determined individually by the respective lecturer.


M 2.	.207 N	loc	dule: Technica	l Optics [M-ETI	T-100538]			
Responsible:Prof. Dr. Cornelius NeumannOrganisation:KIT Department of Electrical Engineering and Information TechnologyPart of:Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)									
	Credits 5	5	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory									
T-ETIT-100804 Technical Optics 5 CR Neuman							Maxima		

none

2.208 Module: Technomathematical Seminar [M-MATH-102863]

Responsible: Organisation: Part of:	KIT I Expe Wild Elect	erimental P Icard Techn trical Engin	t of Mathematics hysics (mandatory					
		Credits 3	Grading scale pass/fail	Recurrence Each term	Duration 1 term	Level 4	Version 1	
Mandatory T-MATH-105884	Т	echnomath	ematical Seminar				3 CR	Jahnke, Kühnlein

A 2.209 Module: Telematics [M-INFO-100801]												
Responsit Organisati Part	on: K	ТD	Dr. Martina Zitterba epartment of Inform puter Science									
	Credits 6	5	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1				
Mandatory												
T-INFO-101	1338	Те	lematics				6 CR	Zitterbart				

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Content

- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolates and oblates.
- Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- Transformation optics
- · Analytical modeling and phenomenological tools to describe nanooptical systems

Workload

180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examination and the excercises (135)

Recommendation

Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.

Literature

- L. Novotny and B. Hecht, Principle of Nano-Optics, Cambridge
- S. A. Maier, Plasmonics, Springer
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals: Molding the Flow of Light, University Press

M 2	M 2.211 Module: Theoretical Optics [M-PHYS-102277]													
Responsible: Dr. Boris Narozhnyy Prof. Dr. Carsten Rockstuhl														
Organisat	ion: K	IT (Department of Physi	cs										
Par	t of: E	хре	erimental Physics (E	kperimental Physics)										
								_						
	Credits 6		Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	e Level 4	Version 1						
Mandatory														
T-PHYS-10)4578	T	heoretical Optics				6 CR	Narozhnyy,	Rockstuh					

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

The students deepen their knowledge about the theory and the mathematical tools in optics and photonics. They learn how to apply these tools to describe fundamental phenomena and how to predict observable quantities that reflect the actual physics from the theory by way of a corresponding purposeful mathematical analyses. They learn how to solve problems of both, interpretative and predictive nature with regards to model systems and real life situations.

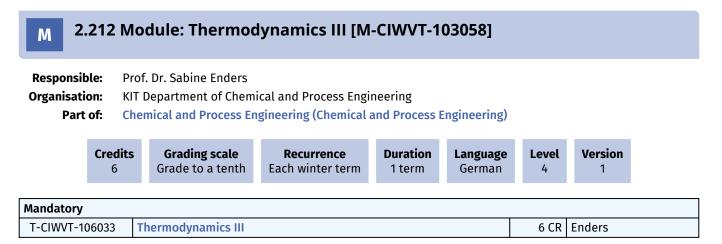
Content

- Review of Electromagnetism (Maxwell's Equations, Stress Tensor, Material Properties, Kramers-Kronig Relation, Wave Propagation, Poynting's Theorem)
- Diffraction Theory (The Principles of Huygens and Fresnel, Scalar Diffraction Theory: Green's Function, Helmholtz-Kirchhoff Theorem, Kirchhoff Formulation of Diffraction, Fresnel-Kirchhoff Diffraction Formula, Rayleigh-Sommerfeld Formulation of Diffraction, Angular Spectrum Method, Fresnel and Fraunhofer Diffraction, Method of Stationary Phases, Basics og Holography)
- Crystal Optics (Polarization, Anisotropic Media, Fresnel Equation, Applications)
- Classical Coherence Theory (Elementary Coherence Phenomena, Theory of Stochastic Processes, Correlation Functions)
- Quantum Optics and Quantum Optical Coherence Theory (Review of Quantum Mechanics, Quantization of the EM Field, Quantum Coherence Functions)

Annotation

For students of the KIT Faculty of Computer Science: The exams in this module have to be registered via admissions from ISS (KIT Faculty of Computer Science). For this, an e-mail with matriculation numbers and name of the desired exam to Beratung-informatik.kit.edu is sufficient.

Workload


180 hours composed of active time (45 hours), wrap-up of the lecture incl. preparation of the examination (135 hours)

Recommendation

Solid mathematical background, good knowledge of classical electromagnetism and basic knowledge of quantum mechanics.

Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Introduction to Fourier Optics" Joseph W. Goodman
- "Introduction to the Theory of Coherence and Polarization of Light" Emil Wolf
- "The Quantum Theory of Light " Rodney Loudon

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites

None

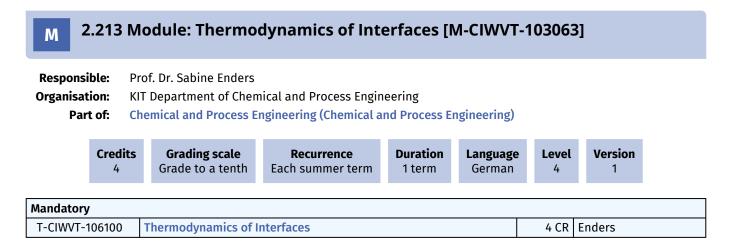
Competence Goal

Students are familiar with the basic principles for the description of complex, multicomponent mixtures and thermodynamic equilibria including equilibria with chemical reactions. They are able to select suitable models and to calculate the properties of multicomponent real systems.

Content

Phase- and reaction equilibria of real systems, equations of state for real mixtures, models for activity coefficients, polymer solutions, protein solutions, elektrolyte solutions.

Workload

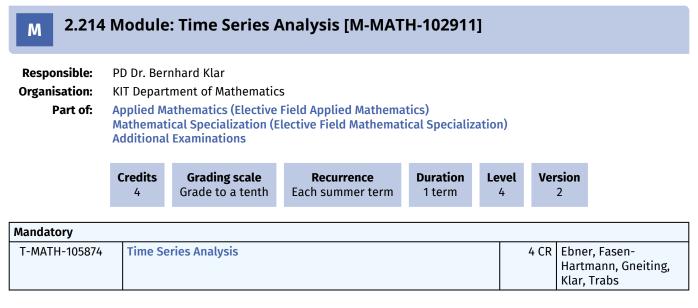

- Attendance time (Lecture): 60 h
- Homework: 90 h
- Exam Preparation: 30 h

Literature

1. Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 2, 15. Auflage, Springer Verlag, 2010.

2. Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2008.

3. Gmehling, J, Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulations, Wiley-VCG Verlag, 2012


None

Competence Goal

The students to be familiar with the peculiarities on fluid-fluid and fluid-solid interfacial properties. They are able to calculate interfacial properties (interfacial tension, density - and concentration profils, adsorption isotherms) using macroscopic and local-dependent methods.

Content

Gibbs-method, density functional theory, experimental methods for characterization of interfaces, adsorption

None

M 2.215 Module: Topological Data Analysis [M-MATH-105487]											
Responsible:		f. Dr. Tobia f. Dr. Roma	as Hartnick an Sauer								
Organisation:	KIT	T Department of Mathematics									
Part of:	Mat	Applied Mathematics (Analysis) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations									
		Credits 6	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1				
Mandatory											
T-MATH-111031	٦	Topologica	l Data Analysis				6 CR	Hartnick, Sauer			

2.216 Module: Topological Genomics [M-MATH-106064] Μ **Responsible:** Dr. Andreas Ott **Organisation: KIT Department of Mathematics Applied Mathematics (Elective Field Applied Mathematics)** Part of: Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits Grading scale Duration Language Version Recurrence Level Grade to a tenth 3 Irregular 1 term German 4 1 Mandatory T-MATH-112281 **Topological Genomics** 3 CR Ott

Competence Certificate

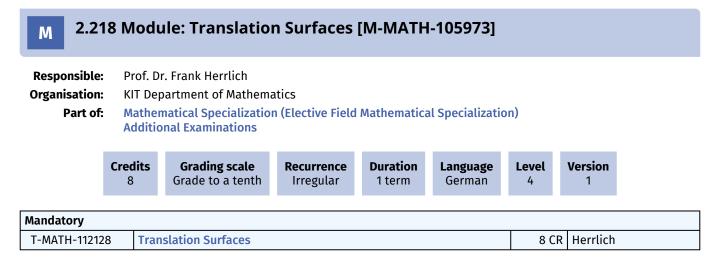
oral exam of ca. 20 min

Prerequisites

None

Module grade calculation

The grade of the module is the grade of the oral exam.


Workload

total workload: 90 hours

M 2.217	Mo	odule: T	opological Gro	oups [M-MA	TH-10532	23]					
Responsible:	Responsible: Dr. Rafael Dahmen Prof. Dr. Wilderich Tuschmann										
Organisation:											
Part of:		thematical ditional Exa	Specialization (Elect minations	ive Field Mathe	matical Speci	alization)				
		Credits 5	Grading scale Grade to a tenth	Level 4	Version 1						
Mandatory											
T-MATH-110802	٦	Fopological	Groups				5 CR	Dahmen, Tuschmann			

Prerequisites

None

Prerequisites

None

2.219 Module: Traveling Waves [M-MATH-102927] Μ **Responsible:** Prof. Dr. Wolfgang Reichel **Organisation: KIT Department of Mathematics** Part of: **Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics)** Mathematical Specialization (Elective Field Mathematical Specialization) **Additional Examinations** Credits **Grading scale** Recurrence Duration Version Language Level Grade to a tenth Irregular English 6 1 term 2 4 Mandatory T-MATH-105897 **Traveling Waves** 6 CR de Rijk, Reichel

Competence Certificate

The module examination takes place in form of an oral exam of about 30 minutes. Please see under "Modulnote" for more information about the bonus regulation.

Prerequisites

none

Competence Goal

After successful completion of this module students:

- · can explain the significance of traveling waves and their dynamic stability;
- know basic methods to study the existence of traveling waves;
- outline the main steps in a stability analysis and address potential complications;
- · have acquired several mathematical tools to compute or approximate the spectrum;
- master several techniques to derive (in)stability of the wave from spectral information;
- understand how spectrum and stability might depend on the class of perturbations.

Content

Traveling waves are solutions to nonlinear partial differential equations (PDEs) that propagate over time with a fixed speed without changing their profiles. These special solutions arise in many applied problems where they model, for instance, water waves, nerve impulses in axons or light in optical fibers. Therefore, their existence and the naturally associated question of their dynamic stability is of interest, because only those waves which are stable can be observed in practice.

The first step in the stability analysis is to linearize the underlying PDE about the wave and compute the associated spectrum, which is in general a nontrivial task. To approximate spectra associated with various waves, such as fronts, pulses and periodic wave trains, we introduce the following tools:

- Sturm-Liouville theory
- exponential dichotomies
- Fredholm theory
- the Evans function
- parity arguments
- essential spectrum, point spectrum and absolute spectrum
- exponential weights

The next step is to derive useful bounds on the linear solution operator, or semigroup, based on the spectral information. A complicating factor is that any non-constant traveling wave possesses spectrum up to the imaginary axis. For various dissipative PDEs, such as reaction-diffusion systems, we employ the bounds on the linear solution operator to close a nonlinear argument via iterative estimates on the Duhamel formula. For traveling waves in Hamiltonian PDEs, such as the NLS or KdV equation, we describe a different route towards stability based on the variational arguments of Grillakis, Shatah and Strauss.

Module grade calculation

After passing the oral exam at the end of the semester, the final grade is min(0.7X + 0.3Y, X), where X is the grade for the oral exam and Y is the grade obtained by voluntarily working out and presenting a model problem during one of the exercise classes.

Recommendation

The following background is strongly reommended: Analysis 1-4.

Literature

Kapitula, Todd; Promislow, Keith. Spectral and dynamical stability of nonlinear waves. Applied Mathematical Sciences, 185. Springer, New York, 2013.

2.220 Module: Uncertainty Quantification [M-MATH-104054]

Responsible: Organisation:		f. Dr. Martin Frank Department of Mathematics								
Part of:	Math	plied Mathematics (Elective Field Applied Mathematics) thematical Specialization (Elective Field Mathematical Specialization) ditional Examinations								
		dits 4	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Level 4	Version 1			
Mandatory										
T-MATH-108399	U	ncertai	nty Quantification				4 CR Frank			

Prerequisites

None

Competence Goal

After successfully taking part in the module's classes and exams, students have gained knowledge and abilities as described in the "Inhalt" section.

Specifically, students know several parametrization methods for uncertainties. Furthermore, students are able to describe the basics of several solution methods (stochastic collocation, stochastic Galerkin, Monte-Carlo). Students can explain the so-called curse of dimensionality.

Students are able to apply numerical methods to solve engineering problems formulated as algebraic or differential equations with uncertainties. They can name the advantages and disadvantages of each method. Students can judge whether specific methods are applicable to the specific problem and discuss their results with specialists and colleagues. Finally, students are able to implement the above methods in computer codes.

Content

In this class, we learn to propagate uncertain input parameters through differential equation models, a field called Uncertainty Quantification (UQ). Given uncertain input (parameter values, initial or boundary conditions), how uncertain is the output? The first part of the course ("how to do it") gives an overview on techniques that are used. Among these are:

- Sensitivity analysis
- Monte-Carlo methods
- Spectral expansions
- Stochastic Galerkin method
- Collocation methods, sparse grids

The second part of the course ("why to do it like this") deals with the theoretical foundations of these methods. The socalled "curse of dimensionality" leads us to questions from approximation theory. We look back at the very standard numerical algorithms of interpolation and quadrature, and ask how they perform in many dimensions.

Recommendation

Numerical methods for differential equations

2.221 Module: Unit Operations and Process Chains for Food of Animal Origin Μ [M-CIWVT-104421]

Prof. Dr.-Ing. Heike Karbstein **Responsible: Organisation:** KIT Department of Chemical and Process Engineering Part of: Chemical and Process Engineering (Chemical and Process Engineering)

C	C redits 5	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 3			
Mandatory	Mandatory									
T-CIWVT-108	8996	Unit Operations and	rigin	5 CR	Karbstein					

Competence Certificate

Learning control is an oral examination with a duration about of 30 minutes.

Prerequisites

None

Competence Goal

Students understand and are able to explain conventional methods for producing foods, even complex ones, from animals. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content

Lecture: Milk and dairy products, meat and meat products, sausages, functional foods: Process chains and unit operations

Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Module grade calculation

Grade of the module is the grade of oral examination.

Workload

Lectures: 30 h

Homework: 60 h Exam preparation: 60 h

Literature

- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- H.G. Kessler: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, Verlag A. Kessler, 1996, ISBN 3-9802378-4-2
- H.G. Kessler: Food and Bio Process Engineering Dairy Technology, Publishing House A. Kessler, 2002, ISBN 3-9802378-5-0
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209

M 2.222 Module: Unit Operations and Process Chains for Food of Plant Origin [M-CIWVT-104420]

Responsible:	Prof. DrIng. Heike Karbstein
Organisation:	KIT Department of Chemical and Process Engineering
Part of:	Chemical and Process Engineering (Chemical and Process Engineering)

Mandatory	Credits	Grading scale	Recurrence	Duration	Language	Level	Version		
	7	Grade to a tenth	Each winter term	1 term	German	4	2		
	Mandatory								

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes.

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students understand and are able to explain conventional methods for producing foods, even complex ones, from plants. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content

Food oils and fats, margarines and spreadable fats, cereals, fruits and vegetables, sugar, chocolate, coffee, bear, wine, spirits: Process chains and unit operations: Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Workload

- Attendance time (Lecture): 40 h
- Homework: 90 h
- Exam Preparation: 80 h

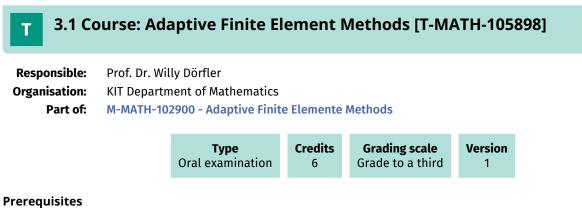
Literature

- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- H.G. Kessler: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, Verlag A. Kessler, 1996, ISBN 3-9802378-4-2
- H.G. Kessler: Food and Bio Process Engineering Dairy Technology, Publishing House A. Kessler, 2002, ISBN 3-9802378-5-0
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209
- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)

M 2.223	М	odule: V	ariational Met	thods [M-M	ATH-1050	093]					
Responsible:		-	gang Reichel								
Organisation:	KIT	Department of Mathematics									
Part of:	Ap Ma	Applied Mathematics (Analysis) Applied Mathematics (Elective Field Applied Mathematics) Mathematical Specialization (Elective Field Mathematical Specialization) Additional Examinations									
		Credits 8	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Level 4	Version 1				
Mandatory											
T-MATH-110302	1	Variational	Methods				8 CR	Reichel			

2.224 Module: Wave Propagation in Periodic Waveguides [M-MATH-105462]

Responsible: Organisation: Part of:	KI Ap Ap Ma	T Dep oplied oplied athen	Roland Griesmaier Partment of Mathema I Mathematics (Analy I Mathematics (Election natical Specialization nal Examinations	on)						
	Cred 8	lits	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1		
Mandatory										
T-MATH-11100)2	Wave	e Propagation in Per	iodic Waveguid	es		8 CR	Griesmai		


Prerequisites

None

M 2.225 Module: Wavelets [M-MATH-102895]										
Responsible: Organisation: Part of:	Drganisation: KIT Department of Mathematics									
Credits 8Grading scale Grade to a tenthRecurrence IrregularDuration 1 termLevel 4Version 1										
Mandatory										
T-MATH-105838		Wavelets					8 CR	Rieder		

Prerequisites

3 Courses

3.2 Course: Advanced Inverse Problems: Nonlinearity and Banach Spaces [T-
MATH-105927]

Responsible:Prof. Dr. Andreas RiederOrganisation:KIT Department of MathematicsPart of:M-MATH-102955 - Advanced Inverse Problems: Nonlinearity and Banach Spaces

Prerequisites none

Kühnlein

Kühnlein

Exams

WT 22/23

ST 2023

3.3 Course: Algebra [T-MATH-102253] Т

Algebra

Algebra

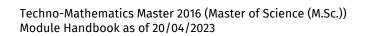
Responsible:	PD Dr. Stefan Kühnlein
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-101315 - Algebra

		Type Oral examination	Credits 8	Grading Grade to		Version 2	
Events							
WT 22/23	0102200	Algebra		4 SW	S Leo	cture / 🗣	Kühnlein
WT 22/23	0102210	Übungen zu 010220	0 (Algebra)	2 SW	S Pra	actice / 🗣	Kühnlein
Exams	•			•			

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

7700112

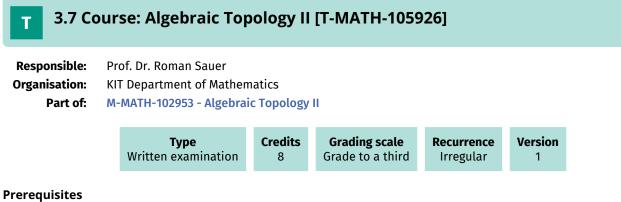
7700079

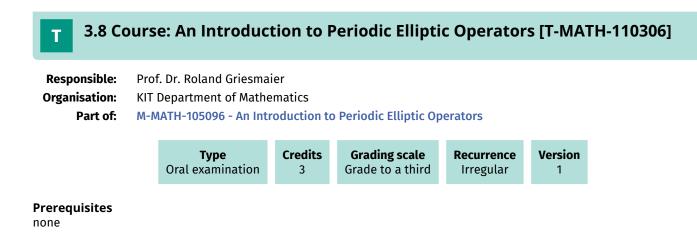

T 3.4 Course: Algebraic Geometry [T-MATH-103340]											
Responsible:		Prof. Dr. Frank Herrlich PD Dr. Stefan Kühnlein									
Organisation: Part of:		nent of Mathematics	n o tra								
Part OI:	M-MATH-IU	M-MATH-101724 - Algebraic Geometry									
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1						

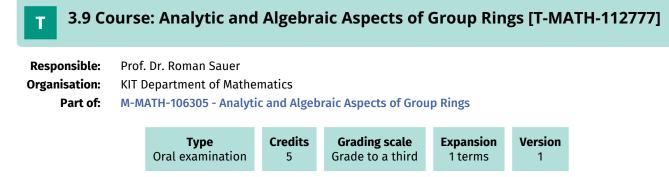
1

3.5 Course: Algebraic Number Theory [T-MATH-103346] Т Prof. Dr. Frank Herrlich **Responsible:** PD Dr. Stefan Kühnlein Organisation: KIT Department of Mathematics M-MATH-101725 - Algebraic Number Theory Part of: **Grading scale** Grade to a third Туре Credits Version

8

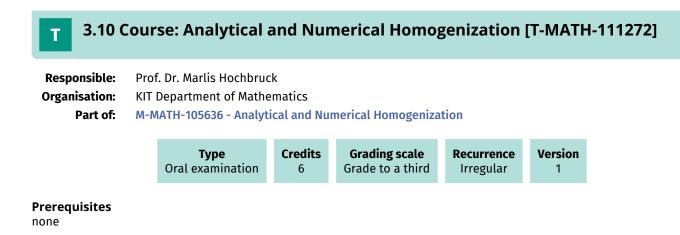

Oral examination

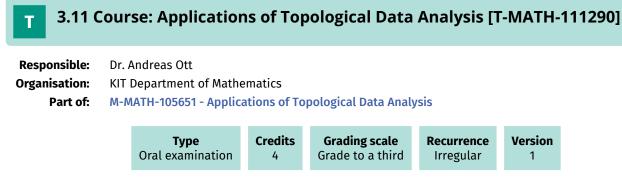



T 3.6 C	our	se: Alg	ebraic Top	oology [T	-MATH-10591	5]		
Responsible:			Manuel Kranni nan Sauer	ich				
Organisation:	Kľ	T Departm	ent of Mathen	natics				
Part of:	M·	M-MATH-102948 - Algebraic Topology						
			Type examination	Credits 8	Grading scale Grade to a third	Recurrence Irregular	Version 1	
Exams								
WT 22/22 770	0107		Algobraic To	nology			K	annich

WT 22/23	7700107	Algebraic Topology	Krannich
ST 2023	7700087	Algebraic Topology	Krannich

Prerequisites





Competence Certificate oral examination of ca. 30 minutes

Prerequisites none

Techno-Mathematics Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 20/04/2023

Prerequisites none

3.12 Course: Aspects of Geometric Analysis [T-MATH-106461]

 Responsible:
 Prof. Dr. Tobias Lamm

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-103251 - Aspects of Geometric Analysis

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	4	Grade to a third	Irregular	1

Events					
ST 2023	0154600	Geometrische Masstheorie	4 SWS	Lecture	Lamm
ST 2023	0154610	Übungen zu 0154600 (geometrische Masstheorie)	2 SWS	Practice	Lamm
ST 2023	0176600	AG Geometrische Analysis	2 SWS	Seminar	Lamm

Prerequisites

Keine

3.13 Course: Aspects of Time Integration [T-MATH-105904]

 Responsible:
 Prof. Dr. Marlis Hochbruck

 Prof. Dr. Tobias Jahnke

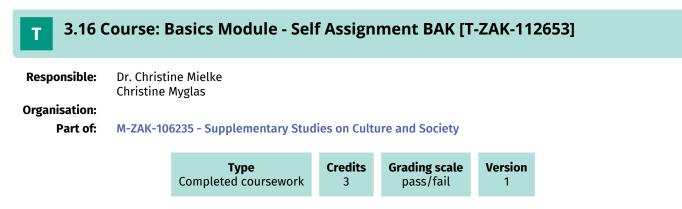
 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102934 - Aspects of Time Integration

3.14 Course: Astroparticle Physics I [T-PHYS-102432]

Responsible:Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin ValeriusOrganisation:KIT Department of PhysicsPart of:M-PHYS-102075 - Astroparticle Physics I

Type	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1


Events					
WT 22/23	4022011	Astroteilchenphysik I: Dunkle Materie	3 SWS	Lecture / 🗣	Drexlin, Schlösser, Huber, Valerius
WT 22/23	4022012	Übungen zur Astroteilchenphysik I: Dunkle Materie	1 SWS	Practice / 🗣	Drexlin, Schlösser, Huber, Valerius

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.15 Course: Banach Algebras [T-MATH-105886] Т **Responsible:** PD Dr. Gerd Herzog Organisation: KIT Department of Mathematics Part of: M-MATH-102913 - Banach Algebras Grading scale Credits Version Туре Oral examination Grade to a third 3 1

Prerequisites none

Competence Certificate

The monitoring in this module includes a course credit according to § 5 section 4 in the form of minutes of which two are to be handed in freely chosen topics of the lecture series " Introduction to Applied Studies on Culture and Society ". Length: approx. 6,000 characters each (incl. spaces).

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Fjordevik, Anneli und Jörg Roche: Angewandte Kulturwissenschaften. Vol. 10. Narr Francke Attempto Verlag, 2019.

Annotation

The Basic Module consists of the lecture "Introduction to Supplementary Studies on Culture and Society", which is offered only in the winter semester. It is therefore recommended that students start their studies in the winter semester and complete them before module 2.

3.17 Course: Basics Module - Self Assignment BeNe [T-ZAK-112345]

•	Christine Myglas
Organisation:	
Part of:	M-ZAK-106099 - Supplementary Studies on Sustainable Development

Type	Credits	Grading scale	Version	
Completed coursework	3	pass/fail	1	

Competence Certificate

The monitoring in this module includes a course credit according to § 5 section 4:

Introduction to Sustainable Development in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Sustainable Development". Length: approx. 6,000 characters each (incl. spaces).

Sustainability Spring Days at KIT in the form of a reflection report on all components of the project days "Sustainability Spring Days at KIT". Length approx. 12,000 characters (incl. spaces).

Prerequisites

None

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Kropp, Ariane: Grundlagen der Nachhaltigen Entwicklung: Handlungsmöglichkeiten und Strategien zur Umsetzung. Springer-Verlag, 2018.

Pufé, Iris: Nachhaltigkeit. 3. überarb. Edition, UTB, 2017.

Roorda, Niko, et al.: Grundlagen der nachhaltigen Entwicklung. Springer-Verlag, 2021.

Annotation

Module Basics consists of the lecture " Introduction to Sustainable Development ", which is only offered in the summer semester or alternatively of the project days " Sustainability Spring Days at KIT ", which is only offered in the winter semester. It is recommended to complete the course before Elective Module an Specialisation Module.

In exceptional cases, Elective Module or Specialisation Module can also be completed simultaneously with Basics Module. However, the prior completion of the advanced modules Elective and Specialisation should be avoided.

3.18 Course: Basics of Nanotechnology I [T-PHYS-102529] Т **Responsible:** apl. Prof. Dr. Gernot Goll Organisation: **KIT Department of Physics** Part of: M-PHYS-102097 - Basics of Nanotechnology I Version Credits Grading scale Туре Grade to a third Oral examination 4 1 Events WT 22/23 Grundlagen der Nanotechnologie I 2 SWS Lecture / 🗣 Goll 4021041

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.19 Course: Basics of Nanotechnology II [T-PHYS-102531]

Responsible:apl. Prof. Dr. Gernot GollOrganisation:KIT Department of PhysicsPart of:M-PHYS-102100 - Basics of Nanotechnology II

Type	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
ST 2023	4021151	Grundlagen der Nanotechnologie	2 SWS	Lecture / 🗣	Goll
		П			

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.20 Course: Batteries and Fuel Cells [T-ETIT-100983]

Responsible :	Prof. DrIng. Ulrike Krewer
Organisation:	KIT Department of Electrical Engineering and Information Technology
Part of:	M-ETIT-100532 - Batteries and Fuel Cells

Туре	Credits	Grading scale	Recurrence	Version
Written examination	5	Grade to a third	Each winter term	2

Events							
WT 22/23	2304207	Batteries and Fuel Cells			Krewer		
WT 22/23	2304213	Batteries and Fuel Cells (Exercise to 2304207)			Krewer, Lindner		
Exams	•	· · ·	•	•			
WT 22/23	7304207	Batteries and Fuel Cells	Batteries and Fuel Cells				
ST 2023	7300006	Batteries and Fuel Cells	Batteries and Fuel Cells				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Batteries and Fuel Cells 2304207, WS 22/23, 2 SWS, Language: German, Open in study portal

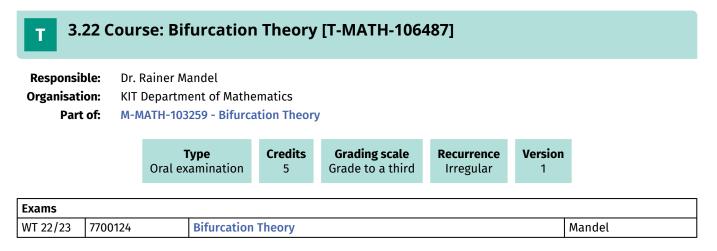
Lecture (V) Blended (On-Site/Online)

Content

The lecture provides a practical insight into the current application areas and research topics of fuel cells and batteries. It deals with the design and functionality of electrochemical energy conversion and storage devices and provides knowledge about materials, cell designs, measurement methods, data analysis and modelling. The lecture and most slides are in German.

3.21 Course: Bayesian Inverse Problems with Connections to Machine Learning [T-MATH-112842]

Responsible: Organisation: Part of: TT-Prof. Dr. Sebastian Krumscheid KIT Department of Mathematics


f: M-MATH-106328 - Bayesian Inverse Problems with Connections to Machine Learning

Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	4	Grade to a third	Each summer term	1 terms	1

Competence Certificate

oral exam of ca. 30 min

Prerequisites

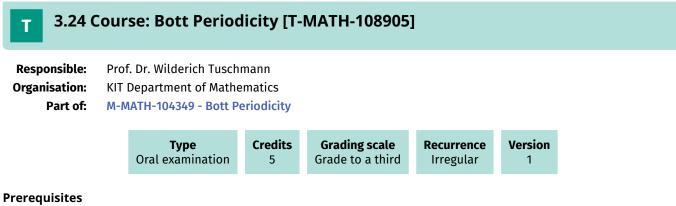
Prerequisites

None

3.23 Course: Biopharmaceutical Purification Processes [T-CIWVT-106029]

 Responsible:
 Prof. Dr.-Ing. Jürgen Hubbuch

 Organisation:
 KIT Department of Chemical and Process Engineering

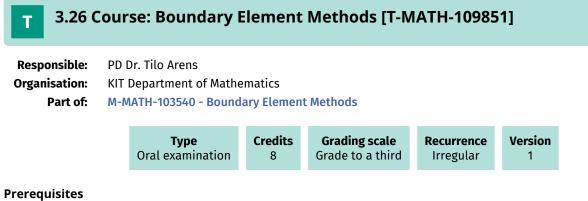

 Part of:
 M-CIWVT-103065 - Biopharmaceutical Purification Processes

		Type Written examination	Credits 6	Grading s Grade to a		Version 1	
Events							
WT 22/23	22705	Biopharmaceutical P Processes	urification	3 SWS	3 SWS Lecture / 🗣		Hubbuch, Franzreb
WT 22/23	22706	Exercises on Biopharmaceutical Purification Processes (22705)		1 SWS	Practice / 🗣		Franzreb, Hubbuch
Exams		•		•			·
WT 22/23	7223011	Biopharmaceutical P	Biopharmaceutical Purification Processes				Hubbuch
ST 2023	7223011	Biopharmaceutical Purification Processes				Hubbuch	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO).



T 3.25 0	Course: Boundary and Eigenvalue Problems [T-MATH-105833]
Responsible:	Prof. Dr. Dorothee Frey Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt

Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102871 - Boundary and Eigenvalue Problems

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2023	0157500	Boundary and Eigenvalue Problems	4 SWS	Lecture	Hundertmark, Wugalter, Schulz
ST 2023	0157510	Tutorial for 0157500 (Boundary and Eigenvalue Problems)	2 SWS	Practice	Hundertmark
Exams					
WT 22/23	0100032	Boundary and Eigenvalue Problem	ns		Anapolitanos, Lamm

T 3.27 Course: Boundary Value Problems for Nonlinear Differential Equations [T-MATH-105847]

Responsible:Prof. Dr. Michael Plum
Prof. Dr. Wolfgang ReichelOrganisation:KIT Department of Mathematics
Part of:Part of:M-MATH-102876 - Boundary value problems for nonlinear differential equations

3.28 Course: Brownian Motion [T-MATH-105868]

Responsible:	Prof. Dr. Nicole Bäuerle
	Prof. Dr. Vicky Fasen-Hartmann
	Prof. Dr. Günter Last
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102904 - Brownian Motion

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
ST 2023	0155700	Brownsche Bewegung	2 SWS	Lecture	Bäuerle
ST 2023	0155710	Übungen zu 0155700 (Brownsche Bewegung)	1 SWS	Practice	Bäuerle

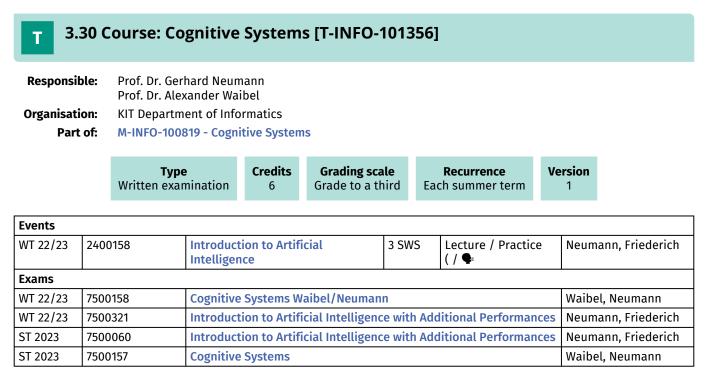
Prerequisites

Events WT 22/23

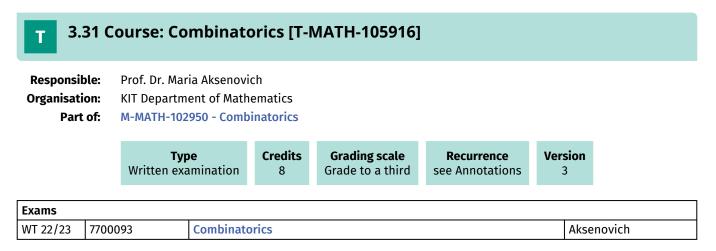
WT 22/23

Wugalter

3.29 Course: Classical Methods for Partial Differential Equations [T-MATH-105832]


Responsible:	Prof. Dr. Dorothee Frey
	Prof. Dr. Dirk Hundertmark
	Prof. Dr. Tobias Lamm
	Prof. Dr. Michael Plum
	Prof. Dr. Wolfgang Reichel
	Prof. Dr. Roland Schnaubelt
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102870 - Classical Methods for Partial Differential Equations

Methods for Partial Differential


Equations)

	Type Written examination	Credits 8	Grading s Grade to a		Version 1	
0105300	Classical Methods for Differential Equation		4 SWS	Lectu	ire	Hundertmark, Wugalter
0105310	Tutorial for 0105300	(Classical	2 SWS	Pract	ice	Hundertmark,

Exams			ł	
WT 22/23	7700045	Classical Methods for Partial Differe	ential Equa	Plum, Reichel, Anapolitanos, Lamm, Hundertmark

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

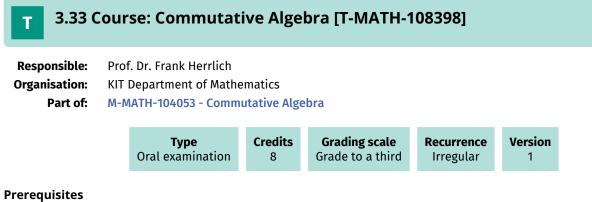
none

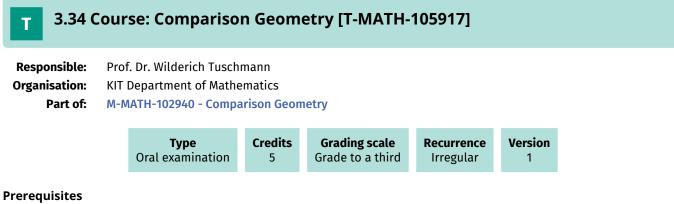
Annotation

The course is offered every second year.

Т

3.32 Course: Combustion Technology [T-CIWVT-106104]

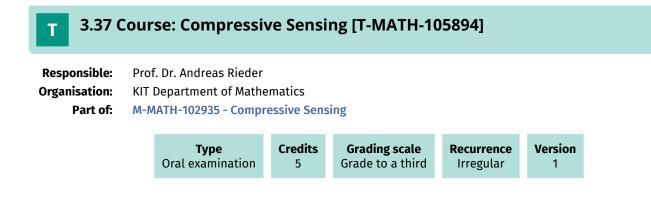

Responsible:	Prof. DrIng. Dimosthenis Trimis
Organisation:	KIT Department of Chemical and Process Engineering
Part of:	M-CIWVT-103069 - Combustion Technology


	Oral	Type examination	Credits 6	Grading sca Grade to a th		Recurrence Each winter term	Version 1	
Events								
WT 22/23	22501	Fundamentals of Combustion Technology		2 SWS	Lecture / 🗣	Trir	nis	
WT 22/23	22502		Exercises for 22501 Fundamentals of Combustion Technology		1 SWS	Practice / 🗣		nis, und arbeiter
Exams	•	•					•	
WT 22/23	7231201	Combus	Combustion Technology				Trir	nis
ST 2023	7231201	Combus	Combustion Technology				Trir	nis

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

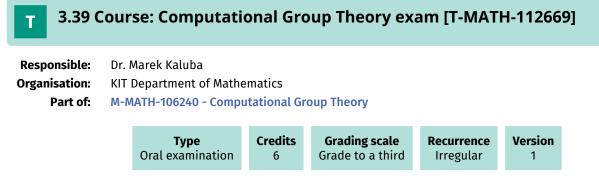

Keine .

T 3.35 Course: Comparison of Numerical Integrators for Nonlinear Dispersive Equations [T-MATH-109040]

Responsible: Prof. Dr Katharina Schratz **Organisation:** KIT Department of Mathematics Part of: M-MATH-104426 - Comparison of Numerical Integrators for Nonlinear Dispersive Equations Credits Grading scale Recurrence Version Туре Oral examination Grade to a third Irregular 4 1

Prerequisites none

T 3.36 Course: Complex Analysis [T-MATH-105849]									
Responsible:	Responsible: PD Dr. Gerd Herzog Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt Dr. rer. nat. Patrick Tolksdorf								
Organisation:	KIT Departn	nent of Mathematics							
Part of:	M-MATH-102878 - Complex Analysis								
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1				


Т

3.38 Course: Computational Fluid Dynamics [T-CIWVT-106035]

Responsible:Prof. Dr.-Ing. Hermann NirschlOrganisation:KIT Department of Chemical and Process EngineeringPart of:M-CIWVT-103072 - Computational Fluid Dynamics

		Type Written examination	Credits 6		g scale o a third	Recurrence Each term	Version 1	
Events								
WT 22/23	22958	Computatio	Computational Fluid Dynamics		2 SWS	Lecture / 🗣		irschl, und itarbeiter
WT 22/23	22959		Übungen zu 22958 Numerische Strömungssimulation (in kleinen Gruppen)			Practice / 🗣		irschl, und itarbeiter
Exams	•	·						
WT 22/23	7291932	Computatio	Computational Fluid Dynamics					irschl
ST 2023	7291932	Computatio	nal Fluid Dyr	namics			N	irschl

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate oral exam of ca. 20 minutes

Prerequisites none

Techno-Mathematics Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 20/04/2023

3.40 Course: Computational Group Theory Tutorial [T-MATH-112670]

Responsible:	Dr. Marek Kaluba
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-106240 - Computational Group Theory

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	2	Grade to a third	Irregular	1

Competence Certificate

Die Übung kann über verschiedene Leistungsbelege nachgewiesen werden. Diese wird individuell während der Vorlesung bestimmt; i.d.R über ein Seminarvortrag und/oder Praktikumsaufgaben mit Ausarbeitung (die Hauptleistung besteht in der Programmierung, dokumentiert durch den abzugebenden Quelltext).

Prerequisites

3.41 Course: Computer Architecture [T-INFO-101355] Т **Responsible:** Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics Part of: M-INFO-100818 - Computer Architecture

		pe amination	Credits 6	Grading scale Grade to a thir		Recurrence Each summer term	Version 1	
Events								
ST 2023	2424570	Compute	Computer structures			Lecture / 🗣	Karl	
Exams								
WT 22/23	7500034	Compute	Computer Architecture					

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.42 Course: Computer Graphics [T-INFO-101393] Т

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Carsten Dachsbacher KIT Department of Informatics M-INFO-100856 - Computer Graphics

		Type examination	Credits 6	Grading scale Grade to a thir		Recurrence Each winter term	Version 1	
Events								
WT 22/23	24081	Computer	Computergrafik		SWS	Lecture / 🗣		isbacher, brandt
Exams	•	•		·		·		
WT 22/23	7500430	Computer	Computer Graphics					isbacher
ST 2023	7500257	Computer	Graphics				Dach	isbacher

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.43 Course: Computer Graphics Pass [T-INFO-104313]

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Carsten Dachsbacher KIT Department of Informatics M-INFO-100856 - Computer Graphics

	Complet	Type ed coursework	Credits 0	Grading scale pass/fail	Recurrence Each winter term	Version 1			
Events									
WT 22/23	24083	Übungen zu	Computerg	rafik	Lecture / Practi	ce (Jung, Grau	Dittebrandt, er		
Exams									
WT 22/23	7500508	Computer Gr	aphics			Dach	sbacher		

3.44 Course: Computer-Assisted Analytical Methods for Boundary and Т **Eigenvalue Problems [T-MATH-105854]**

Responsible: Prof. Dr. Michael Plum Organisation: KIT Department of Mathematics M-MATH-102883 - Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems Part of:

TypeCreditsGrading scaleVersionOral examination8Grade to a third1

Exams			
WT 22/23	7700103	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	Plum

3.45 Course: Condensed Matter Theory I, Fundamentals [T-PHYS-102559]

Responsible:	Prof. Dr. Markus Garst
	Prof. Dr. Alexander Mirlin
	Prof. Dr. Alexander Shnirman
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102054 - Condensed Matter Theory I, Fundamentals

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
WT 22/23	4024011	Theorie der Kondensierten Materie I	4 SWS	Lecture / 🗣	Shnirman
WT 22/23	4024012	Übungen zu Theorie der Kondensierten Materie I	2 SWS	Practice / 🗣	Shnirman, Shapiro, Perrin

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

T 3.46 Course: Condensed Matter Theory I, Fundamentals and Advanced Topics [T-PHYS-102558]

Responsible:	Prof. Dr. Markus Garst Prof. Dr. Alexander Mirlin Prof. Dr. Alexander Shnirman
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics

Туре	Credits	Grading scale	Version
Oral examination	12	Grade to a third	1

Events	Events					
WT 22/23	4024011	Theorie der Kondensierten Materie I	4 SWS	Lecture / 🗣	Shnirman	
WT 22/23	4024012	Übungen zu Theorie der Kondensierten Materie I	2 SWS	Practice / 🗣	Shnirman, Shapiro, Perrin	

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.47 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals[T-PHYS-104591]

Responsible:	Prof. Dr. Markus Garst Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian
Organisation:	KIT Department of Mathematics KIT Department of Physics
Part of:	M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2023	4024111	Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🗣	Mirlin, Gornyi
ST 2023	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣	Mirlin, Gornyi, Pöpperl, Ojajärvi

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.48 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics [T-PHYS-102560]

Responsible:	Prof. Dr. Markus Garst Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics

Туре	Credits	Grading scale	Version
Oral examination	12	Grade to a third	1

Events	Events					
ST 2023	4024111	Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🗣	Mirlin, Gornyi	
ST 2023	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣	Mirlin, Gornyi, Pöpperl, Ojajärvi	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.49 Course: Continuous Time Finance [T-MATH-105930]

Responsible:	Prof. Dr. Nicole Bäuerle
	Prof. Dr. Vicky Fasen-Hartmann
	Prof. Dr. Mathias Trabs
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102860 - Continuous Time Finance

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events						
ST 2023	0159400	Finanzmathematik in stetiger Zeit	4 SWS	Lecture	Bäuerle	
ST 2023	0159500	Übungen zu 0159400 (Finanzmathematik in stetiger Zeit)	2 SWS	Practice	Bäuerle	

3.50 Course: Control Theory [T-MATH-105909] Т **Responsible:** Prof. Dr. Roland Schnaubelt Organisation: KIT Department of Mathematics Part of: M-MATH-102941 - Control Theory Grading scale Credits Version Туре Oral examination Grade to a third 6 1

Prerequisites none

T 3.51 Course: Convex Geometry [T-MATH-105831]

Responsible:Prof. Dr. Daniel HugOrganisation:KIT Department of MathematicsPart of:M-MATH-102864 - Convex Geometry

Waibel

Waibel

T 3.52 Course: Deep Learning and Neural Networks [T-INFO-109124]

 Responsible:
 Prof. Dr. Alexander Waibel

 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-104460 - Deep Learning and Neural Networks

		Type examination	Credits 6	Grading sca Grade to a th			Recurrence summer term	Version 1	
Events									
ST 2023	2400024	Deep Lea Networks	ep Learning and Neural tworks		4 SWS Lec		_ecture / 🗣	Waib	el, Nguye
Exams	·			•					

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Modeled Conditions

WT 22/23

ST 2023

The following conditions have to be fulfilled:

7500259

7500044

1. The course T-INFO-101383 - Neural Networks must not have been started.

Deep Learning and Neural Networks

Deep Learning and Neural Networks

3.53 Course: Differential Geometry [T-MATH-102275] Т Prof. Dr. Enrico Leuzinger **Responsible:** Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics M-MATH-101317 - Differential Geometry Part of: **Grading scale** Grade to a third Credits Version Туре Recurrence Written examination 8 Each summer term 1 Evonte

Events					
ST 2023	0100300	Differential Geometry	4 SWS	Lecture	Tuschmann
ST 2023	0100310	Tutorial for 0100300 (Differential Geometry)	2 SWS	Practice	Tuschmann, Kupper

٦

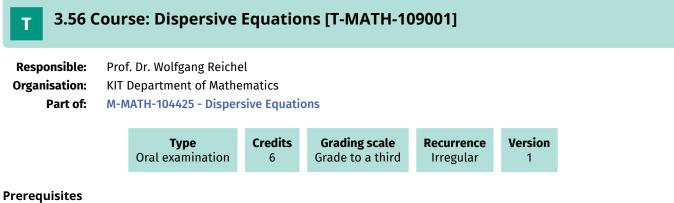
Herzog

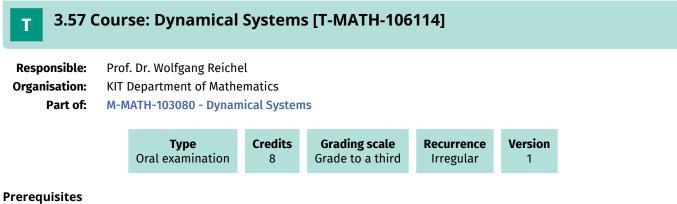
3.54 Course: Discrete Dynamical Systems [T-MATH-110952] Т **Responsible:** PD Dr. Gerd Herzog **Organisation: KIT Department of Mathematics** Part of: M-MATH-105432 - Discrete Dynamical Systems Credits **Grading scale** Version Туре Recurrence Oral examination 3 Grade to a third Irregular 1 Events WT 22/23 0106450 2 SWS Lecture / 🗣 Diskrete dynamische Systeme Herzog Exams

Discrete Dynamical Systems

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

7700106


Prerequisites


WT 22/23

3.55 Course: Discrete Time Finance [T-MATH-105839] Т **Responsible:** Prof. Dr. Nicole Bäuerle Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Mathias Trabs **Organisation: KIT Department of Mathematics** Part of: M-MATH-102919 - Discrete Time Finance Credits Grading scale Version Type Written examination Grade to a third 8 1 Events WT 22/23 0108400 Finanzmathematik in diskreter 4 SWS Lecture / 🗣 Fasen-Hartmann Zeit WT 22/23 0108500 Übungen zu 0108400 2 SWS Practice / 🗣 Fasen-Hartmann Exams WT 22/23 7700066 **Discrete Time Finance** Fasen-Hartmann ST 2023 7700012 **Discrete Time Finance** Fasen-Hartmann

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

Organisation:

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Type	Credits	Grading scale	Version
Examination of another type	3	Grade to a third	

Competence Certificate

Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

The content of the Basics Module is helpful.

T 3.59 Course: Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe [T-ZAK-112348]

Organisation:

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Туре	Credits	Grading scale	Version
Examination of another type	3	Grade to a third	1

Competence Certificate

Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

The content of the Basics Module is helpful.

T 3.60 Course: Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe [T-ZAK-112350]

Organisation:

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Туре	Credits	Grading scale	Version
Examination of another type	3	Grade to a third	1

Competence Certificate

Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

The content of the Basics Module is helpful.

T 3.61 Course: Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe [T-ZAK-112347]

Organisation:	University
---------------	------------

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Competence Certificate

Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

The content of the Basics Module is helpful.

T 3.62 Course: Electromagnetics and Numerical Calculation of Fields [T-ETIT-100640]

 Responsible:
 Prof. Dr.-Ing. Thomas Zwick

 Organisation:
 KIT Department of Electrical Engineering and Information Technology

 Part of:
 M-ETIT-100386 - Electromagnetics and Numerical Calculation of Fields

TypeCrediWritten examination4	its Grading scale	Recurrence	Version
	Grade to a third	Each winter term	1

Events					
WT 22/23	2308263	Electromagnetics and Numerical Calculation of Fields	2 SWS	Lecture / 🗣	Pauli
WT 22/23	2308265	Exercise for 2308263 Electromagnetics and Numerical Calculation of Fields	1 SWS	Practice / 🗣	Pauli, Giroto de Oliveira
Exams	•				
WT 22/23	Pauli				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Recommendation

Fundamentals of electromagnetic field theory.

3.63 Course: Electronic Properties of Solids I, with Exercises [T-PHYS-102577]

Responsible:	Prof. Dr. Matthieu Le Tacon
	Prof. Dr. Wolfgang Wernsdorfer
	Prof. Dr. Wulf Wulfhekel
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102089 - Electronic Properties of Solids I, with Exercises

Туре	Credits	Grading scale	Version
Oral examination	10	Grade to a third	1

Events					
WT 22/23	4021011	Electronic Properties of Solids I	4 SWS	Lecture / 🗣	Le Tacon, Willke
WT 22/23	4021012	Übungen zu Elektronische Eigenschaften von Festkörpern I	1 SWS	Practice / 🗣	Le Tacon, Willke

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.64 Course: Electronic Properties of Solids I, without Exercises [T-Т PHYS-102578] **Responsible:** Prof. Dr. Matthieu Le Tacon Prof. Dr. Wolfgang Wernsdorfer Prof. Dr. Wulf Wulfhekel **Organisation: KIT Department of Physics** M-PHYS-102090 - Electronic Properties of Solids I, without Exercises Part of: Credits Grading scale Version Туре Oral examination Grade to a third 8 1 **Events**

4 SWS

Lecture / 🗣

Le Tacon, Willke

Electronic Properties of Solids I

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

4021011

Prerequisites

WT 22/23

T 3.65 Course: Electronic Properties of Solids II, with Exercises [T-PHYS-104422]

Responsible:	Prof. Dr. Matthieu Le Tacon Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102108 - Electronic Properties of Solids II, with Exercises

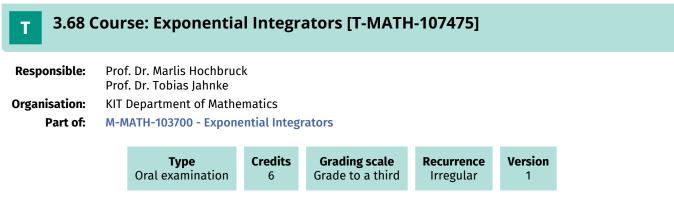
Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events						
ST 2023	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🗣	Ustinov	
ST 2023	4021112	Übungen zu Elektronische Eigenschaften von Festkörpern II	2 SWS	Practice / 🗣	Ustinov, Fischer	

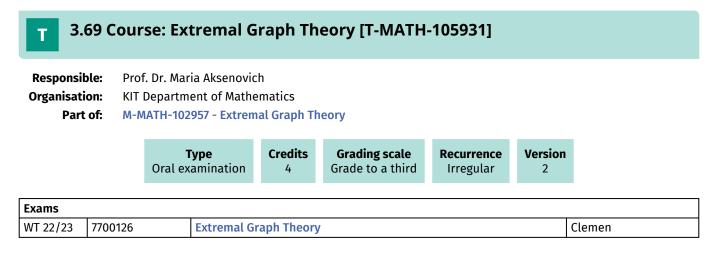
Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

T 3.66 Course: Electronic Properties of Solids II, without Exercises [T-PHYS-104423]


Responsible:	Prof. Dr. Matthieu Le Tacon Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102109 - Electronic Properties of Solids II, without Exercises

		Type Oral examination	Credits 4	Grading scale Grade to a thir				
Events	Events							
ST 2023	4021111	Elektronische Eiger Festkörpern II	ischaften vo	n 2 SWS I	.ecture / 🗣	Ustinov		


Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

T 3.67 Course: Evolution Equations [T-MATH-105844]								
Responsible:	•	rothee Frey 7. Peer Kunstmann land Schnaubelt						
Organisation:	KIT Department of Mathematics							
Part of:	M-MATH-10	2872 - Evolution Equa	tions					
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1			

Prerequisites none

Prerequisites

T 3.70 Course: Extreme Value Theory [T-MATH-105908]

Responsible:Prof. Dr. Vicky Fasen-HartmannOrganisation:KIT Department of MathematicsPart of:M-MATH-102939 - Extreme Value Theory

T 3.71 (Course: Fii	nite Element N	lethods	[T-MATH-1058	857]	
Responsible:	Prof. Dr. Tob Prof. Dr. And	rlis Hochbruck bias Jahnke				
Organisation:	KIT Departm	ent of Mathematics				
Part of:	M-MATH-102	2891 - Finite Element	Methods			
					_	
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1	

Events							
WT 22/23	0110300	Finite Element Methods	4 SWS	Lecture	Jahnke, Stein		
WT 22/23	0110310	Tutorial for 0110300 (Finite Element Methods)	2 SWS	Practice	Jahnke		
Exams	•						
WT 22/23	7700119	Finite Element Methods	Finite Element Methods				

3.72 Course: Forecasting: Theory and Practice [T-MATH-105928]

Responsible: Prof. Dr. Tilmann Gneiting Organisation: KIT Department of Mathematics Part of: M-MATH-102956 - Forecasting: Theory and Practice

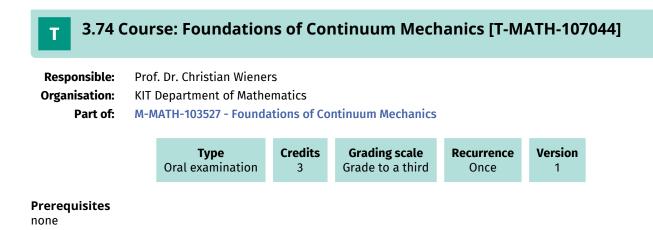
Туре	Credits	Grading scale	Version	
Oral examination	8	Grade to a third	2	

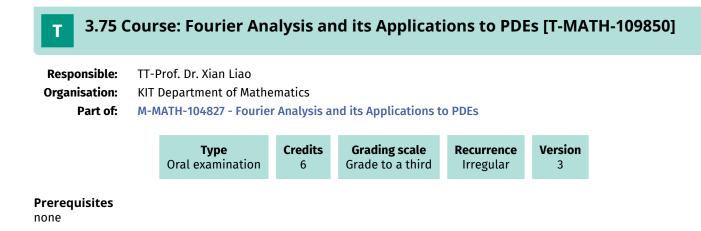
Events					
WT 22/23	0123100	Forecasting: Theory and Praxis	2 SWS	Lecture	Gneiting
WT 22/23	0123110	Tutorial for 0123100 (Forecasting: Theory and Praxis)	2 SWS	Practice	Gneiting
ST 2023	0178000	Forecasting: Theory and Practice II	2 SWS	Lecture	Gneiting
ST 2023	0178010	Tutorial for 0178010 (Forecasting: Theory and Practice II)	1 SWS	Practice	Gneiting

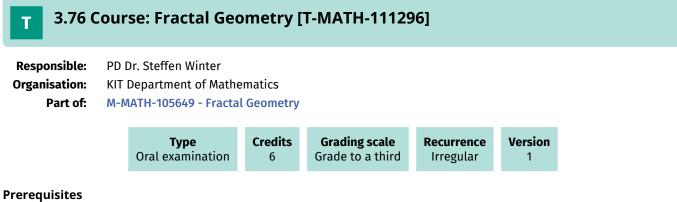
Beckert

3.73 Course: Formal Systems [T-INFO-101336] Т

Formal Systems


Responsible: Organisation: Part of:


Exams WT 22/23 ST 2023


7500009

Prof. Dr. Bernhard Beckert KIT Department of Informatics M-INFO-100799 - Formal Systems

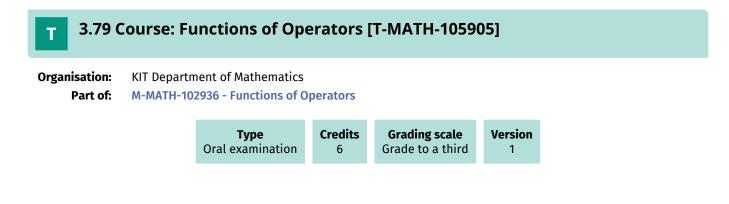
	v	Type Vritten exam	ination	Credits 6	Grading sca Grade to a th		Recurrence Each winter term	Version 1	
Events									
WT 22/23	24086	F	Formale Systeme			4 SWS	Lecture / Practio	ce (Be	kert, Ulbrich, W
Exams								•	
WT 22/23	7500036	5 F	ormal Sys	tems				Be	ckert

3.77 Course: Functional Analysis [T-MATH-102255]

Responsible:	Prof. Dr. Dorothee Frey PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt Dr. rer. nat. Patrick Tolksdorf
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-101320 - Functional Analysis

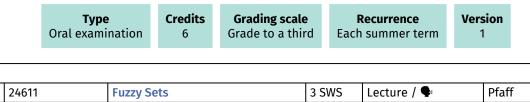
Туре	Credits	Grading scale	Recurrence	Version
Written examination	8	Grade to a third	Each winter term	3

Events								
WT 22/23	0104800	Functional Analysis	4 SWS	Lecture / 🗣	Liao			
WT 22/23	0104810	Tutorial for 0104800 (Functional Analysis)						
Exams	•	· · · ·			·			
WT 22/23	0100047	Functional Analysis	Functional Analysis					
ST 2023	7700078	Functional Analysis			Frey, Hundertmark, Liao			


Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.78 Course: Functions of Matrices [T-MATH-105906]

Responsible:PD Dr. Volker GrimmOrganisation:KIT Department of MathematicsPart of:M-MATH-102937 - Functions of Matrices


Prerequisites none

T 3.80 Course: Fuzzy Sets [T-INFO-101376]

```
Responsible:
Organisation:
Part of:
```

Prof. Dr.-Ing. Uwe Hanebeck KIT Department of Informatics M-INFO-100839 - Fuzzy Sets

	-		 	
Exams				
WT 22/23	7500011	Fuzzy Sets		Pfaff
ST 2023	7500001	Fuzzy Sets		Pfaff

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

V	Fuzzy Sets 24611, SS 2023, 3 SWS, Language: German, Open in study portal	Lecture (V) On-Site

Content

Events ST 2023

In this module, the fundamental theory and practical applications of fuzzy sets are communicated. The course copes with fuzzy arithmetics, fuzzy logic, fuzzy relations, and fuzzy deduction. The representation of fuzzy sets and their properties are the theoretical foundation. Based on this theory, arithmetic and logical operations are axiomatically derived and analyzed. Furthermore, it is shown how arbitrary functions and relations are transferred into fuzzy sets. An application of the logic part of the module, fuzzy deduction, shows different approaches to applying rule-based systems on fuzzy sets. The final part of the curse treats the problem of fuzzy control.

Literature

Hilfreiche Quellen werden im Skript und in den Vorlesungsfolien genannt.

T 3.81 C	Course: Ge	eneralized Reg	ression	Models [T-MA	TH-1058	370]
Responsible:						
Organisation:	KIT Departm	nent of Mathematics				
Part of:	M-MATH-102	2906 - Generalized Re	egression M	lodels		
		Type Oral examination	Credits 4	Grading scale Grade to a third	Version 3	

Events							
ST 2023	0161400	Generalisierte Regressionsmodelle	2 SWS	Lecture	Ebner		
ST 2023	0161410	Übungen zu 0161400 (generalisierte Regressionsmodelle)	1 SWS	Practice	Ebner		
Exams							
ST 2023	7700110	Generalized Regression Models	Generalized Regression Models				

3.82 Course: Geometric Analysis [T-MATH-105892]

Responsible:Prof. Dr. Tobias LammOrganisation:KIT Department of MathematicsPart of:M-MATH-102923 - Geometric Analysis

Туре	Credits	Grading scale	Recurrence	Version	
Oral examination	8	Grade to a third	Irregular	1	

Events					
ST 2023	0154600	Geometrische Masstheorie	4 SWS	Lecture	Lamm
ST 2023		Übungen zu 0154600 (geometrische Masstheorie)	2 SWS	Practice	Lamm

Prerequisites

Version

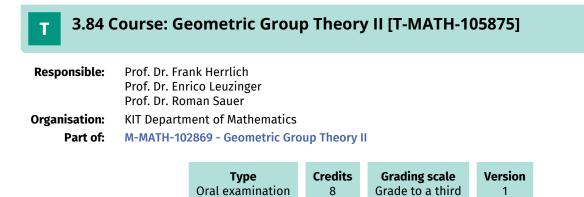
1

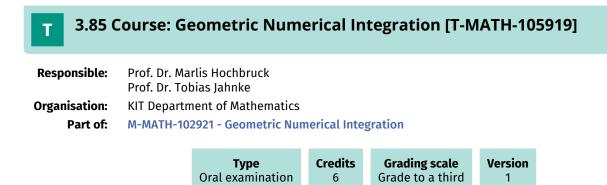
Recurrence

Irregular

T 3.83 Course: Geometric Group Theory [T-MATH-105842]						
Responsible:	Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Dr. Gabriele Link JunProf. Dr. Claudio Llosa Isenrich Prof. Dr. Roman Sauer Prof. Dr. Wilderich Tuschmann					
Organisation:	KIT Department of Mathematics					
Part of:	M-MATH-102867 - Geometric Group Theory					

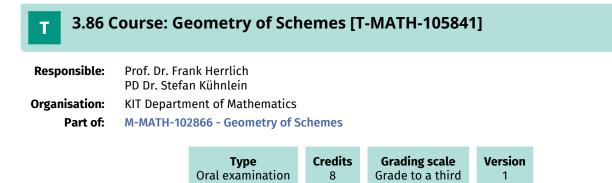
Events					
ST 2023	0153300	Geometric Group Theory	4 SWS	Lecture	Llosa Isenrich
ST 2023	0153310	Tutorial for 0153300 (Geometric Group Theory)	2 SWS	Practice	Llosa Isenrich


Credits


8

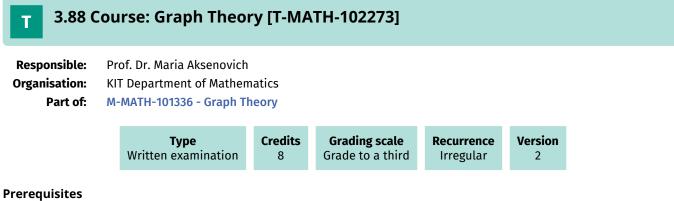
Grading scale Grade to a third

Type Written examination

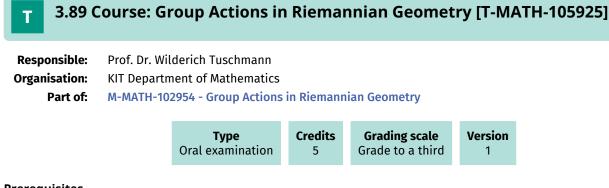

1

Prerequisites none

1

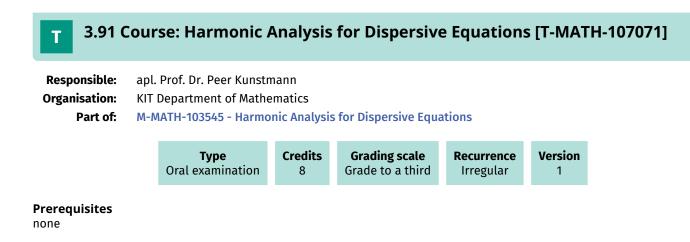


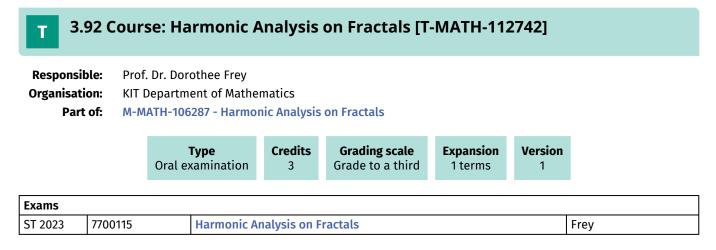
8


Oral examination

3.87 Course: Global Differential Geometry [T-MATH-105885] Т **Responsible:** Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics Part of: M-MATH-102912 - Global Differential Geometry Credits Grading scale Version Туре Oral examination Grade to a third 8 1

Prerequisites none


None



Prerequisites none

T 3.90 Course: Harmonic Analysis [T-MATH-111289]								
Responsible: Organisation: Part of:	apl. Prof. Dr. Peer Kunstmann Prof. Dr. Roland Schnaubelt Dr. rer. nat. Patrick Tolksdorf Organisation: KIT Department of Mathematics							
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1			

Techno-Mathematics Master 2016 (Master of Science (M.Sc.))
Module Handbook as of 20/04/2023

Prerequisites

T 3.93 Course: Heat Transfer II [T-CIWVT-106067]

Responsible: Prof. Dr.-Ing. Thomas Wetzel Organisation: KIT Department of Chemical and Process Engineering Part of: M-CIWVT-103051 - Heat Transfer II

		Type Oral examination	Credits 4	Grading sca Grade to a th		Version 2	
Events							
WT 22/23	22809	Wärmeübertragung	g II	2 SWS	Lec	ture / 🗣	Wetzel, Dietrich
Exams	•	•		•			
WT 22/23	7280031	Heat Transfer II					Wetzel
ST 2023	7280031	Heat Transfer II	Heat Transfer II			Wetzel	

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.94 Course: High Temperature Process Engineering [T-CIWVT-106109]

 Responsible:
 Prof. Dr.-Ing. Dieter Stapf

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103075 - High Temperature Process Engineering

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events					
ST 2023	22505	Hochtemperaturverfahrenstechnik	2 SWS	Lecture / 🗣	Stapf
ST 2023	22506	Übung zu 22505 Hochtemperaturverfahrenstechnik	1 SWS	Practice / 🗣	Stapf, und Mitarbeiter
Exams					
WT 22/23	7231001	High Temperature Process Engineering			Stapf
· ·		0			ettep:

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

T 3.95 Course: Homotopy Theory [T-MATH-105933]

Responsible:Prof. Dr. Roman SauerOrganisation:KIT Department of MathematicsPart of:M-MATH-102959 - Homotopy Theory

Organisation:

Part of:

M-ZAK-106235 - Supplementary Studies on Culture and Society

Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

The content of the Basic Modul is helpful.

Responsible:		ristine Mielke ine Myglas				
Organisation: Part of:	M-ZAK-106235 - Supplementary Studies on Culture and Society					
		Type Examination of another type	Credits 3	Grading scale Grade to a third	Version	

Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

T 3.98 Course: In-depth Module - Media & Aesthetics - Self Assignment BAK [T-ZAK-112656]

		Туре	Credits	Grading sca
Organisation: Part of:	M-ZAK	K-106235 - Supplementary Studio	es on Culture	e and Society
Responsible:		ristine Mielke ine Myglas		

Type	Credits	Grading scale	Version
Examination of another type	3	Grade to a third	1

Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

Responsible:		ristine Mielke ine Myglas			
Organisation: Part of:	M-ZAK	K-106235 - Supplementary Studie	es on Cultur	e and Society	
		Type Examination of another type	Credits	Grading scale Grade to a third	Version

Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

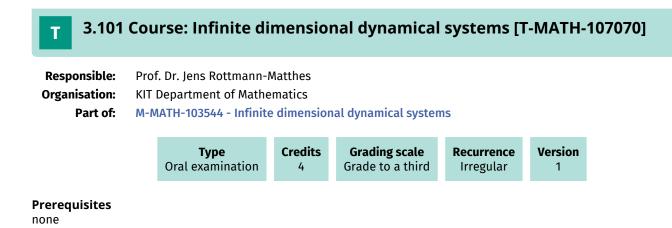
Competence Certificate

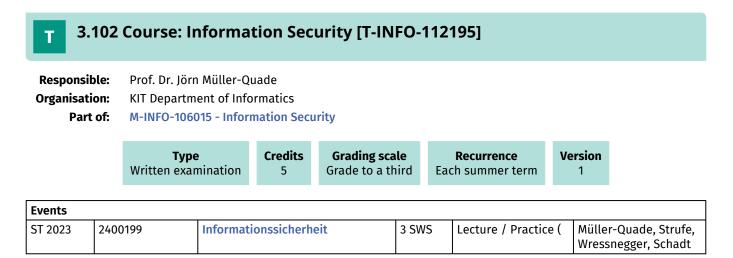
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

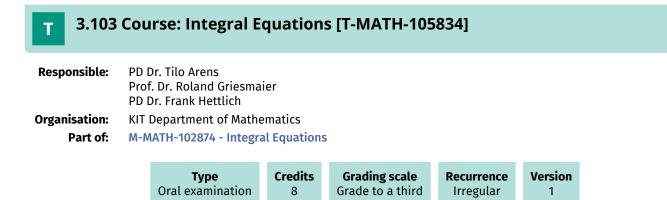

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.


Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation



Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101371 - Security must not have been started.

3.104 Course: Internet Seminar for Evolution Equations [T-MATH-105890] Т **Responsible:** Prof. Dr. Dorothee Frey apl. Prof. Dr. Peer Kunstmann Prof. Dr. Roland Schnaubelt **Organisation: KIT Department of Mathematics** Part of: M-MATH-102918 - Internet Seminar for Evolution Equations Grading scale Credits Version Type Written examination Grade to a third 8 1

Events					
WT 22/23	0105000	Internetseminar für Evolutionsgleichungen	2 SWS	Lecture / 🗣	Schnaubelt, Kunstmann, Frey

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

oral examination of ca. 30 minutes

Prerequisites

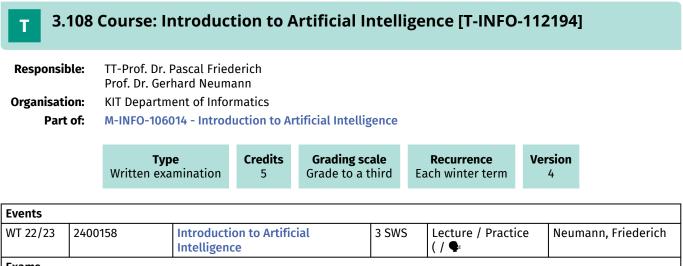
none

3.105 Course: Internship [T-MATH-105888]

Responsible:	Prof. Dr. Willy Dörfler PD Dr. Markus Neher
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102861 - Internship

Туре	Credits	Grading scale	Version
Completed coursework	10	pass/fail	1

3.106 Course: Introduction into Particulate Flows [T-MATH-105911]


Responsible:Prof. Dr. Willy DörflerOrganisation:KIT Department of MathematicsPart of:M-MATH-102943 - Introduction into Particulate Flows

Prerequisites none

none

Exams					
WT 22/23	7500136	Introduction to Artificial Intelligence	Friederich, Neumann		
ST 2023	7500058	Introduction to Artificial Intelligence	Neumann, Friederich		

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101356 - Cognitive Systems must not have been started.

3.109 Course: Introduction to Convex Integration [T-MATH-112119] Т **Responsible:** Dr. Christian Zillinger **Organisation: KIT Department of Mathematics** Part of: M-MATH-105964 - Introduction to Convex Integration Grading scale Credits Expansion Version Type Recurrence Oral examination 3 Grade to a third Irregular 1 terms 1

Competence Certificate

oral examination of approx. 30 minutes

Prerequisites

none

Recommendation

The courses "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

T 3.110 Course: Introduction to Cosmology [T-PHYS-102384]

 Responsible:
 Prof. Dr. Guido Drexlin

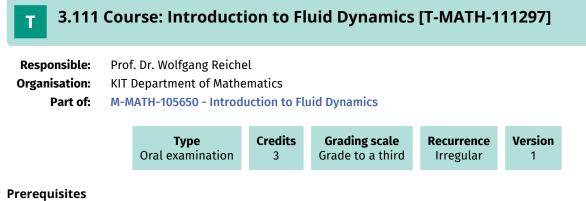
 Organisation:
 KIT Department of Physics

 Part of:
 M-PHYS-102175 - Introduction to Cosmology

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each winter term	1

Events					
WT 22/23	4022021	Einführung in die Kosmologie	2 SWS	Lecture / 🗣	Drexlin, Huber
WT 22/23	4022022	Übungen zur Einführung in die Kosmologie	1 SWS	Practice / 🗣	Drexlin, Huber

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled


Below you will find excerpts from events related to this course:

Einführung in die Kosmologie 4022021, WS 22/23, 2 SWS, Language: German, Open in study portal Lecture (V) On-Site

Content

An Introduction to cosmology from the Big Bang to the present universe

none

3.112 Course: Introduction to Fluid Mechanics [T-MATH-112927] Т **Responsible:** TT-Prof. Dr. Xian Liao Organisation: **KIT Department of Mathematics** Part of: M-MATH-106401 - Introduction to Fluid Mechanics Grading scale Credits Expansion Version Type Recurrence Oral examination 6 Grade to a third Irregular 1 terms 1

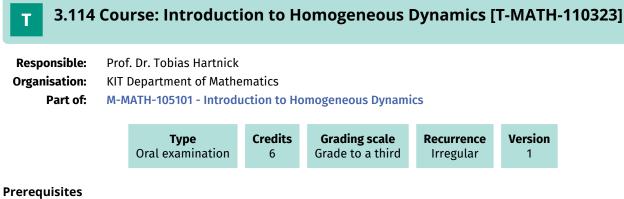
Competence Certificate

The module examination takes the form of an oral examination of approx. 25 minutes.

Prerequisites

none

Recommendation


The module Functional Analysis is strongly recommended.

3.113 Course: Introduction to Geometric Measure Theory [T-MATH-105918]

Responsible:PD Dr. Steffen WinterOrganisation:KIT Department of MathematicsPart of:M-MATH-102949 - Introduction to Geometric Measure Theory

Prerequisites none

none

3.115 Course: Introduction to Kinetic Equations [T-MATH-111721] Т **Responsible:** Dr. Christian Zillinger **Organisation: KIT Department of Mathematics** Part of: M-MATH-105837 - Introduction to Kinetic Equations Grading scale Credits Expansion Version Туре Recurrence Grade to a third Oral examination 3 Irregular 1 terms 1

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Recommendation

The course "Classical Methods for Partial Differential Equations" should be studied beforehand.

3.116 Course: Introduction to Kinetic Theory [T-MATH-108013]

 Responsible:
 Prof. Dr. Martin Frank

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-103919 - Introduction to Kinetic Theory

Туре	Credits	Grading scale	Recurrence	Version	
Oral examination	4	Grade to a third	Each winter term	1	

Events	Events						
WT 22/23	0155450	Introduction to Kinetic Theory	netic Theory 2 SWS Lecture /	Lecture / 🕄	Frank		
		Tutorial for 0155450 (Introduction to Kinetic Theory)	1 SWS	Practice	Frank		
Exams							
WT 22/23	7700078	Introduction to Kinetic Theory			Frank		
WT 22/23 7700078 Introduction to Kinetic Theory			Frank				

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Kinetic Theory

0155450, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)

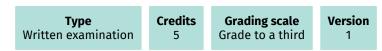
Content

Kinetic descriptions play an important role in a variety of physical, biological, and even social applications, for instance, in the description of gases, radiations, bacteria or financial markets. Typically, these systems are described locally not by a finite set of variables but instead by a probability density describing the distribution of a microscopic state. Its evolution is typically given by an integro-differential equation. Unfortunately, the large phase space associated with the kinetic description has made simulations impractical in most settings in the past. However, recent advances in computer resources, reduced-order modeling and numerical algorithms are making accurate approximations of kinetic models more tractable, and this trend is expected to continue in the future. On the theoretical mathematical side, two rather recent Fields medals (Pierre-Louis Lions 1994, Cédric Villani 2010) also indicate the continuing interest in this field, which was already the subject of Hilbert's sixth out of the 23 problems presented at the World Congress of Mathematicians in 1900.

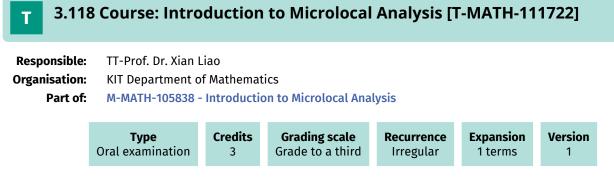
This course gives an introduction to kinetic theory. Our purpose is to discuss the mathematical passage from a microscopic description of a system of particles, via a probabilistic description to a macroscopic view. This is done in a complete way for the linear case of particles that are interacting with a background medium. The nonlinear case of pairwise interacting particles is treated on a more phenomenological level.

An extremely broad range of mathematical techniques is used in this course. Besides mathematical modeling, we make use of statistics and probability theory, ordinary differential equations, hyperbolic partial differential equations, integral equations (and thus functional analysis) and infinite-dimensional optimization. Among the astonishing discoveries of kinetic theory are the statistical interpretation of the Second Law of Thermodynamics, induced by the Boltzmann-Grad limit, and the result that the macroscopic equations describing fluid motion (namely the Euler and Navier-Stokes equations) can be inferred from abstract geometrical properties of integral scattering operators.

Organizational issues


The course will be offered in flipped classroom format in the second half of the semester.

Coursework will start on December 15, but there will be a first meeting on October 27.


Flipped classroom means that the lectures will be made available as videos. We will regularly meet for tutorials and discussion sessions.

T 3.117 Course: Introduction to Matlab and Numerical Algorithms [T-MATH-105913]

Responsible:Dr. Daniel Weiß
Prof. Dr. Christian WienersOrganisation:KIT Department of Mathematics
M-MATH-102945 - Introduction to Matlab and Numerical Algorithms

Prerequisites none

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Recommendation

The courses "Classical Methods for Partial Differential Equations" and "Functional Analysis" should be studied beforehand.

Events ST 2023

3.119 Course: Introduction to Python [T-MATH-106119]

Responsible:Dr. Daniel WeißOrganisation:KIT Department of MathematicsPart of:M-MATH-102994 - Key Competences

	Complet	Type ed coursework	Credits 3	Grading sca pass/fail		Recurrence ch summer term	Vers	s ion
3	0169000	Einführung	in Python	•	1 SWS	Lecture	٧	Veiß

3.120 Course: Introduction to Python - Programming Project [T-MATH-111851]

Responsible:Dr. Daniel WeißOrganisation:KIT Department of MathematicsPart of:M-MATH-102994 - Key Competences

WT 22/23

7700127

Jahnke

T 3.121 Course: Introduction to Scientific Computing [T-MATH-105837]							
Responsible:	Prof. Dr. Willy Dörfler Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners						

Organisation: KIT Department of Mathematics

Part of: M-MATH-102889 - Introduction to Scientific Computing

		Type Oral examination	Credits 8	Grading sc Grade to a t		Version 2		
Events								
ST 2023	0165000	Einführung in das Wissenschaftliche	Rechnen	3 SWS	Lec	ture	Rieder	
ST 2023	0166000	Praktikum zu 01650 in das Wissenschaf	000 (Einführu ftliche Rechne	ing 3 SWS en)	Pra	ctical course	Rieder	
Exams	-			I			•	

Introduction to Scientific Computing

3.122 Course: Introduction to Stochastic Differential Equations [T-T MATH-112234] **Responsible:** Josef Janák Prof. Dr. Mathias Trabs **Organisation:** KIT Department of Mathematics M-MATH-106045 - Introduction to Stochastic Differential Equations Part of: Credits Recurrence Version Туре **Grading scale** Oral examination Grade to a third 4 Irregular 1 Exams WT 22/23 7700122 **Introduction to Stochastic Differential Equations** Janák, Trabs

Competence Certificate

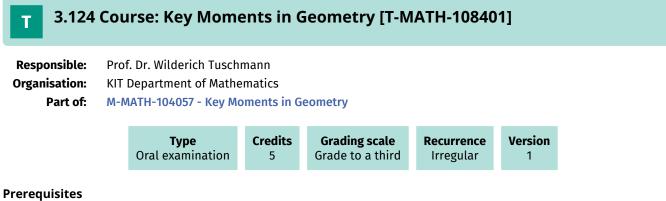
The module will be completed with an oral exam (approx. 30 min).

Prerequisites

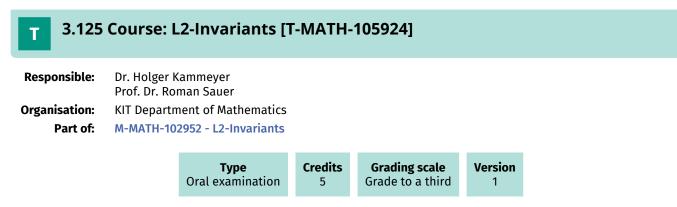
none

Recommendation

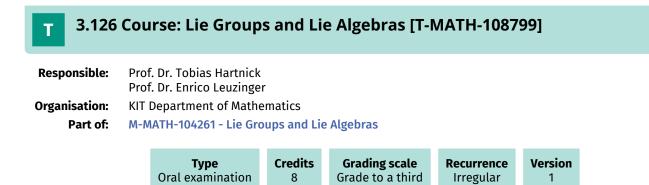
The contents of the module "Probability Theory" are strongly recommended. The module "Continuous Time Finance" is recommended.

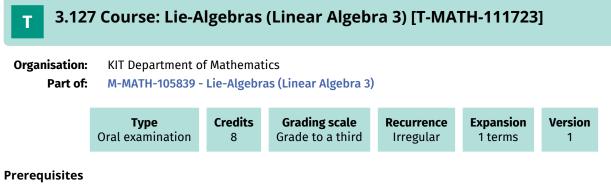

T 3.123 Course: Inverse Problems [T-MATH-105835]

Responsible:	PD Dr. Tilo Arens	
	Prof. Dr. Roland Griesmaier	
	PD Dr. Frank Hettlich	
	Prof. Dr. Andreas Rieder	
Organisation:	KIT Department of Mathematics	
Part of:	M-MATH-102890 - Inverse Problems	


Туре	Credits	Grading scale	Version	
Oral examination	8	Grade to a third	1	

Events							
WT 22/23	0105100	Inverse Problems	4 SWS	Lecture / 🗣	Hettlich		
WT 22/23	0105110	Tutorial for 0105100 (Inverse Problems)	2 SWS	Practice / 🗣	Hettlich		
Exams							
WT 22/23 7700110 Inverse Problems Hettlich							
ST 2023 7700106 Inverse Problems Hettlich							


Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled



none

Prerequisites none

none

3.128 Course: Localization of Mobile Agents [T-INFO-101377] **Responsible:** Prof. Dr.-Ing. Uwe Hanebeck **Organisation: KIT Department of Informatics** Part of: M-INFO-100840 - Localization of Mobile Agents Credits Type Grading scale Recurrence Version Oral examination Grade to a third Each summer term 6 1 **Events** ST 2023 Lecture / 🗣 24613 **Localization of Mobile Agents** 3 SWS Zea Cobo, Ernst Exams WT 22/23 7500020 **Localization of Mobile Agents** Zea Cobo ST 2023 7500004 **Localization of Mobile Agents** Zea Cobo, Noack

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

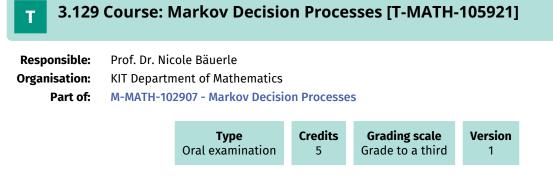
Below you will find excerpts from events related to this course:

Localization of Mobile Agents

24613, SS 2023, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content


This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle's position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues

Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature

Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.

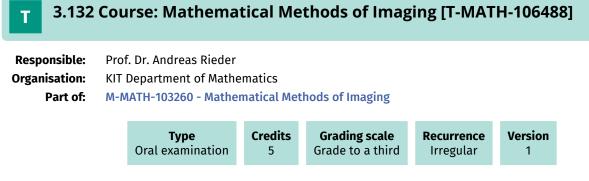
Prerequisites none

T 3.130 Course: Master's Thesis [T-MATH-105878]

Responsible:PD Dr. Stefan KühnleinOrganisation:KIT Department of MathematicsPart of:M-MATH-102917 - Master's Thesis

Final Thesis

This course represents a final thesis. The following periods have been supplied:


Submission deadline	6 months
Maximum extension period	3 months
Correction period	8 weeks

T 3.131 Course: Mathematical Methods in Signal and Image Processing [T-MATH-105862]

Responsible:Prof. Dr. Andreas RiederOrganisation:KIT Department of MathematicsPart of:M-MATH-102897 - Mathematical Methods in Signal and Image Processing

Prerequisites none

Prerequisites None

T 3.133 Course: Mathematical Modelling and Simulation in Practise [T-MATH-105889]

 Responsible:
 PD Dr. Gudrun Thäter

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102929 - Mathematical Modelling and Simulation in Practise

Type	Credits	Grading scale	Version	
Oral examination	4	Grade to a third	2	

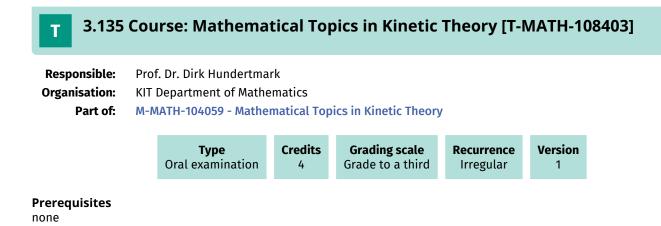
Events					
WT 22/23	0109400	Mathematical Modelling and Simulation	2 SWS	Lecture	Thäter
WT 22/23	0109410	Tutorial for 0109400	1 SWS	Practice	Thäter
Exams					
WT 22/23	7500113	Mathematical Modelling and Simu	lation in P	ractise	Thäter

Below you will find excerpts from events related to this course:

Mathematical Modelling and Simulation 0109400, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V)

Trabs


T 3.134	Course: N	Mathematical S	Statistic	s [T-MATH-105	872]			
Responsible:	Prof. Dr. Vic PD Dr. Bern	Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs						
Organisation:	KIT Departn	nent of Mathematics						
Part of:	M-MATH-10	2909 - Mathematical	Statistics					
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 2			
Exams								

Mathematical Statistics

Prereg	uisites
rucicq	unsites

WT 22/23

7700118

Techno-Mathematics Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 20/04/2023

3.136 Course: Maxwell's Equations [T-MATH-105856] Responsible: PD Dr. Tilo Arens Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich Organisation: KIT Department of Mathematics Part of: M-MATH-102885 - Maxwell's Equations

8

Grade to a third

1

Oral examination

T 3.137 Course: Medical Imaging [T-MATH-105861]

Responsible:Prof. Dr. Andreas RiederOrganisation:KIT Department of MathematicsPart of:M-MATH-102896 - Medical Imaging

Prerequisites none

3.138 Course: Medical Imaging Techniques I [T-ETIT-101930] Т **Responsible:** Prof. Dr. Maria Francesca Spadea **Organisation:** KIT Department of Electrical Engineering and Information Technology Part of: M-ETIT-100384 - Medical Imaging Techniques I Credits Grading scale Version Туре Recurrence Written examination 3 Grade to a third Each winter term 1 Events WT 22/23 2305261 **Medical Imaging Techniques I** 2 SWS Lecture Spadea, Nahm, Loewe Exams WT 22/23 7305261 **Medical Imaging Techniques I** Loewe

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

3.139 Course: Medical Imaging Techniques II [T-ETIT-101931] Т **Responsible:** Prof. Dr. Maria Francesca Spadea **Organisation:** KIT Department of Electrical Engineering and Information Technology Part of: M-ETIT-100385 - Medical Imaging Techniques II Credits Grading scale Version Туре Recurrence Written examination 3 Grade to a third Each summer term 1 Events ST 2023 2305262 **Medical Imaging Techniques II** 2 SWS Lecture / 🗣 Spadea Exams ST 2023 7305262 Medical Imaging Techniques II Spadea

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

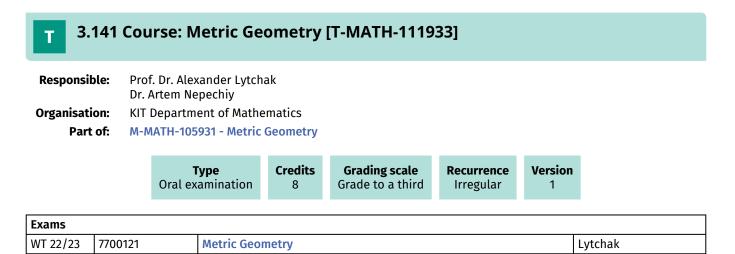
Prerequisites

none

Recommendation

The contents of the M-ETIT-100384 module are required.

3.140 Course: Methods of Signal Processing [T-ETIT-100694]


Responsible:Prof. Dr.-Ing. Michael HeizmannOrganisation:KIT Department of Electrical Engineering and Information TechnologyPart of:M-ETIT-100540 - Methods of Signal Processing

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events					
WT 22/23	2302113	Methods of Signal Processing	2 SWS	Lecture / 🕄	Heizmann
WT 22/23	2302115	Methods of Signal Processing (Tutorial to 2302113)	1+1 SWS	Practice / 🗣	Heizmann, Diaz Ocampo
Exams					
WT 22/23	7302113	Methods of Signal Processing			Heizmann
ST 2023	7302113	Methods of Signal Processing			Heizmann

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites none

Competence Certificate

oral examination of circa 20 minutes

Prerequisites

т	3.142	Course: Models of Mathematical Physics [T-MATH-105846]
Respo	onsible:	Prof. Dr. Dirk Hundertmark Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel
Organi	isation:	KIT Department of Mathematics
I	Part of:	M-MATH-102875 - Models of Mathematical Physics

T 3.143 Course: Modern Experimental Physics I, Atoms, Nuclei and Molecules [T-PHYS-112846]

Responsible:Studiendekan PhysikOrganisation:KIT Department of PhysicsPart of:M-PHYS-106331 - Modern Experimental Physics I, Atoms, Nuclei and Molecules

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	8	Grade to a third	Each summer term	1

Events					
ST 2023	4010041	Modern Experimental Physics I, Atoms, Nuclei and Molecules	4 SWS	Lecture / 🗣	Wulfhekel
ST 2023	4010042	Übungen zu Moderne Experimentalphysik I	2 SWS	Practice / 🗣	Wulfhekel, Jobbitt

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Oral exam, approx. 45 min

Prerequisites

successful completion of the exercises

Modeled Conditions

The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:

3.144 Course: Modular Forms [T-MATH-105843]

Responsible:PD Dr. Stefan KühnleinOrganisation:KIT Department of MathematicsPart of:M-MATH-102868 - Modular Forms

T 3.145 Course: Monotonicity Methods in Analysis [T-MATH-105877]

Responsible:PD Dr. Gerd HerzogOrganisation:KIT Department of MathematicsPart of:M-MATH-102887 - Monotonicity Methods in Analysis

3.146 Course: Multigrid and Domain Decomposition Methods [T-MATH-105863]

Responsible:	Prof. Dr. Christian Wieners
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102898 - Multigrid and Domain Decomposition Methods

		Type Oral examination	Credits 4	Grading scale Grade to a third	Version 1	
Exams						
WT 22/23	7700128	Multigrid and Doma	ain Decomp	osition Methods		Wieners

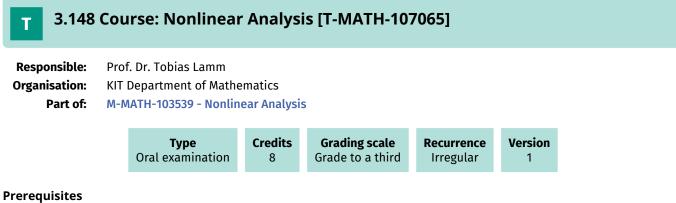
Competence Certificate

Mündliche Prüfung im Umfang von ca. 20 Minuten.

Prerequisites

T 3.147 Course: Neural Networks [T-INFO-101383]

Responsible:Prof. Dr. Alexander WaibelOrganisation:KIT Department of InformaticsPart of:M-INFO-100846 - Neural Networks


	Ty Oral exa	pe mination	Credits 6	Grading scal Grade to a thi		Recurrence th summer term	Version 1	
Events								
ST 2023	2400024		Deep Learning and Neural Networks		4 SWS	Lecture / 🗣	Wai	bel, Nguyen
Exams								
WT 22/23	7500259	Deep Le	eep Learning and Neural Networks			Wail	bel	
ST 2023	7500044	Deep Le	earning and	Neural Network	S		Wai	bel

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-109124 - Deep Learning and Neural Networks must not have been started.

3.149 Course: Nonlinear Control Systems [T-ETIT-100980]

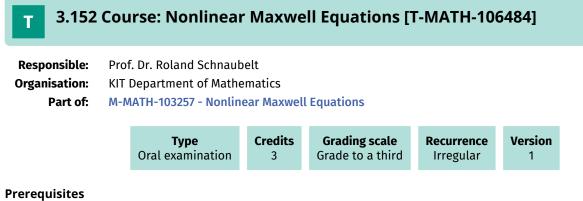
Responsible:	DrIng. Mathias Kluwe
Organisation:	KIT Department of Electrical Engineering and Information Technology
Part of:	M-ETIT-100371 - Nonlinear Control Systems

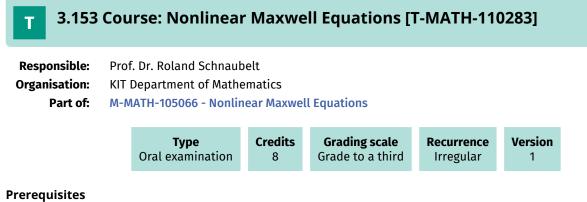
	Writ	Type tten examina	nation	Credits 3	Grading sc Grade to a t			ecurrence summer term	Ve	rsion 1
Events										
ST 2023	2303173	Ni	ichtlinea	re Regelun	gssysteme	2 SW	S Le	ecture / 🗣		Kluwe
Exams										
WT 22/23	7303173	3173 Nonlinear Control Systems Kluwe								
ST 2023	7303173	No	onlinear	Control Sy	stems					Kluwe

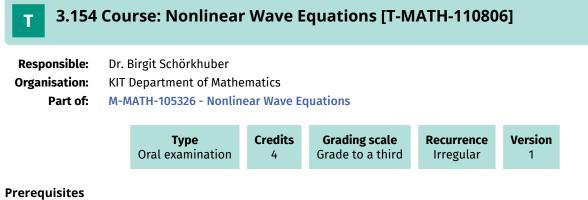
Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

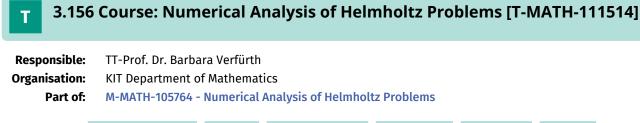
3.150 Course: Nonlinear Evolution Equations [T-MATH-105848] Responsible: Prof. Dr. Dorothee Frey
Prof. Dr. Roland Schnaubelt Organisation: KIT Department of Mathematics


Part of: M-MATH-102877 - Nonlinear Evolution Equations


3.151 Course: Nonlinear Functional Analysis [T-MATH-105876]


Responsible:PD Dr. Gerd HerzogOrganisation:KIT Department of MathematicsPart of:M-MATH-102886 - Nonlinear Functional Analysis

Keine



3.155 Course: Nonparametric Statistics [T-MATH-105873]

Responsible:	Dr. rer. nat. Bruno Ebner
	Prof. Dr. Vicky Fasen-Hartmann
	PD Dr. Bernhard Klar
	Prof. Dr. Mathias Trabs
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102910 - Nonparametric Statistics

Туре	Credits	Grading scale	Version	
Oral examination	4	Grade to a third	2	

Events							
WT 22/23	0162300	Nichtparametrische Statistik	2 SWS	Lecture	Klar		
WT 22/23	0162310	Übungen zu 0162300 (Nichtparametrische Statistik)	1 SWS	Practice	Klar		
Exams	Exams						
WT 22/23	7700083	Nonparametric Statistics	Ionparametric Statistics				
WT 22/23	7700092	Nonparametric Statistics	onparametric Statistics				

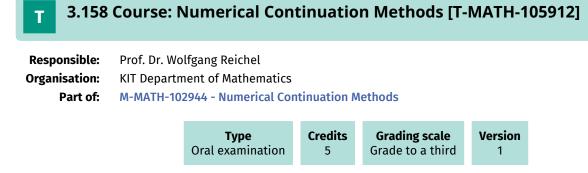
Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	3	Grade to a third	Irregular	1 terms	1

3.157 Course: Numerical Complex Analysis [T-MATH-112280]

Responsible:Prof. Dr. Marlis HochbruckOrganisation:KIT Department of MathematicsPart of:M-MATH-106063 - Numerical Complex Analysis

Type	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	6	Grade to a third	Irregular	1 terms	1

Events								
WT 22/23	0112650	Numerische komplexe Analysis	3 SWS	Lecture	Hochbruck			
Exams	Exams							
WT 22/23	7700113	Numerical Complex Analysis 21.03.2	Hochbruck					
ST 2023	7700067	Numerical Complex Analysis 11.04.2	Jumerical Complex Analysis 11.04.2023					


Competence Certificate

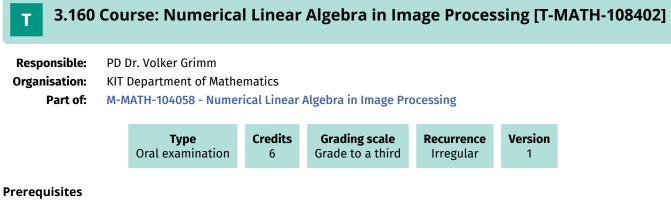
oral exam of ca. 20 minutes

Prerequisites none

Recommendation

Some basic knowledge of Complex Analysis is strongly recommended.

Prerequisites none


T 3.159 Course: Numerical Linear Algebra for Scientific High Performance Computing [T-MATH-107497]

Responsible: Organisation: Part of:

Prof. Dr. Hartwig Anzt KIT Department of Mathematics M-MATH-103709 - Numerical Linear Algebra for Scientific High Performance Computing

Prerequisites none

	3.161	Course: Numerical Methods for Differential Equations [T-MATH-105836]
Re	esponsible:	Prof. Dr. Willy Dörfler Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners
Org	ganisation:	KIT Department of Mathematics

Part of: M-MATH-102888 - Numerical Methods for Differential Equations

Туре	Credits	Grading scale	Version
Written examination	8	Grade to a third	3

Events							
WT 22/23	0110700	Numerische Methoden für Differentialgleichungen	4 SWS	Lecture / 🗣	Rieder		
WT 22/23	0110800	Übungen zu 0110700	2 SWS	Practice / 🗣	Rieder		
Exams							
WT 22/23	7700071	Numerical Methods for Different	Numerical Methods for Differential Equations				
ST 2023	7700069	Numerical Methods for Different	umerical Methods for Differential Equations				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.162 Course: Numerical Methods for Hyperbolic Equations [T-MATH-105900]

Responsible:Prof. Dr. Willy DörflerOrganisation:KIT Department of MathematicsPart of:M-MATH-102915 - Numerical Methods for Hyperbolic Equations

Prerequisites none

3.163 Course: Numerical Methods for Integral Equations [T-MATH-105901]

 Responsible:
 PD Dr. Tilo Arens PD Dr. Frank Hettlich

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102930 - Numerical Methods for Integral Equations

T 3.164 Course: Numerical Methods for Maxwell's Equations [T-MATH-105920]

Responsible:Prof. Dr. Marlis Hochbruck
Prof. Dr. Tobias JahnkeOrganisation:KIT Department of Mathematics
M-MATH-102931 - Numerical Methods for Maxwell's Equations

T 3.165 Course: Numerical Methods for Time-Dependent Partial Differential Equations [T-MATH-105899]

Responsible:Prof. Dr. Marlis Hochbruck
Prof. Dr. Tobias JahnkeOrganisation:KIT Department of Mathematics

Part of: M-MATH-102928 - Numerical Methods for Time-Dependent Partial Differential Equations

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2023	0164500	Numerical Methods for Time- Dependent Partial Differential Equations	4 SWS	Lecture	Hochbruck
ST 2023	0164510	Tutorial for 0164500	2 SWS	Practice	Hochbruck

3.166 Course: Numerical Methods in Computational Electrodynamics [T-MATH-105860]

Responsible:	Prof. Dr. Willy Dörfler
	Prof. Dr. Marlis Hochbruck
	Prof. Dr. Tobias Jahnke
	Prof. Dr. Andreas Rieder
	Prof. Dr. Christian Wieners
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102894 - Numerical Methods in Computational Electrodynamics

Туре	Credits	Grading scale	Version
Oral examination	6	Grade to a third	1

Prerequisites

3.167 Course: Numerical Methods in Fluid Mechanics [T-MATH-105902]

 Responsible:
 Prof. Dr. Willy Dörfler

 PD Dr. Gudrun Thäter

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102932 - Numerical Methods in Fluid Mechanics

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
ST 2023	0164200	Numerische Methoden in der Strömungsmechanik	2 SWS	Lecture	Thäter
ST 2023	0164210	Übungen zu 0164210 (Numerische Methoden in der Strömungsmechanik)	1 SWS	Practice	Thäter
Exams					
ST 2023	7700114	Numerical Methods in Fluid Mecha	Numerical Methods in Fluid Mechanics		

3.168 Course: Numerical Methods in Mathematical Finance [T-MATH-105865]

Responsible:Prof. Dr. Tobias JahnkeOrganisation:KIT Department of MathematicsPart of:M-MATH-102901 - Numerical Methods in Mathematical Finance

Prerequisites none

3.169 Course: Numerical Methods in Mathematical Finance II [T-MATH-105880]

Responsible:Prof. Dr. Tobias JahnkeOrganisation:KIT Department of MathematicsPart of:M-MATH-102914 - Numerical Methods in Mathematical Finance II

Competence Certificate

Mündliche Prüfung im Umfang von ca. 30 Minuten

Prerequisites

т	3.170	Course: Numerical Optimisation Methods [T-MATH-105858]
Resp	onsible:	Prof. Dr. Willy Dörfler

	Prof. Dr. Marlis Hochbruck
	Prof. Dr. Tobias Jahnke
	Prof. Dr. Andreas Rieder
	Prof. Dr. Christian Wieners
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102892 - Numerical Optimisation Methods

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

 Responsible:
 PD Dr. Volker Grimm

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-105327 - Numerical Simulation in Molecular Dynamics

Prerequisites none

3.172 Course: Optical Waveguides and Fibers [T-ETIT-101945]

 Responsible:
 Prof. Dr.-Ing. Christian Koos

 Organisation:
 KIT Department of Electrical Engineering and Information Technology

 Part of:
 M-ETIT-100506 - Optical Waveguides and Fibers

	Type Oral examination	Credits 4	Grading scale Grade to a third	Recurrence Each winter term	Version 1	
--	---------------------------------	--------------	--	---------------------------------------	--------------	--

Events					
WT 22/23	2309464	Optical Waveguides and Fibers	2 SWS	Lecture / 🗣	Koos, N.N., Bao, Drayß
WT 22/23	2309465	Tutorial for 2309464 Optical Waveguides and Fibers	1 SWS	Practice / 🗣	Koos, N.N.
Exams					
WT 22/23	7309464	Optical Waveguides and Fibers	Optical Waveguides and Fibers Koos		
ST 2023	7309464	Optical Waveguides and Fibers			Koos

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites none

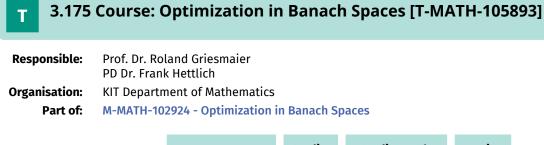
3.173 Course: Optimal Control and Estimation [T-ETIT-104594] Т

Responsible: Prof. Dr.-Ing. Sören Hohmann **Organisation:** KIT Department of Electrical Engineering and Information Technology Part of: M-ETIT-102310 - Optimal Control and Estimation

	Or	Type al examination	Credits 3	Grading scale Grade to a thir		Recurrence h summer term	Versio 1
Events							
ST 2023	2303162	Optima	Optimale Regelung und Schätzun		2 SWS	Lecture / 🗣	K
Exams							
WT 22/23 7303162		Optima	Optimal Control and Estimation			к	
ST 2023	ST 2023 7303162 Opt			d Estimation			к

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites


none

T 3.174 Course: Optimisation and Optimal Control for Differential Equations [T-MATH-105864]

Organisation:KIT Department of MathematicsPart of:M-MATH-102899 - Optimisation and Optimal Control for Differential Equations

Prerequisites none

Competence Certificate

oral examination of approximately 30 minutes

Prerequisites

none

Recommendation

Some basic knowledge of finite dimensional optimization theory and functional analysis is desirable.

Т

3.176 Course: Optimization of Dynamic Systems [T-ETIT-100685]

Responsible:Prof. Dr.-Ing. Sören HohmannOrganisation:KIT Department of Electrical Engineering and Information TechnologyPart of:M-ETIT-100531 - Optimization of Dynamic Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	5	Grade to a third	Each winter term	1

Events					
WT 22/23	2303183	Optimization of Dynamic Systems	2 SWS	Lecture / 🕄	Hohmann
WT 22/23	2303185	Optimization of Dynamic Systems (Tutorial to 2303183)	1 SWS	Practice / 🕄	Bohn
WT 22/23	2303851	Accompanying group tutorial for 2303183 Optimization of Dynamic Systems	1 SWS	Tutorial (/ 🕄	Bohn
Exams					
WT 22/23	7303183	Optimization of Dynamic Systems			Hohmann
ST 2023	7303183	Optimization of Dynamic Systems Hohmann			

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (120 min) taking place in the recess period.

Prerequisites

T 3.177 Course: Oral Exam - Supplementary Studies on Culture and Society [T-ZAK-112659]

Responsible:	Dr. Christine Christine My				
Organisation: Part of:	M-ZAK-1062	35 - Supplementary S	Studies on (Culture and Society	
		Type Oral examination	Credits 4	Grading scale Grade to a third	Version 1

Competence Certificate

An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from In-depth Module.

Prerequisites

Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

T 3.178 Course: Oral Exam - Supplementary Studies on Sustainable Development [T-ZAK-112351]

Organisation:

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Competence Certificate

An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from Elective Module.

Prerequisites

A requirement for the Supplementary Course: Oral examination is the successful completion of the modules Basics Module and Specialisation Module and the required electives of Elective Module.

3.179 Course: Parallel Computing [T-MATH-102271] Responsible: PD Dr. Mathias Krause Prof. Dr. Christian Wieners Organisation: KIT Department of Mathematics Part of: M-MATH-101338 - Parallel Computing

T 3.180	Course: Particle	Physics	I [T-PHYS-102]	369]		
Responsible:	Prof. Dr. Torben Ferbe Prof. Dr. Ulrich Husem Prof. Dr. Markus Klute Prof. Dr. Günter Quast PD Dr. Klaus Rabbertz	ann				
Organisation:	KIT Department of Phy	sics				
Part of:	M-PHYS-102114 - Particle Physics I					
	Type Oral examination	Credits 8	Grading scale Grade to a third	Recurrence Each winter term	Version 1	

Events					
WT 22/23	4022031	Teilchenphysik I	3 SWS	Lecture / 🗣	Ferber
WT 22/23	4022032	Praktische Übungen zur Teilchenphysik I	2 SWS	/ 🗣	Quast, Faltermann

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.181 Course: Pattern Recognition [T-INFO-101362] T Prof. Dr.-Ing. Jürgen Beyerer **Responsible:** Tim Zander **Organisation:** KIT Department of Informatics M-INFO-100825 - Pattern Recognition Part of: Credits Grading scale Version Type Recurrence Grade to a third Written examination 6 Each summer term 2 **Events** ST 2023 Lecture / Practice 24675 **Pattern Recognition** 4 SWS Beyerer (/ 🗣 Exams WT 22/23 7500111 **Pattern Recognition** Beyerer ST 2023 7500032 **Pattern Recognition** Beverer

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Pattern Recognition

24675, SS 2023, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) On-Site

Organizational issues

Vorlesung: montags 15:45 bis 16:30 Uhr und mittwochs 14:00 bis 15:30 Uhr Übung: montags 16:30 bis 17:15 Uhr

Literature

V

Weiterführende Literatur

- Richard O. Duda, Peter E. Hart, Stork G. David. Pattern Classification. Wiley-Interscience, second edition, 2001
- K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, second edition, 1997
- R. Hoffman. Signalanalyse und -erkennung. Springer, 1998
- H. Niemann. Pattern analysis and understanding. Springer, second edition, 1990
- J. Schürmann. Pattern classification. Wiley & Sons, 1996
- S. Theodoridis, K. Koutroumbas. Pattern recognition. London: Academic, 2003
- V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000

3.182 Course: Percolation [T-MATH-105869]

Responsible:	Prof. Dr. Daniel Hug Prof. Dr. Günter Last PD Dr. Steffen Winter
Organisation: Part of:	KIT Department of Mathematics M-MATH-102905 - Percolation
rait oi.	M MATT 102203 Tercolation

Туре	Credits	Grading scale	Version
Oral examination	5	Grade to a third	2

Events									
ST 2023	0117000	Perkolation	2 SWS	Lecture	Winter				
ST 2023	0117100	Übungen zu 0117000 (Perkolation)	2 SWS	Practice	Winter				

Prerequisites

Т

3.183 Course: Physical Foundations of Cryogenics [T-CIWVT-106103]

Responsible:Prof. Dr.-Ing. Steffen GrohmannOrganisation:KIT Department of Chemical and Process EngineeringPart of:M-CIWVT-103068 - Physical Foundations of Cryogenics

Type	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

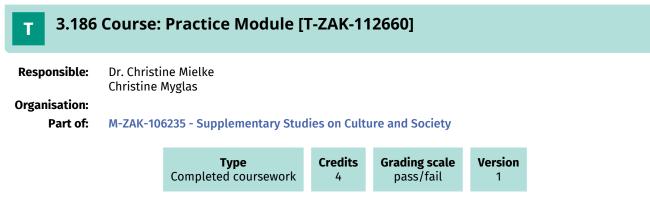
Events							
ST 2023	22030	Physical Foundations of Cryogenics	2 SWS	Lecture / 🗣	Grohmann		
ST 2023	22031	Physical Foundations of Cryogenics - Exercises	1 SWS	Practice / 🗣	Grohmann		
Exams							
WT 22/23	7200203	Physical Foundations of Cryog	Physical Foundations of Cryogenics				
ST 2023	7200203	Physical Foundations of Cryog	Physical Foundations of Cryogenics				

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

3.184 Course: Poisson Processes [T-MATH-105922] Responsible: Prof. Dr. Vicky Fasen-Hartmann
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
PD Dr. Steffen Winter Organisation: KIT Department of Mathematics
Part of: Methods Methods Dure Grading scale


Туре	Credits	Grading scale	Version
Oral examination	5	Grade to a third	1

Prerequisites

3.185 Course: Potential Theory [T-MATH-105850] Responsible: PD Dr. Tilo Arens Prof. Dr. Roland Griesmaier

PD Dr. Frank Hettlich Prof. Dr. Wolfgang Reichel Organisation: KIT Department of Mathematics Part of: M-MATH-102879 - Potential Theory

Type	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Competence Certificate

Internship (3 ECT)

Report within the framework of the practical training (Length approx. 18,000 characters (incl. spaces) (1 ECT)

Prerequisites

none

Annotation

Knowledge from the Basic Module and the Elective Module is helpful.

T 3.187 Course: Probability Theory and Combinatorial Optimization [T-MATH-105923]

Responsible:Prof. Dr. Daniel Hug
Prof. Dr. Günter LastOrganisation:KIT Department of MathematicsPart of:M-MATH-102947 - Probability Theory and Combinatorial Optimization

Prerequisites none

3.188 Course: Process Modeling in Downstream Processing [T-CIWVT-106101] Т

Responsible: apl. Prof. Dr. Matthias Franzreb Organisation: KIT Department of Chemical and Process Engineering Part of: M-CIWVT-103066 - Process Modeling in Downstream Processing

		Type Oral examina	ation	Credits 4	Grading sca Grade to a th			ecurrence n winter term	Version	1
Events										
ST 2023	22717		rocess M rocessin	-	Downstream	2 SV	VS	Lecture / 🗣	F	ranzre
Exams		·								
WT 22/23	7223015	Pi	rocess N	Aodeling in	Downstream P	roces	sing		F	ranzre

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

3.189 Course: Processing of Nanostructured Particles [T-CIWVT-106107]

 Responsible:
 Prof. Dr.-Ing. Hermann Nirschl

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103073 - Processing of Nanostructured Particles

		Type Oral examinat	tion	Credits 6	Grading sc Grade to a t			e currence winter term	Versio 1	n
Events										
WT 22/23	22921		ocessin rticles	g of Nanos	tructured	2 SV	VS	Lecture / 🗣	١	Virso
Exams										
WT 22/23	729192	1 Pro	Processing of Nanostructured Particles					Ν	Virsc	
ST 2023	729192	1 Pro	ocessin	g of Nanos	tructured Par	ticles			١	Virscl

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

3.190 Course: Project Centered Software-Lab [T-MATH-105907]

 Responsible:
 PD Dr. Gudrun Thäter

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102938 - Project Centered Software-Lab

TypeCredExamination of another type4	s Grading scale Version Grade to a third 1
--------------------------------------	---

Events									
ST 2023	0161700	Projektorientiertes Softwarepraktikum	4 SWS	Practical course	Thäter, Krause				

Prerequisites

T 3.191 Course: Random Graphs [T-MATH-105929]

Responsible:Prof. Dr. Daniel HugOrganisation:KIT Department of MathematicsPart of:M-MATH-102951 - Random Graphs

Prerequisites none

3.192 Course: Random Graphs and Networks [T-MATH-112241] Т **Responsible:** Prof. Dr. Daniel Hug **Organisation: KIT Department of Mathematics** Part of: M-MATH-106052 - Random Graphs and Networks Credits **Grading scale** Version Туре Recurrence Oral examination 8 Grade to a third Irregular 1 Exams ST 2023 7700109 **Random Graphs and Networks** Hug

Competence Certificate

oral exam of ca. 30 min

Prerequisites

none

Recommendation

The contents of the module 'Probability Theory' are strongly recommended.

3.193 Course: Real-Time Systems [T-INFO-101340] Т **Responsible:** Prof. Dr.-Ing. Thomas Längle Organisation: **KIT Department of Informatics** Part of: M-INFO-100803 - Real-Time Systems Credits Grading scale Version Туре Recurrence Grade to a third Written examination 6 Each summer term 1 Events ST 2023 4 SWS Lecture / Practice 24576 **Real-Time Systems** Längle, Ledermann (/ 🗣 Exams Längle WT 22/23 750002 **Real-Time Systems**

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.194 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

 Responsible:
 Prof. Dr.-Ing. Tamim Asfour

 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-100893 - Robotics I - Introduction to Robotics

Type	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events										
WT 22/23	2424152	Robotics I - Introduction to Robotics	Asfour							
Exams	Exams									
WT 22/23	7500106	Robotics I - Introduction to Robotic	Robotics I - Introduction to Robotics							
ST 2023	7500218	Robotik I - Einführung in die Roboti	obotik I - Einführung in die Robotik							

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

none.

Recommendation

none.

3.195 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

 Responsible:
 Prof. Dr.-Ing. Tamim Asfour

 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-104897 - Robotics III - Sensors and Perception in Robotics

Events									
ST 2023	2400067	Robotics III - Sensors and Perception in Robotics	2 SWS	Lecture / 🗣	Asfour				
Exams									
WT 22/23	7500207	Robotics III - Sensors and Perceptic	Asfour						
ST 2023	7500242	Robotics III - Sensors and Perceptic	Asfour						

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

none.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101352 - Robotics III - Sensors in Robotics must not have been started.

Recommendation

Attending the lecture Robotics I - Introduction to Robotics is recommended.

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics	Lecture (V)	
2400067, SS 2023, 2 SWS, Language: German/English, Open in study portal	On-Site	

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Obejctives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

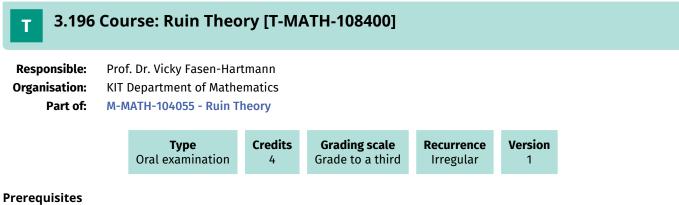
Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Empfehlungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen


Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.

Griesmaier

WT 22/23

7700129

Scattering Theory

3.197 Course: Scattering Theory [T-MATH-105855]										
Responsible: PD Dr. Tilo Arens Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich										
Organisation: Part of:	-	KIT Department of Mathematics M-MATH-102884 - Scattering Theory								
		Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1					
Exams										

T 3.198 Course: Security [T-INFO-101371]										
Responsit	ole:	Prof. Dr. Dennis Hofheinz Prof. Dr. Jörn Müller-Quade								
Organisati	on:	KIT Department of Informatics								
Part	of:	M-INFO-1008								
		Type Written exam		Credits 6	Grading scale Grade to a third	Recurrence Each summer term	Version 1			
Exams										
WT 22/23	7500)180	Security				Mülle	r-Quade, Stru		

T 3.199 Course: Selected Methods in Fluids and Kinetic Equations [T-MATH-111853]

Organisation: KIT Department of Mathematics Part of: M-MATH-105897 - Selected Methods in Fluids and Kinetic Equations

Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	3	Grade to a third	Irregular	1 terms	1

Competence Certificate

oral examination of approx. 30 minutes

Prerequisites none

Recommendation

The courses "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

3.201 Course: Self-Booking-HOC-SPZ-ZAK-1-Graded [T-MATH-111515] Т **Organisation: KIT Department of Mathematics** Part of: M-MATH-102994 - Key Competences Туре Credits Grading scale Recurrence Version Examination of another type 2 Grade to a third Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

3.202 Course: Self-Booking-HOC-SPZ-ZAK-2-Graded [T-MATH-111517] Т **Organisation: KIT Department of Mathematics** Part of: M-MATH-102994 - Key Competences Туре Credits Grading scale Recurrence Version Examination of another type 2 Grade to a third Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

1

3.203 Course: Self-Booking-HOC-SPZ-ZAK-5-Ungraded [T-MATH-111516] Т **Organisation: KIT Department of Mathematics** Part of: M-MATH-102994 - Key Competences Туре Credits **Grading scale** Recurrence Version Completed coursework 2 pass/fail Each term

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

3.204 Course: Self-Booking-HOC-SPZ-ZAK-6-Ungraded [T-MATH-111520] Т **Organisation: KIT Department of Mathematics** Part of: M-MATH-102994 - Key Competences Туре Credits **Grading scale** Recurrence Version Completed coursework 2 pass/fail Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

T 3.205 Course: Seminar Advanced Topics in Parallel Programming [T-INFO-103584]

 Responsible:
 Prof. Dr. Achim Streit

 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-101887 - Seminar Advanced Topics in Parallel Programming

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	3	Grade to a third	Each summer term	1

T 3.206 Course: Seminar Mathematics [T-MATH-105686]

Responsible:PD Dr. Stefan KühnleinOrganisation:KIT Department of MathematicsPart of:M-MATH-102730 - Seminar

Type	Credits	Grading scale pass/fail	Version
Completed coursework	3		1

Exams				
WT 22/23	7700048	Seminar Mathematics	Kühnlein	
ST 2023	7700025	Seminar Mathematics	Kühnlein	

T 3.207 Course: Sobolev Spaces [T-MATH-105896]

Responsible:Prof. DOrganisation:KIT DePart of:M-MAT

Prof. Dr. Roland Schnaubelt KIT Department of Mathematics M-MATH-102926 - Sobolev Spaces

3.208 Course: Software Engineering II [T-INFO-101370]									
Responsible:Prof. DrIng. Anne Koziolek Prof. Dr. Ralf ReussnerOrganisation:KIT Department of Informatics									
Part of: M-INFO-100833 - Software Engineering II									
		Typ Written exa		Credits 6	Grading so Grade to a t		Recurrence Each winter term	Version 1	
Events									
WT 22/23	2407	6	Software B	Engineering	II	4 SWS Lecture / 🗣		Reus	sner
Exams									
WT 22/23	7500	054	Software Engineering II					Reus	sner
ST 2023	7500	207	7 Software Engineering II					Reus	sner

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Software Engineering II

24076, WS 22/23, 4 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Literature

Craig Larman, Applying UML and Patterns, 3rd edition, Prentice Hall, 2004. Weitere Literaturhinweise werden in der Vorlesung gegeben.

1

3.209 Course: Space and Time Discretization of Nonlinear Wave Equations [T-Т MATH-112120]

Prof. Dr. Marlis Hochbruck **Responsible: Organisation:** KIT Department of Mathematics Part of: M-MATH-105966 - Space and Time Discretization of Nonlinear Wave Equations Credits **Grading scale** Recurrence Expansion Version Туре Oral examination Grade to a third 6 Irregular 1 terms

Prerequisites

T 3.210 Course: Spatial Stochastics [T-MATH-105867]

Responsible:	Prof. Dr. Daniel Hug
	Prof. Dr. Günter Last
	PD Dr. Steffen Winter
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102903 - Spatial Stochastics

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events						
WT 22/23	0105600	Spatial Stochastics	4 SWS	Lecture / 🗣	Last	
WT 22/23	0105610	Tutorial for 0105600 (Spatial Stochastics)	2 SWS	Practice	Last	
Exams						
WT 22/23	7700052	Spatial Stochastics	Spatial Stochastics			

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

3.211 Course: Special Topics of Numerical Linear Algebra [T-MATH-105891] Т **Responsible:** PD Dr. Volker Grimm Prof. Dr. Marlis Hochbruck PD Dr. Markus Neher **Organisation:** KIT Department of Mathematics Part of: M-MATH-102920 - Special Topics of Numerical Linear Algebra Credits Grading scale Туре Version Oral examination 8 Grade to a third 1

Events					
ST 2023	0160400	Topics in Numerical Linear Algebra	4 SWS	Lecture	Grimm

Prerequisites

Competence Certificate

The monitoring occurs in the form of several supplementary courses, which usually comprise a presentation of the (group) project, a written elaboration of the (group) project as well as an individual term paper, if necessary with appendices (examination performances of other kind according to statutes § 5 section 3 No. 3 or § 7 section 7).

The presentation is usually with the accompanying practice partners, as well as the written paper.

Prerequisites

Active participation in all three mandatory components.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
 - ZAK Begleitstudium

Recommendation

Knowledge from 'Basic Module ' and 'Elective Module ' is helpful.

T 3.213	Course: Spectral Theory - Exam [T-MATH-103414]
Responsible:	Prof. Dr. Dorothee Frey PD Dr. Gerd Herzog apl. Prof. Dr. Peer Kunstmann Prof. Dr. Roland Schnaubelt Dr. rer. nat. Patrick Tolksdorf

Organisation: KIT Department of Mathematics

Part of: M-MATH-101768 - Spectral Theory

Туре	Credits	Grading scale	Version	
Oral examination	8	Grade to a third	1	

Events					
ST 2023	0163700	Spectral Theory	4 SWS	Lecture	Schnaubelt
ST 2023	0163710	Tutorial for 0163700 (Spectral Theory)	2 SWS	Practice	Schnaubelt

Below you will find excerpts from events related to this course:

Spectral Theory

0163700, SS 2023, 4 SWS, Language: English, Open in study portal

Lecture (V)

Organizational issues

Lecture notes are provided in Ilias and on Prof. Schnaubelt's webpage.

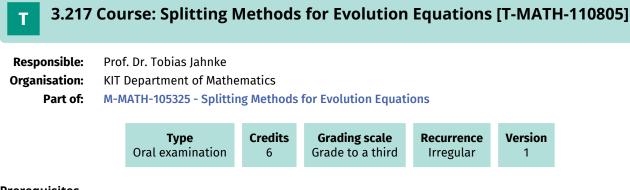
Literature

V

- H.W. Alt: Lineare Funktionalanalysis.
- H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations.
- J.B. Conway: A Course in Functional Analysis.
- N. Dunford, J.T. Schwartz: Linear Operators, Part I.
- T. Kato: Perturbation Theory of Linear Operators.
- B. Simon: Operator Theory. A Comprehensive Course in Analysis, Part 4.
- A.E. Taylor, D.C. Lay: Introduction to Functional Analysis.
- D. Werner: Funktionalanalysis.

3.214 Course: Spectral Theory of Differential Operators [T-MATH-105851]

Responsible:Prof. Dr. Michael PlumOrganisation:KIT Department of MathematicsPart of:M-MATH-102880 - Spectral Theory of Differential Operators



3.215 Course: Spin Manifolds, Alpha Invariant and Positive Scalar Curvature [T-MATH-105932]

Responsible:Stephan Klaus
Prof. Dr. Wilderich TuschmannOrganisation:KIT Department of Mathematics
Part of:Part of:M-MATH-102958 - Spin Manifolds, Alpha Invariant and Positive Scalar Curvature

3.216 Course: Splitting Methods [T-MATH-105903] Т Prof. Dr. Marlis Hochbruck **Responsible:** Prof. Dr. Tobias Jahnke Organisation: KIT Department of Mathematics M-MATH-102933 - Splitting Methods Part of: **Grading scale** Grade to a third Credits Туре Version Oral examination 5 1

Prerequisites none

T 3.218 Course: Statistical Learning [T-MATH-111726]

Responsible:Prof. Dr. Mathias TrabsOrganisation:KIT Department of MathematicsPart of:M-MATH-105840 - Statistical Learning

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

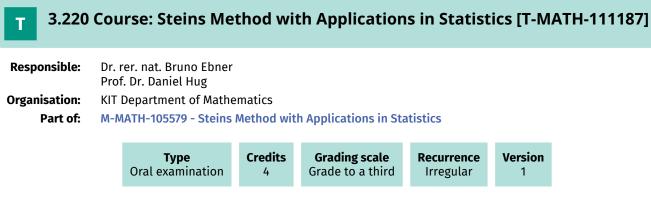
none

Recommendation

The module "Introduction to Stochastics" is recommended. The module "Probability theory" is preferable.

3.219 Course: Statistical Thermodynamics [T-CIWVT-106098]

 Responsible:
 Prof. Dr. Sabine Enders


 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103059 - Statistical Thermodynamics

		Type Oral examination	Credits 6	Grading sc Grade to a t		Version 1	
Events							
ST 2023	22010	Statistische Thermo	Statistische Thermodynamik			ture / 🗣	Enders
ST 2023	22011	Übungen zu 22010 S Thermodynamik	Übungen zu 22010 Statistische Thermodynamik			ctice / 🗣	Enders
Exams				•			· ·
WT 22/23	7200103	Statistical Thermodynamics				Enders	
ST 2023	7200103	Statistical Thermodynamics				Enders	

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites None

Prerequisites none

3.221 Course: Stochastic Control [T-MATH-105871] Т **Responsible:** Prof. Dr. Nicole Bäuerle Organisation: **KIT Department of Mathematics** Part of: M-MATH-102908 - Stochastic Control Grading scale Credits Version Туре Oral examination Grade to a third 4 1

Prerequisites none

3.222 Course: Stochastic Differential Equations [T-MATH-105852]

 Responsible:
 Prof. Dr. Dorothee Frey
Prof. Dr. Roland Schnaubelt

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-102881 - Stochastic Differential Equations

Type	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
WT 22/23	0105500	Introduction to Stochastic Differential Equations	2 SWS	Lecture	Janák, Winter
WT 22/23	0105510	Tutorial for 0105500 (Introduction to Stochastic Differential Equations)	1 SWS	Practice	Janák

3.223 Course: Stochastic Geometry [T-MATH-105840]

Responsible:	Prof. Dr. Daniel Hug
	Prof. Dr. Günter Last
	PD Dr. Steffen Winter
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102865 - Stochastic Geometry

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2023	0152600	Stochastic Geometry	4 SWS	Lecture	Hug
ST 2023	0152610	Tutorial for 0152600 (Stochastic Geometry)	2 SWS	Practice	Hug

3.224 Course: Stochastic Information Processing [T-INFO-101366]

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Uwe Hanebeck **KIT Department of Informatics** M-INFO-100829 - Stochastic Information Processing

		Type Oral examinat		Credits 6	Grading scal Grade to a th		Recurrence Each winter term	Version 1	
Events									
WT 22/23	24113	Sto	ochastic	Informat	ion Processing	3 SW	S Lecture / 🗣	Ha	nebeck, Fr

Exams					
WT 22/23	7500031	Stochastic Information Processing			Hanebeck
ST 2023	7500010	Stochastic Information Processing			Hanebeck

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Stochastic Information Processing

24113, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

In order to handle complex dynamic systems (e.g., in robotics), an in-step estimation of the system's internal state (e.g., position and orientation of the actuator) is required. Such an estimation is ideally based on the system model (e.g., a discretized differential equation describing the system dynamics) and the measurement model (e.g., a nonlinear function that maps the state space to a measurement subspace). Both system and measurement model are uncertain (e.g., include additive or multiplicative noise).

For continuous state spaces, an exact calculation of the probability densities is only possible in a few special cases. In practice, general nonlinear systems are often traced back to these special cases by simplifying assumptions. One extreme is linearization with subsequent application of linear estimation theory. However, this often leads to unsatisfactory results and requires additional heuristic measures. At the other extreme are numerical approximation methods, which only evaluate the desired distribution densities at discrete points in the state space. Although the working principle of these procedures is usually quite simple, a practical implementation often turns out to be difficult and especially for higherdimensional systems it is computationally complex.

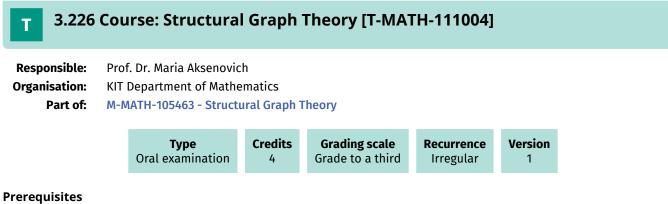
As a middle ground, analytical nonlinear estimation methods would therefore often be desirable. In this lecture the main difficulties in the development of such estimation methods are presented and corresponding solution modules are presented. Based on these building blocks, some analytical estimation methods are discussed in detail as examples, which are very suitable for practical implementation and offer a good compromise between computing effort and performance. Useful applications of these estimation methods are also discussed. Both known methods and the results of current research are presented.

Organizational issues

Der Prüfungstermin ist per E-Mail (gambichler@kit.edu) zu vereinbaren.

Literature Weiterführende Literatur

Skript zur Vorlesung


3.225 Course: Stochastic Simulation [T-MATH-112242] Т **Responsible:** TT-Prof. Dr. Sebastian Krumscheid **Organisation: KIT Department of Mathematics** Part of: M-MATH-106053 - Stochastic Simulation Credits Grading scale Version Туре Recurrence Oral examination 5 Grade to a third Each winter term 1 Events WT 22/23 0100027 **Stochastic Simulation** 2 SWS Lecture / 🗣 Krumscheid Exams WT 22/23 7700109 **Stochastic Simulation** Krumscheid

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

oral exam of ca. 30 min

Prerequisites none

3.227 Course: Technical Optics [T-ETIT-100804]

Responsible:	Prof. Dr. Cornelius Neumann
Organisation:	KIT Department of Electrical Engineering and Information Technology
Part of:	M-ETIT-100538 - Technical Optics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	5	Grade to a third	Each winter term	1

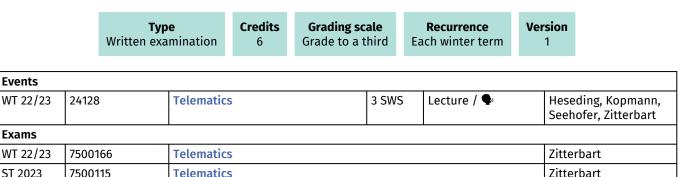
Events						
WT 22/23	2313720	Technical Optics	2 SWS	Lecture / 🗣	Neumann	
WT 22/23	2313722	Technical Optics (Tutorial to 2313720)	1 SWS	Practice / 🗣	Neumann	
Exams	•		•	•	·	
WT 22/23 7313720 Technical Optics					Neumann	
ST 2023	7313720	Technical Optics	echnical Optics			

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites none

3.228 Course: Technomathematical Seminar [T-MATH-105884]

Responsible: Prof. Dr. Tobias Jahnke PD Dr. Stefan Kühnlein Organisation: KIT Department of Mathematics Part of: M-MATH-102863 - Technomathematical Seminar


Type	Credits	Grading scale pass/fail	Version
Completed coursework	3		1

Exams				
WT 22/23	7700031	Technomathematical Seminar	Kühnlein	
ST 2023	7700056	Technomathematical Seminar	Kühnlein	

3.229 Course: Telematics [T-INFO-101338]

```
Responsible: Pro
Organisation: KIT
Part of: M-II
```

Prof. Dr. Martina Zitterbart KIT Department of Informatics M-INFO-100801 - Telematics

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

V	Telematics	Lecture (V)
V	24128, WS 22/23, 3 SWS, Language: German, Open in study portal	On-Site

Content

The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-to-end connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiary with the contents of the lecture Einführung in Rechnernetze or comparable lectures is assumed.

Learning Objectives

After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- · have a profound understanding of different media access control procedures in
- local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanism to deal with these problems
- be familiar with current developments such as SDN and data center networking
- · be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-toend communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.

Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.

Literature

S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley, 1997 J.F. Kurose, K.W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. 4rd Edition, Addison-Wesley, 2007 W. Stallings. Data and Computer Communications. 8th Edition, Prentice Hall, 2006 Weiterführende Literatur •D. Bertsekas, R. Gallager. Data Networks. 2nd Edition, Prentice-Hall, 1991 •F. Halsall. Data Communications, Computer Networks and Open Systems. 4th Edition, Addison-Wesley Publishing Company, 1996 •W. Haaß. Handbuch der Kommunikationsnetze. Springer, 1997 •A.S. Tanenbaum. Computer-Networks. 4th Edition, Prentice-Hall, 2004 •Internet-Standards •Artikel in Fachzeitschriften

T 3.230 Course: Theoretical Nanooptics [T-PHYS-104587]

Responsible:Prof. Dr. Carsten RockstuhlOrganisation:KIT Department of PhysicsPart of:M-PHYS-102295 - Theoretical Nanooptics

		Type Oral examination	Credits 6	Grading sc Grade to a t		Version 1	
Events							
WT 22/23	4023131	Theoretical Nanoor	Theoretical Nanooptics		Lec	ture / 🗣	Fernandez Corbaton, Rockstuhl
WT 22/23	4023132	Exercises to Theore Nanooptics	Exercises to Theoretical Nanooptics		Pra	ctice / 🗣	Fernandez Corbaton, Rockstuhl
Exams	·	•		•			·
WT 22/23	7800126	Theoretical Nanoor	Theoretical Nanooptics				Rockstuhl
.egend: 🖥 Online,	Blended (On-Site/C	Online), 🗣 On-Site, 🗙 Cancelled					

Techno-Mathematics Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 20/04/2023

3.231 Course: Theoretical Optics [T-PHYS-104578]

Responsible:	Dr. Boris Narozhnyy Prof. Dr. Carsten Rockstuhl
Organisation:	KIT Department of Physics
Part of:	M-PHYS-102277 - Theoretical Optics

'ype	Credits	Grading scale	Version
amination	6	Grade to a third	1

Events					
ST 2023	4023111	Theoretical Optics	2 SWS	Lecture / 🗣	Narozhnyy
ST 2023	4023112	Exercises to Theoretical Optics	1 SWS	Practice / 🗣	Narozhnyy, Perdana

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

T 3.232 Course: Thermodynamics III [T-CIWVT-106033]

 Responsible:
 Prof. Dr. Sabine Enders

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103058 - Thermodynamics III

Туре	Credits	Grading scale	Version
Written examination	6	Grade to a third	1

Events						
WT 22/23	22008	Thermodynamics III	2 SWS	Lecture / 🗣	Enders	
WT 22/23	22009	Thermodynamics III - Exercises	1 SWS	Practice / 🗣	Enders, und Mitarbeiter	
Exams						
WT 22/23	22/23 7200104 Thermodynamics III				Enders	

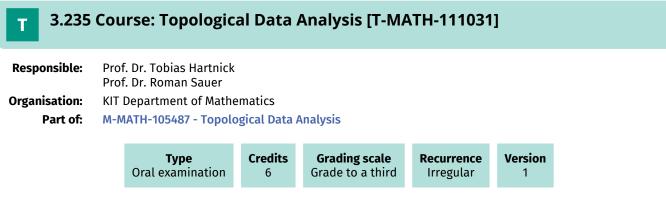
Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

3.233 Course: Thermodynamics of Interfaces [T-CIWVT-106100]

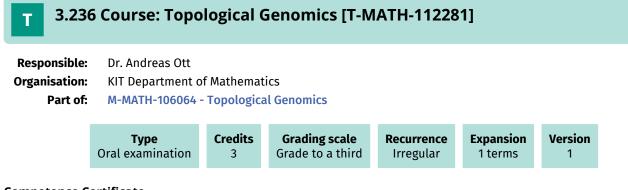
Responsible:	Prof. Dr. Sabine Enders
Organisation:	KIT Department of Chemical and Process Engineering
Part of:	M-CIWVT-103063 - Thermodynamics of Interfaces

		Type Oral examination	Credits 4	Grading sc Grade to a t		Version 1	
Events							
ST 2023	22012	Grenzflächentherm	odynamik	2 SWS	Lec	ture / 🗣	Enders
Exams	•			·			
WT 22/23	7200102	Thermodynamics of Interfaces					Enders
ST 2023	7200102	Thermodynamics o	Thermodynamics of Interfaces				Enders

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

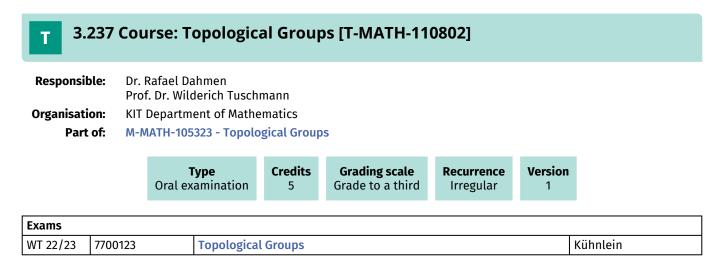

Competence Certificate

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten.

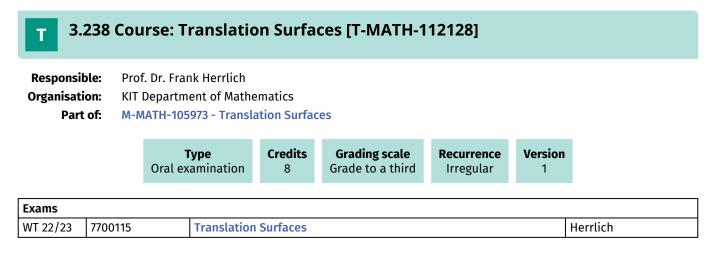

T 3.234	T 3.234 Course: Time Series Analysis [T-MATH-105874]					
Responsible:	Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Tilmann Gneiting PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs					
Organisation:	KIT Department of Mathematics					
Part of:	M-MATH-102911 - Time Series Analysis					

Туре	Credits	Grading scale	Version	
Oral examination	4	Grade to a third	3	

Events						
ST 2023	0161100	Time Series Analysis	2 SWS	Lecture	Ebner	
ST 2023	0161110	Tutorial for 0161100 (Time Series Analysis)	1 SWS	Practice	Ebner	
Exams	Exams					
ST 2023	2023 7700112 Time Series Analysis					



Prerequisites none



Competence Certificate oral exam of ca. 20 min

Prerequisites

Prerequisites

Prerequisites

T 3.	239	Course: T	raveling Wave	s [T-MA	TH-105897]		
Responsil	ble:	Dr. Björn de Prof. Dr. Wol	Rijk Ifgang Reichel				
Organisati	ion:	KIT Departm	ent of Mathematics				
Part	t of:	M-MATH-102	2927 - Traveling Wave	25			
			Type Oral examination	Credits 6	Grading scale Grade to a third	Version 2	
Exams							
WT 22/23	7700	114	Traveling Waves				de Rijk

Competence Certificate

The module examination takes place in form of an oral exam of about 30 minutes. Please see under "Modulnote" for more information about the bonus regulation.

Prerequisites

none

Recommendation

The following background is strongly recommended: Analysis 1-4.

3.240 Course: Uncertainty Quantification [T-MATH-108399]

 Responsible:
 Prof. Dr. Martin Frank

 Organisation:
 KIT Department of Mathematics

 Part of:
 M-MATH-104054 - Uncertainty Quantification

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	4	Grade to a third	Irregular	1

Events					
ST 2023	0164400	Uncertainty Quantification	2 SWS	Lecture	Frank
ST 2023	0164410	Tutorial for 0164400 (Uncertainty quantification)	1 SWS	Practice	Frank
Exams					
ST 2023	7700108	Uncertainty Quantification			Frank

Prerequisites

none

Below you will find excerpts from events related to this course:

Uncertainty Quantification

0164400, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)

Content

"There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – there are things we do not know we don't know." (Donald Rumsfeld)

In this class, we learn to deal with the known unknowns, a field called Un- certainty Quantification (UQ). We particularly focus on the propagation of uncertainties (e.g. unknown data, unknown initial or boundary conditions) through models (mostly differential equations) and leave other important questions of UQ (especially inference) aside. Given uncertain input, how un- certain is the output? The uncertainties are modeled as random variables, and thus the solutions of the equations become random variables themselves.

Thus we summarize the necessary foundations of probability theory, with a focus on modeling correlated and uncorrelated random vectors. Further- more, we will see that every uncertain parameter becomes a dimension in the problem. We are thus quickly led to high-dimensional problems. Standard numerical methods suffer from the so-called curse of dimensionality, i.e. to reach a certain accuracy one needs excessively many model evaluations. Thus we study the fundamentals of approximation theory.

The first part of the course ("how to do it") gives an overview on techniques that are used. Among these are:

- Sensitivity analysis
- Monte-Carlo methods
- Spectral expansions
- Stochastic Galerkin method
- Collocation methods, sparse grids

The second part of the course ("why to do it like this") deals with the theoretical foundations of these methods. The socalled "curse of dimensionality" leads us to questions from approximation theory. We look back at the very standard numerical algorithms of interpolation and quadrature, and ask how they perform in many dimensions.

Organizational issues

The course will be offered in flipped classroom format. This means that the lectures will be made available as videos; students will also have lecture notes. We meet in presence for the tutorials, and there will also be office hours. First meeting on April 21 at 15:45.

Literature

- R.C. Smith: Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
- T.J. Sullivan: Introduction to Uncertainty Quantification, Springer-Verlag, 2015.
- D. Xiu: Numerical Methods for Stochastic Computations, Princeton University Press, 2010.
- O.P. Le Maître, O.M. Knio: Spectral Methods for Uncertainty Quantification, Springer-Verlag, 2010.
- R. Ghanem, D. Higdon, H. Owhadi:Handbook of Uncertainty Quantification, Springer-Verlag, 2017.

3.241 Course: Unit Operations and Process Chains for Food of Animal Origin Т [T-CIWVT-108996]

Responsible: Prof. Dr.-Ing. Heike Karbstein **Organisation:** KIT Department of Chemical and Process Engineering Part of: M-CIWVT-104421 - Unit Operations and Process Chains for Food of Animal Origin

		Type Oral examin	ation	Credits 5	Grading sca l Grade to a th			Recurrence n summer term	Ver	sion 3	
Events											
ST 2023	22210		Lebensr	en und Proz nittel aus t fen (ehem.		2 S	WS	Lecture / 🗣		Karb	stein
ST 2023	22216		Fragestunde zu 22210 Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen		15	WS	Colloquium (K	/ 🗣	Karb	stein	
Exams											
WT 22/23	72200	15	Unit op	erations an	d process chain	s for	food o	of animal origin		Karb	stein
ST 2023	72200	15	Unit op	erations an	d process chain	s for	food o	of animal origin		Karb	stein
.egend: 🖥 Online.	🕄 Blende	d (On-Site/Online), 9	On-Site.	x Cancelled							

Leg n-Site/Online), 🗣 On-Site, 🗙 Ca

Competence Certificate

The learning control is an oral examination lasting approx. 30 minutes.

Prerequisites

None

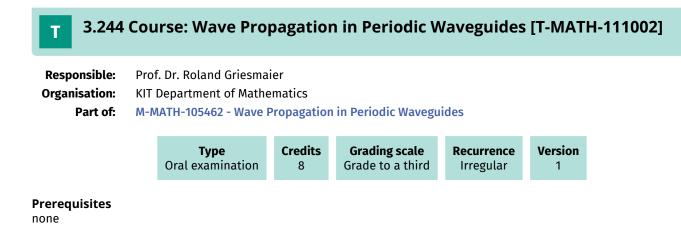
T 3.242 Course: Unit Operations and Process Chains for Food of Plant Origin [T-CIWVT-108995]

 Responsible:
 Prof. Dr.-Ing. Heike Karbstein

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-104420 - Unit Operations and Process Chains for Food of Plant Origin

	Oral	Type examination	Credits 7	Grading sca Grade to a th		Recurrence ach winter term	Version 2
Events							
WT 22/23	22210	Lebensm	n und Proze iittel pflanz (ehem. LVT		3+1 SWS	Lecture / 🕄	Kar
Exams		•			•	•	·
WT 22/23	7220009	Unit ope	rations and	process chain	s for food	of plant origin	Kar
ST 2023	7220009	Unit ope	rations and	process chain	s for food	of plant origin	Kar


Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes.

Prerequisites

3.243 Course: Variational Methods [T-MATH-110302] Т **Responsible:** Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics Part of: M-MATH-105093 - Variational Methods Credits Grading scale Version Туре Grade to a third Oral examination 8 1 Exams WT 22/23 7700104 **Variational Methods** Lamm

3.245 Course: Wavelets [T-MATH-105838] Т **Responsible:** Prof. Dr. Andreas Rieder Organisation: KIT Department of Mathematics Part of: M-MATH-102895 - Wavelets Grading scale Credits Recurrence Version Туре Oral examination Grade to a third 8 Irregular 1

Competence Certificate

Mündliche Prüfung im Umfang von ca. 30 Minuten.

Prerequisites