

Module Handbook Techno-Mathematics Master 2016 (Master of Science (M.Sc.))

SPO 2016

Summer term 2022

Date: 25/04/2022

KIT DEPARTMENT OF MATHEMATICS

Table Of Contents

1.	Field of study structure	10
	1.1. Master's Thesis	10
	1.2. Internship	10
	1.3. Applied Mathematics	11
	1.4. Electrical Engineering / Information Technology	16
	1.5. Experimental Physics	16
	1.6. Chemical and Process Engineering	17
	1.7. Wildcard Technical Field	17
	1.8. Computer Science	18
	1.9. Mathematical Specialization	19
	1.10. Interdisciplinary Qualifications	23
	1.11. Additional Examinations	24
2.	Modules	29
	2.1. Adaptive Finite Elemente Methods - M-MATH-102900	29
	2.2. Advanced Inverse Problems: Nonlinearity and Banach Spaces - M-MATH-102955	30
	2.3. Algebra - M-MATH-101315	31
	2.4. Algebraic Geometry - M-MATH-101724	32
	2.5. Algebraic Number Theory - M-MATH-101725	33
	2.6. Algebraic Topology - M-MATH-102948	
	2.7. Algebraic Topology II - M-MATH-102953	
	2.8. An Introduction to Periodic Elliptic Operators - M-MATH-105096	36
	2.9. Analytical and Numerical Homogenization - M-MATH-105636	37
	2.10. Applications of Topological Data Analysis - M-MATH-105651	38
	2.11. Aspects of Geometric Analysis - M-MATH-103251	39
	2.12. Aspects of Time Integration - M-MATH-102934	
	2.13. Astroparticle Physics I - M-PHYS-102075	
	2.14. Banach Algebras - M-MATH-102913	42
	2.15. Basics of Nanotechnology I - M-PHYS-102097	43
	2.16. Basics of Nanotechnology II - M-PHYS-102100	44
	2.17. Batteries and Fuel Cells - M-ETIT-100532	
	2.18. Bifurcation Theory - M-MATH-103259	
	2.19. Biopharmaceutical Purification Processes - M-CIWVT-103065	47
	2.20. Bott Periodicity - M-MATH-104349	48
	2.21. Boundary and Eigenvalue Problems - M-MATH-102871	49
	2.22. Boundary Element Methods - M-MATH-103540	50
	2.23. Boundary value problems for nonlinear differential equations - M-MATH-102876	51
	2.24. Brownian Motion - M-MATH-102904	52
	2.25. Classical Methods for Partial Differential Equations - M-MATH-102870	53
	2.26. Cognitive Systems - M-INFO-100819	54
	2.27. Combinatorics - M-MATH-102950	55
	2.28. Combustion Technology - M-CIWVT-103069	56
	2.29. Commutative Algebra - M-MATH-104053	57
	2.30. Comparison Geometry - M-MATH-102940	58
	2.31. Comparison of Numerical Integrators for Nonlinear Dispersive Equations - M-MATH-104426	59
	2.32. Complex Analysis - M-MATH-102878	60
	2.33. Compressive Sensing - M-MATH-102935	61
	2.34. Computational Fluid Dynamics - M-CIWVT-103072	62
	2.35. Computer Architecture - M-INFO-100818	63
	2.36. Computer Graphics - M-INFO-100856	64
	2.37. Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems - M-MATH-102883	65
	2.38. Condensed Matter Theory I, Fundamentals - M-PHYS-102054	66
	2.39. Condensed Matter Theory I, Fundamentals and Advanced Topics - M-PHYS-102053	67
	2.40. Condensed Matter Theory II: Many-Body Theory, Fundamentals - M-PHYS-102313	68
	2.41. Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics - M-PHYS-102308	
	2.42. Continuous Time Finance - M-MATH-102860	71
	2.43. Control Theory - M-MATH-102941	72
	2.44. Convex Geometry - M-MATH-102864	73

2.45. Deep Learning and Neural Networks - M-INFO-104460	
2.46. Differential Geometry - M-MATH-101317	
2.47. Discrete Dynamical Systems - M-MATH-105432	76
2.48. Discrete Time Finance - M-MATH-102919	77
2.49. Dispersive Equations - M-MATH-104425	
2.50. Dynamical Systems - M-MATH-103080	
2.51. Electromagnetics and Numerical Calculation of Fields - M-ETIT-100386	80
2.52. Electronic Properties of Solids I, with Exercises - M-PHYS-102089	
2.53. Electronic Properties of Solids I, without Exercises - M-PHYS-102090	83
2.54. Electronic Properties of Solids II, with Exercises - M-PHYS-102108	
2.55. Electronic Properties of Solids II, without Exercises - M-PHYS-102109	85
2.56. Evolution Equations - M-MATH-102872	
2.57. Exponential Integrators - M-MATH-103700	
2.58. Extremal Graph Theory - M-MATH-102957	
2.59. Extreme Value Theory - M-MATH-102939	89
2.60. Finite Element Methods - M-MATH-102891	
2.61. Finite Group Schemes - M-MATH-103258	91
2.62. Forecasting: Theory and Practice - M-MATH-102956	92
2.63. Formal Systems - M-INFO-100799	93
2.64. Foundations of Continuum Mechanics - M-MATH-103527	
2.65. Fourier Analysis - M-MATH-102873	
2.66. Fourier Analysis and its Applications to PDEs - M-MATH-104827	96
2.67. Fractal Geometry - M-MATH-105649	97
2.68. Functional Analysis - M-MATH-101320	98
2.69. Functions of Matrices - M-MATH-102937	99
2.70. Functions of Operators - M-MATH-102936	100
2.71. Fuzzy Sets - M-INFO-100839	101
2.72. Generalized Regression Models - M-MATH-102906	102
2.73. Geometric Analysis - M-MATH-102923	103
2.74. Geometric Group Theory - M-MATH-102867	104
2.75. Geometric Group Theory II - M-MATH-102869	105
2.76. Geometric Numerical Integration - M-MATH-102921	106
2.77. Geometry of Schemes - M-MATH-102866	107
2.78. Global Differential Geometry - M-MATH-102912	108
2.79. Graph Theory - M-MATH-101336	109
2.80. Group Actions in Riemannian Geometry - M-MATH-102954	110
2.81. Harmonic Analysis - M-MATH-105324	111
2.82. Harmonic Analysis for Dispersive Equations - M-MATH-103545	112
2.83. Heat Transfer II - M-CIWVT-103051	
2.84. High Temperature Process Engineering - M-CIWVT-103075	114
2.85. Homotopy Theory - M-MATH-102959	
2.86. Infinite dimensional dynamical systems - M-MATH-103544	
2.87. Integral Equations - M-MATH-102874	
2.88. Internet seminar for evolution equations - M-MATH-102918	118
2.89. Internship - M-MATH-102861	119
2.90. Introduction into Particulate Flows - M-MATH-102943	
2.91. Introduction to Aperiodic Order - M-MATH-105331	
2.92. Introduction to Cosmology - M-PHYS-102175	
2.93. Introduction to Fluid Dynamics - M-MATH-105650	
2.94. Introduction to Geometric Measure Theory - M-MATH-102949	
2.95. Introduction to Homogeneous Dynamics - M-MATH-105101	
2.96. Introduction to Kinetic Equations - M-MATH-105837	
2.97. Introduction to Kinetic Theory - M-MATH-103919	
2.98. Introduction to Matlab and Numerical Algorithms - M-MATH-102945	
2.99. Introduction to Microlocal Analysis - M-MATH-105838	
2.100. Introduction to Scientific Computing - M-MATH-102889	
2.101. Inverse Problems - M-MATH-102890	
2.102. Key Competences - M-MATH-102994	
2.103. Key Moments in Geometry - M-MATH-104057	
2.104. L2-Invariants - M-MATH-102952	
	,

2.105. Lie Groups and Lie Algebras - M-MATH-104261	135
2.106. Lie-Algebras (Linear Algebra 3) - M-MATH-105839	
2.107. Localization of Mobile Agents - M-INFO-100840	
2.108. Markov Decision Processes - M-MATH-102907	
2.109. Master's Thesis - M-MATH-102917	139
2.110. Mathematical Methods in Signal and Image Processing - M-MATH-102897	140
2.111. Mathematical Methods of Imaging - M-MATH-103260	
2.112. Mathematical Modelling and Simulation in Practise - M-MATH-102929	
2.113. Mathematical Statistics - M-MATH-102909	
2.114. Mathematical Topics in Kinetic Theory - M-MATH-104059	
2.115. Maxwell's Equations - M-MATH-102885	
2.116. Medical Imaging - M-MATH-102896	
2.117. Medical Imaging Techniques I - M-ETIT-100384	
2.118. Medical Imaging Techniques II - M-ETIT-100385	
2.119. Methods of Signal Processing - M-ETIT-100540	
2.120. Metric Geometry - M-MATH-105931	
2.121. Models of Mathematical Physics - M-MATH-102875	
2.122. Modern Experimental Physics I, Atoms and Cores - M-PHYS-101704	
2.123. Modern Experimental Physics II, Molecules and Solid States - M-PHYS-101705	
2.124. Modular Forms - M-MATH-102868	
2.125. Moduli Spaces of Translation Surfaces - M-MATH-105635	
2.126. Monotonicity Methods in Analysis - M-MATH-102887	
2.127. Multigrid and Domain Decomposition Methods - M-MATH-102898	
2.128. Neural Networks - M-INFO-100846	
2.129. Nonlinear Analysis - M-MATH-103539	
2.130. Nonlinear Control Systems - M-ETIT-100371	
2.131. Nonlinear Evolution Equations - M-MATH-102877	
2.132. Nonlinear Functional Analysis - M-MATH-102886	
2.133. Nonlinear Maxwell Equations - M-MATH-103257	
2.134. Nonlinear Maxwell Equations - M-MATH-105066	
2.135. Nonlinear Wave Equations - M-MATH-105326	
2.136. Nonparametric Statistics - M-MATH-102910	
2.137. Numerical Analysis of Helmholtz Problems - M-MATH-105764	
2.138. Numerical Continuation Methods - M-MATH-102944	
2.139. Numerical Linear Algebra for Scientific High Performance Computing - M-MATH-103709	
2.140. Numerical Linear Algebra in Image Processing - M-MATH-104058	
2.141. Numerical Methods for Differential Equations - M-MATH-102888	
2.142. Numerical Methods for Hyperbolic Equations - M-MATH-102915	
2.143. Numerical Methods for Integral Equations - M-MATH-102930	
2.144. Numerical Methods for Maxwell's Equations - M-MATH-102931	
2.145. Numerical Methods for Time-Dependent Partial Differential Equations - M-MATH-102928	
2.146. Numerical Methods in Computational Electrodynamics - M-MATH-102894	
2.147. Numerical Methods in Fluid Mechanics - M-MATH-102932	
2.148. Numerical Methods in Mathematical Finance - M-MATH-102901	
2.149. Numerical Methods in Mathematical Finance II - M-MATH-102914	
2.150. Numerical Optimisation Methods - M-MATH-102892	
2.151. Numerical Simulation in Molecular Dynamics - M-MATH-105327	
2.152. Optical Waveguides and Fibers - M-ETIT-100506	182
2.153. Optimal Control and Estimation - M-ETIT-102310	184
2.154. Optimisation and Optimal Control for Differential Equations - M-MATH-102899	185
2.155. Optimization in Banach Spaces - M-MATH-102924	186
2.156. Optimization of Dynamic Systems - M-ETIT-100531	
2.157. Parallel Computing - M-MATH-101338	188
2.158. Particle Physics I - M-PHYS-102114	
2.159. Pattern Recognition - M-INFO-100825	190
2.160. Percolation - M-MATH-102905	
2.161. Physical Foundations of Cryogenics - M-CIWVT-103068	192
2.162. Poisson Processes - M-MATH-102922	
2.102.1 0133011 1 0Ce33e3 M MATTI 102/22	
2.163. Potential Theory - M-MATH-102879	193

	2.165. Process Modeling in Downstream Processing - M-CIWVT-103066	196
	2.166. Processing of Nanostructured Particles - M-CIWVT-103073	
	2.167. Project Centered Software-Lab - M-MATH-102938	
	2.168. Random Graphs - M-MATH-102951	
	2.169. Real-Time Systems - M-INFO-100803	
	2.170. Robotics I - Introduction to Robotics - M-INFO-100893	
	2.171. Robotics III - Sensors and Perception in Robotics - M-INFO-104897	
	2.172. Ruin Theory - M-MATH-104055	
	2.173. Scattering Theory - M-MATH-102884 2.174. Security - M-INFO-100834	
	2.175. Selected Methods in Fluids and Kinetic Equations - M-MATH-105897	
	2.176. Selected Metrious in Fittius and Kinetic Equations - M-MATH-103897	
	2.177. Seminar - M-MATH-102730	
	2.178. Seminar Advanced Topics in Parallel Programming - M-INFO-101887	
	2.179. Sobolev Spaces - M-MATH-102926	
	2.180. Software Engineering II - M-INFO-100833	21′
	2.181. Spatial Stochastics - M-MATH-102903	
	2.182. Special Functions and Applications in Potential Theory - M-MATH-101335	
	2.183. Special Topics of Numerical Linear Algebra - M-MATH-102920	
	2.184. Spectral Theory - M-MATH-101768	
	2.185. Spectral Theory of Differential Operators - M-MATH-102880	
	2.186. Spin Manifolds, Alpha Invariant and Positive Scalar Curvature - M-MATH-102958	
	2.187. Splitting Methods - M-MATH-102933	
	2.188. Splitting Methods for Evolution Equations - M-MATH-105325	
	2.189. Statistical Learning - M-MATH-105840 2.190. Statistical Thermodynamics - M-CIWVT-103059	
	2.191. Steins Method with Applications in Statistics - M-MATH-105579	
	2.192. Stochastic Control - M-MATH-102908	
	2.193. Stochastic Differential Equations - M-MATH-102881	
	2.194. Stochastic Evolution Equations - M-MATH-102942	
	2.195. Stochastic Geometry - M-MATH-102865	
	2.196. Stochastic Information Processing - M-INFO-100829	227
	2.197. Structural Graph Theory - M-MATH-105463	228
	2.198. Technical Optics - M-ETIT-100538	
	2.199. Technomathematical Seminar - M-MATH-102863	
	2.200. Telematics - M-INFO-100801	
	2.201. The Riemann Zeta Function - M-MATH-102960	
	2.202. Theoretical Nanooptics - M-PHYS-102295	
	2.203. Theoretical Optics - M-PHYS-102277	
	2.204. Theory of Turbulent Flows without and with Superimposed Combustion - M-CIWVT-103074	
	2.205. Thermodynamics III - M-CIWVT-1030582.206. Thermodynamics of Interfaces - M-CIWVT-103063	
	2.207. Time Series Analysis - M-MATH-102911	
	2.208. Topological Data Analysis - M-MATH-105487	
	2.209. Topological Groups - M-MATH-105323	
	2.210. Traveling Waves - M-MATH-102927	
	2.211. Uncertainty Quantification - M-MATH-104054	
	2.212. Unit Operations and Process Chains for Food of Animal Origin - M-CIWVT-104421	243
	2.213. Unit Operations and Process Chains for Food of Plant Origin - M-CIWVT-104420	244
	2.214. Variational Methods - M-MATH-105093	
	2.215. Wave Propagation in Periodic Waveguides - M-MATH-105462	
	2.216. Wavelets - M-MATH-102895	247
3. (Courses	
	3.1. Adaptive Finite Element Methods - T-MATH-105898	
	3.2. Advanced Inverse Problems: Nonlinearity and Banach Spaces - T-MATH-105927	
	3.3. Algebra - T-MATH-102253	
	3.4. Algebraic Geometry - T-MATH-103340	
	3.5. Algebraic Number Theory - T-MATH-103346	
	3.6. Algebraic Topology - T-MATH-105915	253 254
	17 ARECUAN TODONOSY II T ITMATITTIO 1970	/74

3.8. An Introduction to Periodic Elliptic Operators - T-MATH-110306	255
3.9. Analytical and Numerical Homogenization - T-MATH-111272	
3.10. Applications of Topological Data Analysis - T-MATH-111290	
3.11. Aspects of Geometric Analysis - T-MATH-106461	
3.12. Aspects of Time Integration - T-MATH-105904	
3.13. Astroparticle Physics I - T-PHYS-102432	
3.14. Banach Algebras - T-MATH-105886	
3.15. Basics of Nanotechnology I - T-PHYS-102529	
3.16. Basics of Nanotechnology II - T-PHYS-102531	
3.17. Batteries and Fuel Cells - T-ETIT-100983	
3.18. Bifurcation Theory - T-MATH-106487	
3.19. Biopharmaceutical Purification Processes - T-CIWVT-106029	
3.20. Bott Periodicity - T-MATH-108905	
3.22. Boundary Element Methods - T-MATH-109851	
3.23. Boundary Value Problems for Nonlinear Differential Equations - T-MATH-105847	
3.24. Brownian Motion - T-MATH-105868	
3.25. Classical Methods for Partial Differential Equations - T-MATH-105832	
3.26. Cognitive Systems - T-INFO-101356	
3.27. Combinatorics - T-MATH-105916	
3.28. Combustion Technology - T-CIWVT-106104	
3.29. Commutative Algebra - T-MATH-108398	
3.30. Comparison Geometry - T-MATH-105917	
3.31. Comparison of Numerical Integrators for Nonlinear Dispersive Equations - T-MATH-109040	
3.32. Complex Analysis - T-MATH-105849	
3.33. Compressive Sensing - T-MATH-105894	
3.34. Computational Fluid Dynamics - T-CIWVT-106035	
3.35. Computer Architecture - T-INFO-101355	282
3.36. Computer Graphics - T-INFO-101393	283
3.37. Computer Graphics Pass - T-INFO-104313	
3.38. Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems - T-MATH-105854	205
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 289
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 289
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 289 291
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 289 290 291
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 289 290 291 292
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 290 291 293
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286 287 288 290 291 292 293
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287288290291292293294295
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287289290291292293295296
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287289290291292293294295296297
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 3.40. Condensed Matter Theory II, Fundamentals and Advanced Topics - T-PHYS-102558 3.41. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-104591 3.42. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560 3.43. Continuous Time Finance - T-MATH-105930 3.44. Control Theory - T-MATH-105909 3.45. Convex Geometry - T-MATH-105831 3.46. Deep Learning and Neural Networks - T-INFO-109124 3.47. Differential Geometry - T-MATH-102275 3.48. Discrete Dynamical Systems - T-MATH-110952 3.49. Discrete Time Finance - T-MATH-105839 3.50. Dispersive Equations - T-MATH-109001 3.51. Dynamical Systems - T-MATH-106114 3.52. Electromagnetics and Numerical Calculation of Fields - T-ETIT-100640	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287289290292293295296297298299300
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287288290291292293295296296298296296298298
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287289290291292293295296297298299300301
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287289290291292295296297298296300301302303304
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 3.40. Condensed Matter Theory I, Fundamentals and Advanced Topics - T-PHYS-102558 3.41. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-104591 3.42. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560 3.43. Continuous Time Finance - T-MATH-105930 3.44. Control Theory - T-MATH-105909 3.45. Convex Geometry - T-MATH-105831 3.46. Deep Learning and Neural Networks - T-INFO-109124 3.47. Differential Geometry - T-MATH-102275 3.48. Discrete Dynamical Systems - T-MATH-105939 3.50. Dispersive Equations - T-MATH-109001 3.51. Dynamical Systems - T-MATH-109011 3.52. Electromagnetics and Numerical Calculation of Fields - T-ETIT-100640 3.53. Electronic Properties of Solids I, with Exercises - T-PHYS-102577 3.54. Electronic Properties of Solids II, without Exercises - T-PHYS-102578 3.55. Electronic Properties of Solids II, without Exercises - T-PHYS-104423 3.57. Evolution Equations - T-MATH-105844 3.58. Exponential Integrators - T-MATH-107475	286287288290291292293294295296296301302303304305
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	286287288290291292293295296296301302303304305306
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 3.40. Condensed Matter Theory II; Many-Body Systems, Fundamentals - T-PHYS-104591 3.41. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-104591 3.42. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560 3.43. Continuous Time Finance - T-MATH-105930 3.44. Control Theory - T-MATH-105909 3.45. Convex Geometry - T-MATH-105831 3.46. Deep Learning and Neural Networks - T-INFO-109124 3.47. Differential Geometry - T-MATH-102275 3.48. Discrete Dynamical Systems - T-MATH-10592 3.49. Discrete Time Finance - T-MATH-105839 3.50. Dispersive Equations - T-MATH-106114 3.51. Dynamical Systems - T-MATH-106114 3.52. Electronic Properties of Solids I, with Exercises - T-PHYS-102577 3.54. Electronic Properties of Solids I, without Exercises - T-PHYS-102578 3.55. Electronic Properties of Solids II, with Exercises - T-PHYS-104423 3.56. Electronic Properties of Solids II, without Exercises - T-PHYS-104423 3.57. Evolution Equations - T-MATH-105931 3.60. Extreme Value Theory - T-MATH-105931 3.61. Finite Element Methods - T-MATH-105857 3.62. Finite Group Schemes - T-MATH-105863 3.63. Forecasting: Theory and Practice - T-MATH-105928 3.64. Formal Systems - T-INFO-101336 3.65. Foundations of Continuum Mechanics - T-MATH-107044	
3.39. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 3.40. Condensed Matter Theory I, Fundamentals and Advanced Topics - T-PHYS-102558 3.41. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-104591 3.42. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560 3.43. Continuous Time Finance - T-MATH-105930 3.44. Control Theory - T-MATH-105909 3.45. Convex Geometry - T-MATH-105831 3.46. Deep Learning and Neural Networks - T-INFO-109124 3.47. Differential Geometry - T-MATH-102275 3.48. Discrete Dynamical Systems - T-MATH-110952 3.49. Discrete Time Finance - T-MATH-105839 3.50. Dispersive Equations - T-MATH-106114 3.51. Dynamical Systems - T-MATH-106114 3.52. Electronic Properties of Solids I, with Exercises - T-PHYS-102577 3.54. Electronic Properties of Solids I, with Exercises - T-PHYS-102578 3.55. Electronic Properties of Solids II, with Exercises - T-PHYS-102578 3.56. Electronic Properties of Solids II, with Exercises - T-PHYS-10422 3.57. Evolution Equations - T-MATH-105844 3.58. Exponential Integrators - T-MATH-105944 3.59. Extremal Graph Theory - T-MATH-105931 3.60. Extreme Value Theory - T-MATH-105908 3.61. Finite Element Methods - T-MATH-105908 3.62. Finite Group Schemes - T-MATH-106486 3.63. Forecasting: Theory and Practice - T-MATH-105928 3.64. Formal Systems - T-INFO-101336	

3.68. Fractal Geometry - T-MATH-111296	
3.69. Functional Analysis - T-MATH-102255	
3.70. Functions of Matrices - T-MATH-105906	
3.71. Functions of Operators - T-MATH-105905	
3.72. Fuzzy Sets - T-INFO-101376	
3.73. Generalized Regression Models - T-MATH-105870	
3.74. Geometric Analysis - T-MATH-105892	
3.75. Geometric Group Theory - T-MATH-105842	
3.76. Geometric Group Theory II - T-MATH-105875	
3.77. Geometric Numerical Integration - T-MATH-105919	
3.79. Global Differential Geometry - T-MATH-105841	
3.80. Graph Theory - T-MATH-102273	
3.81. Group Actions in Riemannian Geometry - T-MATH-105925	
3.82. Harmonic Analysis - T-MATH-111289	
3.83. Harmonic Analysis for Dispersive Equations - T-MATH-107071	
3.84. Heat Transfer II - T-CIWVT-106067	
3.85. High Temperature Process Engineering - T-CIWVT-106109	
3.86. Homotopy Theory - T-MATH-105933	
3.87. Infinite dimensional dynamical systems - T-MATH-107070	334
3.88. Integral Equations - T-MATH-105834	
3.89. Internet Seminar for Evolution Equations - T-MATH-105890	
3.90. Internship - T-MATH-105888	337
3.91. Introduction into Particulate Flows - T-MATH-105911	
3.92. Introduction to Aperiodic Order - T-MATH-110811	339
3.93. Introduction to Cosmology - T-PHYS-102384	340
3.94. Introduction to Fluid Dynamics - T-MATH-111297	
3.95. Introduction to Geometric Measure Theory - T-MATH-105918	
3.96. Introduction to Homogeneous Dynamics - T-MATH-110323	
3.97. Introduction to Kinetic Equations - T-MATH-111721	
3.98. Introduction to Kinetic Theory - T-MATH-108013	
3.99. Introduction to Matlab and Numerical Algorithms - T-MATH-105913	
3.100. Introduction to Microlocal Analysis - T-MATH-111722	
3.101. Introduction to Python - T-MATH-106119	
3.102. Introduction to Python - Programming Project - T-MATH-111851	
3.104. Inverse Problems - T-MATH-105835	
3.105. Key Moments in Geometry - T-MATH-108401	
3.106. L2-Invariants - T-MATH-105924	
3.107. Lie Groups and Lie Algebras - T-MATH-108799	
3.108. Lie-Algebras (Linear Algebra 3) - T-MATH-111723	
3.109. Localization of Mobile Agents - T-INFO-101377	
3.110. Markov Decision Processes - T-MATH-105921	
3.111. Master's Thesis - T-MATH-105878	
3.112. Mathematical Methods in Signal and Image Processing - T-MATH-105862	359
3.113. Mathematical Methods of Imaging - T-MATH-106488	360
3.114. Mathematical Modelling and Simulation in Practise - T-MATH-105889	361
3.115. Mathematical Statistics - T-MATH-105872	
3.116. Mathematical Topics in Kinetic Theory - T-MATH-108403	363
3.117. Maxwell's Equations - T-MATH-105856	
3.118. Medical Imaging - T-MATH-105861	
3.119. Medical Imaging Techniques I - T-ETIT-101930	
3.120. Medical Imaging Techniques II - T-ETIT-101931	
3.121. Methods of Signal Processing - T-ETIT-100694	
3.122. Metric Geometry - T-MATH-111933	
3.123. Models of Mathematical Physics - T-MATH-105846	
3.124. Modern Experimental Physics I, Atoms and Nuclei - T-PHYS-105132	
3.125. Modern Experimental Physics II. Molecules and Solid States - T-PHYS-105133	
3.126. Modular Forms - T-MATH-105843	
3.127. Moduli Spaces of Translation Surfaces - T-MATH-111271	3/4

3.128. Monotonicity Methods in Analysis - T-MATH-105877	
3.129. Multigrid and Domain Decomposition Methods - T-MATH-105863	376
3.130. Neural Networks - T-INFO-101383	
3.131. Nonlinear Analysis - T-MATH-107065	
3.132. Nonlinear Control Systems - T-ETIT-100980	
3.133. Nonlinear Evolution Equations - T-MATH-105848	
3.134. Nonlinear Functional Analysis - T-MATH-105876	
3.135. Nonlinear Maxwell Equations - T-MATH-106484	
3.136. Nonlinear Maxwell Equations - T-MATH-110283	
3.137. Nonlinear Wave Equations - T-MATH-110806	
3.138. Nonparametric Statistics - T-MATH-105873	
3.139. Numerical Analysis of Helmholtz Problems - T-MATH-111514	
3.140. Numerical Continuation Methods - T-MATH-105912	
3.142. Numerical Linear Algebra for Scientific High Performance Computing - 1-MATH-107497	
3.143. Numerical Linear Algebra in Image Processing - 1-MATH-108402	
3.144. Numerical Methods for Hyperbolic Equations - T-MATH-105836	
3.145. Numerical Methods for Integral Equations - T-MATH-105901	
3.146. Numerical Methods for Maxwell's Equations - T-MATH-105920	
3.147. Numerical Methods for Time-Dependent Partial Differential Equations - T-MATH-105899	
3.148. Numerical Methods in Computational Electrodynamics - T-MATH-105860	
3.149. Numerical Methods in Fluid Mechanics - T-MATH-105902	
3.150. Numerical Methods in Mathematical Finance - T-MATH-105865	
3.151. Numerical Methods in Mathematical Finance II - T-MATH-105880	
3.152. Numerical Optimisation Methods - T-MATH-105858	
3.153. Numerical Simulation in Molecular Dynamics - T-MATH-110807	
3.154. Optical Waveguides and Fibers - T-ETIT-101945	
3.155. Optimal Control and Estimation - T-ETIT-104594	
3.156. Optimisation and Optimal Control for Differential Equations - T-MATH-105864	
3.157. Optimization in Banach Spaces - T-MATH-105893	
3.158. Optimization of Dynamic Systems - T-ETIT-100685	
3.159. Parallel Computing - T-MATH-102271	406
3.160. Particle Physics I - T-PHYS-102369	407
3.161. Pattern Recognition - T-INFO-101362	408
3.162. Percolation - T-MATH-105869	409
3.163. Physical Foundations of Cryogenics - T-CIWVT-106103	
3.164. Poisson Processes - T-MATH-105922	
3.165. Potential Theory - T-MATH-105850	
3.166. Probability Theory and Combinatorial Optimization - T-MATH-105923	
3.167. Process Modeling in Downstream Processing - T-CIWVT-106101	
3.168. Processing of Nanostructured Particles - T-CIWVT-106107	
3.169. Project Centered Software-Lab - T-MATH-105907	
3.170. Random Graphs - T-MATH-105929	
3.171. Real-Time Systems - T-INFO-101340	
3.172. Robotics I - Introduction to Robotics - T-INFO-108014	
3.173. Robotics III - Sensors and Perception in Robotics - T-INFO-109931	
3.174. Ruin Theory - T-MATH-108400	
3.175. Scattering Theory - T-MATH-105855	
3.176. Security - T-INFO-101371	
3.178. Selected Topics in Harmonic Analysis - T-MATH-109065	
3.179. Self-Booking-HOC-SPZ-ZAK-1-Graded - T-MATH-111515	
3.180. Self-Booking-HOC-SPZ-ZAK-1-Graded - T-MATH-111517	
3.181. Self-Booking-HOC-SPZ-ZAK-5-Ungraded - T-MATH-111516	
3.182. Self-Booking-HOC-SPZ-ZAK-6-Ungraded - T-MATH-111520	
3.183. Seminar Advanced Topics in Parallel Programming - T-INFO-103584	
3.184. Seminar Mathematics - T-MATH-105686	
3.185. Sobolev Spaces - T-MATH-105896	
3.186. Software Engineering II - T-INFO-101370	
3.187. Spatial Stochastics - T-MATH-105867	

3.188. Special Functions and Applications in Potential Theory - T-MATH-102274	435
3.189. Special Topics of Numerical Linear Algebra - T-MATH-105891	436
3.190. Spectral Theory - Exam - T-MATH-103414	437
3.191. Spectral Theory of Differential Operators - T-MATH-105851	438
3.192. Spin Manifolds, Alpha Invariant and Positive Scalar Curvature - T-MATH-105932	439
3.193. Splitting Methods - T-MATH-105903	440
3.194. Splitting Methods for Evolution Equations - T-MATH-110805	441
3.195. Statistical Learning - T-MATH-111726	442
3.196. Statistical Thermodynamics - T-CIWVT-106098	443
3.197. Steins Method with Applications in Statistics - T-MATH-111187	444
3.198. Stochastic Control - T-MATH-105871	445
3.199. Stochastic Differential Equations - T-MATH-105852	446
3.200. Stochastic Evolution Equations - T-MATH-105910	447
3.201. Stochastic Geometry - T-MATH-105840	448
3.202. Stochastic Information Processing - T-INFO-101366	449
3.203. Structural Graph Theory - T-MATH-111004	450
3.204. Technical Optics - T-ETIT-100804	451
3.205. Technomathematical Seminar - T-MATH-105884	452
3.206. Telematics - T-INFO-101338	453
3.207. The Riemann Zeta Function - T-MATH-105934	455
3.208. Theoretical Nanooptics - T-PHYS-104587	456
3.209. Theoretical Optics - T-PHYS-104578	457
3.210. Theory of Turbulent Flows without and with Superimposed Combustion - T-CIWVT-106108	458
3.211. Thermodynamics III - T-CIWVT-106033	459
3.212. Thermodynamics of Interfaces - T-CIWVT-106100	460
3.213. Time Series Analysis - T-MATH-105874	461
3.214. Topological Data Analysis - T-MATH-111031	462
3.215. Topological Groups - T-MATH-110802	463
3.216. Traveling Waves - T-MATH-105897	
3.217. Uncertainty Quantification - T-MATH-108399	465
3.218. Unit Operations and Process Chains for Food of Animal Origin - T-CIWVT-108996	467
3.219. Unit Operations and Process Chains for Food of Plant Origin - T-CIWVT-108995	468
3.220. Variational Methods - T-MATH-110302	469
3.221. Wave Propagation in Periodic Waveguides - T-MATH-111002	470
3.222. Wavelets - T-MATH-105838	471

1 Field of study structure

Mandatory	
Master's Thesis	30 CR
Internship This field will not influence the calculated grade of its parent.	10 CR
Applied Mathematics	24 CR
Technical Field (Election: 1 item)	•
Electrical Engineering / Information Technology	18-27 CR
Experimental Physics	18-27 CR
Chemical and Process Engineering	18-27 CR
Wildcard Technical Field	18-27 CR
Mandatory	<u>'</u>
Computer Science	8-17 CR
Mathematical Specialization	19 CR
Interdisciplinary Qualifications This field will not influence the calculated grade of its parent.	2 CR
Voluntary	
Additional Examinations This field will not influence the calculated grade of its parent.	

1.1 Master's Thesis	Credits
	30

Mandatory		
M-MATH-102917	Master's Thesis	30 CR

1.2 Internship	Credits
	10

Mandatory		
M-MATH-102861	Internship	10 CR

1 FIELD OF STUDY STRUCTURE Applied Mathematics

1.3 Applied Mathematics

Credits

24

Mandatory		
M-MATH-102891	Finite Element Methods	8 CR
Analysis (Election	at least 8 credits)	•
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101335	Special Functions and Applications in Potential Theory	5 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102873	Fourier Analysis	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102878	Complex Analysis	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102885	Maxwell's Equations	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102918	Internet seminar for evolution equations	8 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-102942	Stochastic Evolution Equations	8 CR
M-MATH-103080	Dynamical Systems	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103539	Nonlinear Analysis First usage possible from 10/1/2017.	8 CR
M-MATH-103545	Harmonic Analysis for Dispersive Equations First usage possible from 10/1/2017.	8 CR
M-MATH-103544	Infinite dimensional dynamical systems First usage possible from 4/1/2018.	4 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory First usage possible from 4/1/2018.	4 CR
M-MATH-104425	Dispersive Equations First usage possible from 10/1/2018.	6 CR
M-MATH-104435	Selected Topics in Harmonic Analysis First usage possible from 10/1/2018.	3 CR
M-MATH-104827	Fourier Analysis and its Applications to PDEs First usage possible from 4/1/2019.	6 CR
M-MATH-105066	Nonlinear Maxwell Equations First usage possible from 10/1/2019.	8 CR
M-MATH-105101	Introduction to Homogeneous Dynamics First usage possible from 10/1/2019.	6 CR

M-MATH-105093	Variational Methods First usage possible from 10/1/2019.	8 CR
M-MATH-105324	Harmonic Analysis First usage possible from 4/1/2020.	8 CR
M-MATH-105326	Nonlinear Wave Equations First usage possible from 4/1/2020.	4 CR
M-MATH-105432	Discrete Dynamical Systems First usage possible from 10/1/2020.	3 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides First usage possible from 10/1/2020.	8 CR
M-MATH-105487	Topological Data Analysis First usage possible from 10/1/2020.	6 CR
M-MATH-105650	Introduction to Fluid Dynamics First usage possible from 4/1/2021.	3 CR
M-MATH-105651	Applications of Topological Data Analysis First usage possible from 4/1/2021.	4 CR
Elective Field App	lied Mathematics (Election: at least 8 credits)	
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102909	Mathematical Statistics	4 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102918	Internet seminar for evolution equations	8 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-101315	Algebra	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102905	Percolation	5 CR
M-MATH-102933	Splitting Methods	5 CR
11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	l Project Centered Software-Lab	
M-MATH-102938 M-MATH-102942	Project Centered Software-Lab Stochastic Evolution Equations	4 CR 8 CR

M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-102865	Stochastic Geometry	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR
M-MATH-101317	Differential Geometry	8 CR
M-MATH-101877	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102971	Adaptive Finite Elemente Methods	6 CR
M-MATH-102903	Spatial Stochastics	8 CR
M-MATH-102903 M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102928 M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102932 M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102943 M-MATH-102957	Extremal Graph Theory	8 CR
M-MATH-102937 M-MATH-101320	Functional Analysis	8 CR
M-MATH-101320 M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR
M-MATH-101338 M-MATH-102873	Fourier Analysis	8 CR
M-MATH-102878	Complex Analysis	8 CR
M-MATH-102878	Maxwell's Equations	8 CR
M-MATH-102889	Introduction to Scientific Computing	8 CR
M-MATH-102889 M-MATH-102895	Wavelets	8 CR
M-MATH-102895 M-MATH-102896	Medical Imaging	8 CR
M-MATH-102896 M-MATH-102914	Numerical Methods in Mathematical Finance II	8 CR
M-MATH-102914 M-MATH-102868	Modular Forms	8 CR
M-MATH-102868 M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102908	Stochastic Control	4 CR
M-MATH-102908 M-MATH-102912	Global Differential Geometry	8 CR
M-MATH-102912 M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102937	Extreme Value Theory	4 CR
M-MATH-102939 M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102948 M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102949 M-MATH-101335	Special Functions and Applications in Potential Theory	5 CR
M-MATH-101335 M-MATH-102886	Nonlinear Functional Analysis	3 CR
	-	
M-MATH-102897 M-MATH-102901	Mathematical Methods in Signal and Image Processing Numerical Methods in Mathematical Finance	8 CR 8 CR
	Markov Decision Processes	5 CR
M-MATH-102907		4 CR
M-MATH 102023	Time Series Analysis	
M-MATH 102923	Geometric Analysis Mathematical Modelling and Simulation in Bractice	8 CR
M-MATH 102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH 102860	Continuous Time Finance	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR

M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR
M-MATH-102919	Discrete Time Finance	8 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102934	Aspects of Time Integration	4 CR
M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-102959	Homotopy Theory	8 CR
M-MATH-102960	The Riemann Zeta Function	4 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103260	Mathematical Methods of Imaging	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103258	Finite Group Schemes	4 CR
M-MATH-103527	Foundations of Continuum Mechanics First usage possible from 10/1/2017.	3 CR
M-MATH-103539	Nonlinear Analysis First usage possible from 10/1/2017.	8 CR
M-MATH-103700	Exponential Integrators First usage possible from 10/1/2017.	6 CR
M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing First usage possible from 10/1/2017.	5 CR
M-MATH-103919	Introduction to Kinetic Theory First usage possible from 10/1/2017.	4 CR
M-MATH-104053	Commutative Algebra First usage possible from 4/1/2018.	8 CR
M-MATH-104054	Uncertainty Quantification First usage possible from 4/1/2018.	4 CR
M-MATH-104055	Ruin Theory First usage possible from 4/1/2018.	4 CR
M-MATH-104057	Key Moments in Geometry First usage possible from 4/1/2018.	5 CR
M-MATH-104058	Numerical Linear Algebra in Image Processing First usage possible from 4/1/2018.	6 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory First usage possible from 4/1/2018.	4 CR
M-MATH-104261	Lie Groups and Lie Algebras First usage possible from 10/1/2018.	8 CR
M-MATH-104349	Bott Periodicity First usage possible from 10/1/2018.	5 CR
M-MATH 102542	Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018.	4 CR
M-MATH-103540	Boundary Element Methods First usage possible from 4/1/2019.	8 CR
M-MATH 105066	Nonlinear Maxwell Equations First usage possible from 10/1/2019.	8 CR
M-MATH 105096	An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019.	3 CR
M-MATH 105101	Introduction to Homogeneous Dynamics First usage possible from 10/1/2019.	6 CR
M-MATH 105093	Variational Methods First usage possible from 10/1/2019.	8 CR
M-MATH 105325	Splitting Methods for Evolution Equations First usage possible from 4/1/2020.	6 CR
M-MATH 105327	Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020.	8 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides First usage possible from 10/1/2020.	8 CR

M-MATH-105579	Steins Method with Applications in Statistics First usage possible from 10/1/2020.	4 CR
M-MATH-105636	Analytical and Numerical Homogenization First usage possible from 4/1/2021.	6 CR
M-MATH-105649	Fractal Geometry First usage possible from 4/1/2021.	6 CR
M-MATH-105764	Numerical Analysis of Helmholtz Problems First usage possible from 10/1/2021.	3 CR
M-MATH-105840	Statistical Learning First usage possible from 10/1/2021.	8 CR

1.4 Electrical Engineering / Information Technology

Credits 18-27

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR
Electrical Enginee	ring / Information Technology (Election: between 15 and 24 credits)	
M-ETIT-102310	Optimal Control and Estimation	3 CR
M-ETIT-100371	Nonlinear Control Systems	3 CR
M-ETIT-100384	Medical Imaging Techniques I	3 CR
M-ETIT-100385	Medical Imaging Techniques II	3 CR
M-ETIT-100386	Electromagnetics and Numerical Calculation of Fields	4 CR
M-ETIT-100506	Optical Waveguides and Fibers	4 CR
M-ETIT-100531	Optimization of Dynamic Systems	5 CR
M-ETIT-100532	Batteries and Fuel Cells	5 CR
M-ETIT-100538	Technical Optics	5 CR
M-ETIT-100540	Methods of Signal Processing	6 CR

1.5 Experimental Physics

Credits 18-27

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR
Experimental Phy	sics (Election: between 15 and 24 credits)	
M-PHYS-101704	Modern Experimental Physics I, Atoms and Cores	8 CR
M-PHYS-101705	Modern Experimental Physics II, Molecules and Solid States	8 CR
M-PHYS-102053	Condensed Matter Theory I, Fundamentals and Advanced Topics	12 CR
M-PHYS-102054	Condensed Matter Theory I, Fundamentals	8 CR
M-PHYS-102075	Astroparticle Physics I	8 CR
M-PHYS-102089	Electronic Properties of Solids I, with Exercises	10 CR
M-PHYS-102090	Electronic Properties of Solids I, without Exercises	8 CR
M-PHYS-102097	Basics of Nanotechnology I	4 CR
M-PHYS-102100	Basics of Nanotechnology II	4 CR
M-PHYS-102108	Electronic Properties of Solids II, with Exercises	8 CR
M-PHYS-102109	Electronic Properties of Solids II, without Exercises	4 CR
M-PHYS-102114	Particle Physics I	8 CR
M-PHYS-102175	Introduction to Cosmology	6 CR
M-PHYS-102277	Theoretical Optics	6 CR
M-PHYS-102295	Theoretical Nanooptics	6 CR
M-PHYS-102308	Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics	12 CR
M-PHYS-102313	Condensed Matter Theory II: Many-Body Theory, Fundamentals	8 CR

1.6 Chemical and Process Engineering

Credits 18-27

Mandatory		
M-MATH-102863	Technomathematical Seminar	3 CR
Chemical and Pro	cess Engineering (Election: between 15 and 24 credits)	•
M-CIWVT-103051	Heat Transfer II	4 CR
M-CIWVT-103058	Thermodynamics III	6 CR
M-CIWVT-103059	Statistical Thermodynamics	6 CR
M-CIWVT-103063	Thermodynamics of Interfaces	4 CR
M-CIWVT-103065	Biopharmaceutical Purification Processes	6 CR
M-CIWVT-103066	Process Modeling in Downstream Processing	4 CR
M-CIWVT-103068	Physical Foundations of Cryogenics	6 CR
M-CIWVT-103069	Combustion Technology	6 CR
M-CIWVT-103072	Computational Fluid Dynamics	6 CR
M-CIWVT-103073	Processing of Nanostructured Particles	6 CR
M-CIWVT-103074	Theory of Turbulent Flows without and with Superimposed Combustion	4 CR
M-CIWVT-103075	High Temperature Process Engineering	6 CR
M-CIWVT-104420	Unit Operations and Process Chains for Food of Plant Origin First usage possible from 10/1/2018.	6 CR
M-CIWVT-104421	Unit Operations and Process Chains for Food of Animal Origin First usage possible from 10/1/2018.	5 CR

1.7 Wildcard Technical Field

Credits 18-27

M-MATH-102863 Technomathematical Seminar	CR

1.8 Computer Science

Credits 8-17

Computer Science	e (Election: at least 1 item as well as between 8 and 17 credits)	
M-INFO-100799	Formal Systems	6 CF
M-INFO-100801	Telematics	6 CF
M-INFO-100803	Real-Time Systems	6 CR
M-INFO-104897	Robotics III - Sensors and Perception in Robotics First usage possible from 4/1/2019.	3 CR
M-INFO-100818	Computer Architecture	6 CR
M-INFO-100819	Cognitive Systems	6 CR
M-INFO-100825	Pattern Recognition	6 CR
M-INFO-100833	Software Engineering II	6 CR
M-INFO-100834	Security	6 CR
M-INFO-100846	Neural Networks	6 CR
M-INFO-100856	Computer Graphics	6 CR
M-INFO-100893	Robotics I - Introduction to Robotics	6 CR
M-INFO-100840	Localization of Mobile Agents First usage possible from 4/1/2019.	6 CR
M-INFO-100839	Fuzzy Sets First usage possible from 4/1/2019.	6 CR
M-INFO-101887	Seminar Advanced Topics in Parallel Programming First usage possible from 4/1/2019.	3 CR
M-INFO-104460	Deep Learning and Neural Networks First usage possible from 4/1/2019.	6 CR
M-INFO-100829	Stochastic Information Processing First usage possible from 10/1/2019.	6 CR

1.9 Mathematical Specialization

Credits

19

Mandatory		
M-MATH-102730	Seminar	3 CR
Elective Field Mat	hematical Specialization (Election: at least 16 credits)	
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102872	Evolution Equations	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102909	Mathematical Statistics	4 CR
M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102918	Internet seminar for evolution equations	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-101315	Algebra	8 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102905	Percolation	5 CR
M-MATH-102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102933	Splitting Methods	5 CR
M-MATH-102938	Project Centered Software-Lab	4 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-102942	Stochastic Evolution Equations	8 CR
M-MATH-102944	Numerical Continuation Methods	5 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-101317	Differential Geometry	8 CR
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR

M-MATH-102865	Stochastic Geometry	8 CR
M-MATH-102863 M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102870 M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102871 M-MATH-102873	Fourier Analysis	8 CR
M-MATH-102873 M-MATH-102878		8 CR
	Complex Analysis	
M-MATH 102885	Maxwell's Equations	8 CR
M-MATH 102889	Introduction to Scientific Computing	8 CR
M-MATH 102895	Wavelets	8 CR
M-MATH 102896	Medical Imaging	8 CR
M-MATH-102900	Adaptive Finite Elemente Methods	6 CR
M-MATH-102903	Spatial Stochastics	8 CR
M-MATH-102914	Numerical Methods in Mathematical Finance II	8 CR
M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102939	Extreme Value Theory	4 CR
M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR
M-MATH-102957	Extremal Graph Theory	8 CR
M-MATH-101335	Special Functions and Applications in Potential Theory	5 CR
M-MATH-102860	Continuous Time Finance	8 CR
M-MATH-102868	Modular Forms	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR
M-MATH-102875	Models of Mathematical Physics	8 CR
M-MATH-102877	Nonlinear Evolution Equations	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102897	Mathematical Methods in Signal and Image Processing	8 CR
M-MATH-102901	Numerical Methods in Mathematical Finance	8 CR
M-MATH-102907	Markov Decision Processes	5 CR
M-MATH-102908	Stochastic Control	4 CR
M-MATH-102911	Time Series Analysis	4 CR
M-MATH-102912	Global Differential Geometry	8 CR
M-MATH-102919	Discrete Time Finance	8 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102959	Homotopy Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR

M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-102960	The Riemann Zeta Function	4 CR
M-MATH-103080	Dynamical Systems	8 CR
M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-103260	Mathematical Methods of Imaging	5 CR
M-MATH-103251	Aspects of Geometric Analysis	4 CR
M-MATH-103258	Finite Group Schemes	4 CR
M-MATH-103527	Foundations of Continuum Mechanics First usage possible from 10/1/2017.	3 CR
M-MATH-103539	Nonlinear Analysis First usage possible from 10/1/2017.	8 CR
M-MATH-103545	Harmonic Analysis for Dispersive Equations First usage possible from 10/1/2017.	8 CR
M-MATH-103700	Exponential Integrators First usage possible from 10/1/2017.	6 CR
M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing First usage possible from 10/1/2017.	5 CR
M-MATH-103919	Introduction to Kinetic Theory First usage possible from 10/1/2017.	4 CR
M-MATH-104053	Commutative Algebra First usage possible from 4/1/2018.	8 CR
M-MATH-104054	Uncertainty Quantification First usage possible from 4/1/2018.	4 CR
M-MATH-104055	Ruin Theory First usage possible from 4/1/2018.	4 CR
M-MATH-104057	Key Moments in Geometry First usage possible from 4/1/2018.	5 CR
M-MATH-104058	Numerical Linear Algebra in Image Processing First usage possible from 4/1/2018.	6 CR
M-MATH-104059	Mathematical Topics in Kinetic Theory First usage possible from 4/1/2018.	4 CR
M-MATH-104261	Lie Groups and Lie Algebras First usage possible from 10/1/2018.	8 CR
M-MATH-104349	Bott Periodicity First usage possible from 10/1/2018.	5 CR
M-MATH-104425	Dispersive Equations First usage possible from 10/1/2018.	6 CR
M-MATH-104426	Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018.	4 CR
M-MATH-104435	Selected Topics in Harmonic Analysis First usage possible from 10/1/2018.	3 CR
M-MATH-104827	Fourier Analysis and its Applications to PDEs First usage possible from 4/1/2019.	6 CR
M-MATH-103540	Boundary Element Methods First usage possible from 4/1/2019.	8 CR
M-MATH-105066	Nonlinear Maxwell Equations First usage possible from 10/1/2019.	8 CR
M-MATH-105096	An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019.	3 CR
M-MATH-105101	Introduction to Homogeneous Dynamics First usage possible from 10/1/2019.	6 CR
M-MATH-105093	Variational Methods First usage possible from 10/1/2019.	8 CR
M-MATH-105323	Topological Groups First usage possible from 4/1/2020.	5 CR
M-MATH-105324	Harmonic Analysis First usage possible from 4/1/2020.	8 CR
M-MATH-105325	Splitting Methods for Evolution Equations First usage possible from 4/1/2020.	6 CR
M-MATH-105326	Nonlinear Wave Equations First usage possible from 4/1/2020.	4 CR

M-MATH-105327	Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020.	8 CR
M-MATH-105331	Introduction to Aperiodic Order First usage possible from 4/1/2020.	3 CR
M-MATH-105432	Discrete Dynamical Systems First usage possible from 10/1/2020.	3 CR
M-MATH-105462	Wave Propagation in Periodic Waveguides First usage possible from 10/1/2020.	8 CR
M-MATH-105463	Structural Graph Theory First usage possible from 10/1/2020.	4 CR
M-MATH-105487	Topological Data Analysis First usage possible from 10/1/2020.	6 CR
M-MATH-105579	Steins Method with Applications in Statistics First usage possible from 10/1/2020.	4 CR
M-MATH-105635	Moduli Spaces of Translation Surfaces First usage possible from 4/1/2021.	8 CR
M-MATH-105636	Analytical and Numerical Homogenization First usage possible from 4/1/2021.	6 CR
M-MATH-105649	Fractal Geometry First usage possible from 4/1/2021.	6 CR
M-MATH-105650	Introduction to Fluid Dynamics First usage possible from 4/1/2021.	3 CR
M-MATH-105651	Applications of Topological Data Analysis First usage possible from 4/1/2021.	4 CR
M-MATH-105764	Numerical Analysis of Helmholtz Problems First usage possible from 10/1/2021.	3 CR
M-MATH-105837	Introduction to Kinetic Equations First usage possible from 10/1/2021.	3 CR
M-MATH-105838	Introduction to Microlocal Analysis First usage possible from 10/1/2021.	3 CR
M-MATH-105839	Lie-Algebras (Linear Algebra 3) First usage possible from 10/1/2021.	8 CR
M-MATH-105840	Statistical Learning First usage possible from 10/1/2021.	8 CR
M-MATH-105897	Selected Methods in Fluids and Kinetic Equations neu First usage possible from 4/1/2022.	3 CR
M-MATH-105931	Metric Geometry neu First usage possible from 4/1/2022.	8 CR

1.10 Interdisciplinary Qualifications

Credits 2

Interdisciplinary Qualifications (Election: at least 2 credits)

M-MATH-102994 Key Competences 2 CR

1 FIELD OF STUDY STRUCTURE Additional Examinations

1.11 Additional Examinations

Additional Exami	nations (Election: at least 30 credits)	
M-MATH-101315	Algebra	8 CR
M-MATH-101317	Differential Geometry	8 CR
M-MATH-101320	Functional Analysis	8 CR
M-MATH-101335	Special Functions and Applications in Potential Theory	5 CR
M-MATH-101336	Graph Theory	8 CR
M-MATH-101338	Parallel Computing	5 CR
M-MATH-101724	Algebraic Geometry	8 CR
M-MATH-101725	Algebraic Number Theory	8 CR
M-MATH-101768	Spectral Theory	8 CR
M-MATH-102730	Seminar	3 CR
M-MATH-102860	Continuous Time Finance	8 CR
M-MATH-102864	Convex Geometry	8 CR
M-MATH-102865	Stochastic Geometry	8 CR
M-MATH-102866	Geometry of Schemes	8 CR
M-MATH-102867	Geometric Group Theory	8 CR
M-MATH-102868	Modular Forms	8 CR
M-MATH-102869	Geometric Group Theory II	8 CR
M-MATH-102870	Classical Methods for Partial Differential Equations	8 CR
M-MATH-102871	Boundary and Eigenvalue Problems	8 CR
M-MATH-102871	Evolution Equations	8 CR
M-MATH-102872 M-MATH-102873	Fourier Analysis	8 CR
M-MATH-102874	Integral Equations	8 CR
M-MATH-102874 M-MATH-102875	Models of Mathematical Physics	8 CR
	·	
M-MATH 102876	Boundary value problems for nonlinear differential equations	8 CR
M-MATH 102877	Nonlinear Evolution Equations	8 CR
M-MATH 102878	Complex Analysis	8 CR
M-MATH-102879	Potential Theory	8 CR
M-MATH-102880	Spectral Theory of Differential Operators	8 CR
M-MATH-102881	Stochastic Differential Equations	8 CR
M-MATH-102883	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR
M-MATH-102884	Scattering Theory	8 CR
M-MATH-102885	Maxwell's Equations	8 CR
M-MATH-102886	Nonlinear Functional Analysis	3 CR
M-MATH-102887	Monotonicity Methods in Analysis	3 CR
M-MATH-102888	Numerical Methods for Differential Equations	8 CR
M-MATH-102889	Introduction to Scientific Computing	8 CR
M-MATH-102890	Inverse Problems	8 CR
M-MATH-102892	Numerical Optimisation Methods	8 CR
M-MATH-102894	Numerical Methods in Computational Electrodynamics	6 CR
M-MATH-102895	Wavelets	8 CR
M-MATH-102896	Medical Imaging	8 CR
M-MATH-102897	Mathematical Methods in Signal and Image Processing	8 CR
M-MATH-102898	Multigrid and Domain Decomposition Methods	4 CR
M-MATH-102899	Optimisation and Optimal Control for Differential Equations	4 CR
M-MATH-102900	Adaptive Finite Elemente Methods	6 CR
M-MATH-102901	Numerical Methods in Mathematical Finance	8 CR
M-MATH-102903	Spatial Stochastics	8 CR
M-MATH-102904	Brownian Motion	4 CR
M-MATH-102905	Percolation	5 CR

M-MATH-102906	Generalized Regression Models	4 CR
M-MATH-102907	Markov Decision Processes	5 CR
M-MATH-102908	Stochastic Control	4 CR
M-MATH-102909	Mathematical Statistics	4 CR
M-MATH-102910	Nonparametric Statistics	4 CR
M-MATH-102911	Time Series Analysis	4 CR
M-MATH-102912	Global Differential Geometry	8 CR
M-MATH-102913	Banach Algebras	3 CR
M-MATH-102914	Numerical Methods in Mathematical Finance II	8 CR
M-MATH-102915	Numerical Methods for Hyperbolic Equations	6 CR
M-MATH-102918	Internet seminar for evolution equations	8 CR
M-MATH-102919	Discrete Time Finance	8 CR
M-MATH-102920	Special Topics of Numerical Linear Algebra	8 CR
M-MATH-102921	Geometric Numerical Integration	6 CR
M-MATH-102922	Poisson Processes	5 CR
M-MATH-102923	Geometric Analysis	8 CR
M-MATH-102924	Optimization in Banach Spaces	5 CR
M-MATH-102926	Sobolev Spaces	5 CR
M-MATH-102927	Traveling Waves	6 CR
M-MATH-102928	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR
M-MATH-102929	Mathematical Modelling and Simulation in Practise	4 CR
M-MATH-102930	Numerical Methods for Integral Equations	8 CR
M-MATH-102931	Numerical Methods for Maxwell's Equations	6 CR
M-MATH-102932	Numerical Methods in Fluid Mechanics	4 CR
M-MATH-102933	Splitting Methods	5 CR
M-MATH-102934	Aspects of Time Integration	4 CR
M-MATH-102935	Compressive Sensing	5 CR
M-MATH-102936	Functions of Operators	6 CR
M-MATH-102937	Functions of Matrices	8 CR
M-MATH-102938	Project Centered Software-Lab	4 CR
M-MATH-102939	Extreme Value Theory	4 CR
M-MATH-102940	Comparison Geometry	5 CR
M-MATH-102941	Control Theory	6 CR
M-MATH-102942	Stochastic Evolution Equations	8 CR
M-MATH-102943	Introduction into Particulate Flows	3 CR
M-MATH-102944	Numerical Continuation Methods	5 CR
M-MATH-102945	Introduction to Matlab and Numerical Algorithms	5 CR
M-MATH-102947	Probability Theory and Combinatorial Optimization	8 CR
M-MATH-102948	Algebraic Topology	8 CR
M-MATH-102949	Introduction to Geometric Measure Theory	6 CR
M-MATH-102950	Combinatorics	8 CR
M-MATH-102951	Random Graphs	6 CR
M-MATH-102952	L2-Invariants	5 CR
M-MATH-102953	Algebraic Topology II	8 CR
M-MATH-102954	Group Actions in Riemannian Geometry	5 CR
M-MATH-102955	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR
M-MATH-102956	Forecasting: Theory and Practice	8 CR
M-MATH-102957	Extremal Graph Theory	8 CR
M-MATH-102958	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR
M-MATH-102959	Homotopy Theory	8 CR

M-MATH-103250	M-MATH-102960	The Riemann Zeta Function	4 CR
M-MATH-103250	M-MATH-103257	Nonlinear Maxwell Equations	3 CR
M-MATH-103251 Aspects of Geometric Analysis 4 Cf M-MATH-1040528 Finite Group Schemes 4 Cf M-MATH-104052 Commutative Algebra First usage possible from 4/1/2018 8 Cf M-MATH-104050 Uncertainty Quantification rist usage possible from 4/1/2018 4 Cf M-MATH-104057 Ruin Theory First usage possible from 4/1/2018 5 Cf M-MATH-104058 Rey Moments in Geometry First usage possible from 4/1/2018 5 Cf M-MATH-104059 Numerical Linear Algebra in Image Processing First usage possible from 4/1/2018 6 Cf M-MATH-104059 Mathematical Topics in Kinetic Theory First usage possible from 4/1/2018 3 Cf M-MATH-103527 Nonditions of Continuum Mechanics 3 Cf M-MATH-103527 Nonditions of Continuum Mechanics 3 Cf M-MATH-103540 Harmonic Analysis for Dispersive Equations 8 Cf M-MATH-103700 Numerical Linear Algebra for Scientific High Performance Computing 5 Cf M-MATH-103910 Introduction to Kinetic Theory 4 Cf M-MATH-103920 Numerical Linear Algebra for Scientific High Performance Computing 5 Cf M-MATH-104261 Lie Groups and Lie Algebras for Mathematica	M-MATH-103259	Bifurcation Theory	5 CR
M-MATH-102258 Finite Group Schemes 4 Cf M-MATH-104053 Commutative Algebra 8 Cf M-MATH-104056 Uncertainty Quantification 4 Cf First usege possible from 4/1/2018. 4 Cf M-MATH-104057 Ruin Theory 4 Cf First usege possible from 4/1/2018. 5 Cf M-MATH-104057 Key Moments in Geometry 5 Cf First usege possible from 4/1/2018. 5 Cf M-MATH-104058 Numerical Linear Algebra in Image Processing 6 Cf First usege possible from 4/1/2018. 6 Cf M-MATH-104059 Mathematical Topics in Kinetic Theory 4 Cf M-MATH-103393 Nonlinear Analysis 8 Cf M-MATH-1033939 Nonlinear Analysis for Dispersive Equations 8 Cf M-MATH-103700 Exponential Integrators 6 Cf M-MATH-103709 Exponential Integrators 8 Cf M-MATH-104349 Exponential Integrators 8 Cf M-MATH-1044261 Lie Groups and Lie Algebras 8 Cf rist usege possible from 1/1/2018. 5 Cf M-MATH-104427 Bott Periodic	M-MATH-103260	Mathematical Methods of Imaging	5 CR
M-MATH-104053	M-MATH-103251	Aspects of Geometric Analysis	4 CR
First usage possible from 4/1/2018.	M-MATH-103258	Finite Group Schemes	4 CR
First usage possible from 4/1/2018. M-MATH-104055 Ruim Theory first usage possible from 4/1/2018. M-MATH-104057 Key Moments in Geometry first usage possible from 4/1/2018. M-MATH-104058 Numerical Linear Algebra in Image Processing first usage possible from 4/1/2018. M-MATH-104059 Mathematical Topics in Kinetic Theory first usage possible from 4/1/2018. M-MATH-103527 Foundations of Continuum Mechanics 3.3 Cif. M-MATH-103529 Harmonic Analysis for Dispersive Equations 8.5 Cif. M-MATH-103545 Harmonic Analysis for Dispersive Equations 8.5 Cif. M-MATH-103540 Harmonic Analysis for Dispersive Equations 9.5 Cif. M-MATH-103790 Numerical Linear Algebra for Scientific High Performance Computing 5.5 Cif. M-MATH-103919 Introduction to Kinetic Theory 4.5 Cif. M-MATH-103919 Introduction to Kinetic Theory 4.5 Cif. M-MATH-104261 Lie Groups and Lie Algebras first usage possible from 10/1/2018. M-MATH-104426 Solve Equations 10/1/2018. M-MATH-104427 Solve Equations 10/1/2018. M-MATH-104428 Solve Equations 10/1/2018. M-MATH-104429 Solve Equations 10/1/2018. M-MATH-104429 Fourier Analysis and Its Applications to PDEs first usage possible from 10/1/2018. M-MATH-104429 Fourier Analysis and its Applications to PDEs first usage possible from 10/1/2018. M-MATH-104827 Fourier Analysis and its Applications to PDEs first usage possible from 10/1/2018. M-MATH-105060 Nonlinear Maxwell Equations 7 First usage possible from 10/1/2018. M-MATH-10507 First usage possible from 10/1/2018. M-MATH-105080 Nonlinear Maxwell Equations 7 First usage possible from 10/1/2018. M-MATH-105081 Harmonic Analysis 7 First usage possible from 10/1/2018. M-MATH-105091 Harmonic Analysis 7 First usage possible from 10/1/2019. M-MATH-105092 An Introduction to Periodic Elliptic Operators 7 First usage possible from 10/1/2019. M-MATH-105032 Splitting Methods First usage possible from 10/1/2019. M-MATH-105032 Splitting Methods First usage possible from 10/1/2019. M-MATH-105323 Introduction to Aperiodic Order 7 First usage possible from 10/1/2020. M-MA	M-MATH-104053		8 CR
First usage possible from 4/1/2018.	M-MATH-104054		4 CR
First usage possible from 4/1/2018.	M-MATH-104055		4 CR
First usage possible from 4/1/2018. 4 Cf	M-MATH-104057		5 CR
First usage possible from 4/1/2018. Section 10/1/2018.	M-MATH-104058	Numerical Linear Algebra in Image Processing First usage possible from 4/1/2018.	6 CR
M-MATH-103539 Nonlinear Analysis for Dispersive Equations M-MATH-103700 Exponential Integrators 6 CF M-MATH-103700 Numerical Linear Algebra for Scientific High Performance Computing 5 CF M-MATH-103709 Numerical Linear Algebra for Scientific High Performance Computing 5 CF M-MATH-103919 Introduction to Kinetic Theory 4 CF M-MATH-104261 Lie Groups and Lie Algebras First usage possible from 1071/2018. M-MATH-104349 Bott Periodicity First usage possible from 1071/2018. M-MATH-104425 Dispersive Equations First usage possible from 1071/2018. M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 1071/2018. M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 1071/2018. M-MATH-104427 Fourier Analysis and its Applications to PDEs First usage possible from 1071/2018. M-MATH-104627 Fourier Analysis and its Applications to PDEs First usage possible from 471/2019. M-MATH-10506 Nonlinear Maxwell Equations First usage possible from 471/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 1071/2019. M-MATH-105001 Introduction to Homogeneous Dynamics First usage possible from 1071/2019. M-MATH-105024 Harmonic Analysis First usage possible from 1071/2019. M-MATH-105025 Splitting Methods for Evolution Equations First usage possible from 1071/2019. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 417/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 417/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 417/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 417/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 417/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-104059		4 CR
M-MATH-103545 Harmonic Analysis for Dispersive Equations M-MATH-103700 Exponential Integrators M-MATH-103709 Numerical Linear Algebra for Scientific High Performance Computing 5 Cf. M-MATH-103919 Introduction to Kinetic Theory 4 Cf. M-MATH-104261 Lie Groups and Lie Algebras First usage possible from 10/1/2018. M-MATH-104263 Bott Periodicity First usage possible from 10/1/2018. M-MATH-104425 Dispersive Equations First usage possible from 10/1/2018. M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018. M-MATH-104427 Selected Topics in Harmonic Analysis First usage possible from 10/1/2018. M-MATH-104428 Four Analysis and its Applications to PDEs First usage possible from 10/1/2019. M-MATH-105400 Boundary Element Methods First usage possible from 10/1/2019. M-MATH-10506 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-10509 Variational Methods First usage possible from 10/1/2019. M-MATH-10509 Variational Methods First usage possible from 10/1/2019. M-MATH-10500 Selected Topics in Morgeneous Dynamics First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Wave Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Wave Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Wave Equations First usage possible from 10/1/2019. M-MATH-10500 Nonlinear Wave Equations First usage possible from 10/1/20	M-MATH-103527	Foundations of Continuum Mechanics	3 CR
M-MATH-103700 Exponential Integrators 6 CF M-MATH-103709 Numerical Linear Algebra for Scientific High Performance Computing 5 CF M-MATH-103919 Introduction to Kinetic Theory 4 CF M-MATH-10406 Lie Groups and Lie Algebras First usage possible from 10/1/2018. 8 CF First usage possible from 10/1/2018. 9 CF First usage possible from 10/1/2018. 9 CF M-MATH-104425 Dispersive Equations First usage possible from 10/1/2018. 9 CF M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018. 9 CF M-MATH-104426 First usage possible from 10/1/2018. 9 CF M-MATH-104427 Fourier Analysis and its Applications to PDEs First usage possible from 10/1/2018. 9 CF First usage possible from 10/1/2018. 9 CF M-MATH-10540 Boundary Element Methods First usage possible from 4/1/2019. 9 CF M-MATH-10506 Nonlinear Maxwell Equations First usage possible from 10/1/2019. 9 CF M-MATH-105091 Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. 9 CF M-MATH-105093 Variational Methods First usage possible from 10/1/2019. 9 CF M-MATH-105324 Harmonic Analysis First usage possible from 10/1/2019. 9 CF M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. 1 CF M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. 1 CF M-MATH-105321 Numerical Splitting Methods for Evolution Equations First usage possible from 4/1/2020. 1 CF M-MATH-105321 Numerical Splitting Methods for Evolution Equations First usage possible from 4/1/2020. 1 CF M-MATH-105331 Numerical Splitting Molecular Dynamics First usage possible from 4/1/2020. 1 CF First usage p	M-MATH-103539	Nonlinear Analysis	8 CR
M-MATH-103709 Numerical Linear Algebra for Scientific High Performance Computing M-MATH-103919 Introduction to Kinetic Theory Lie Groups and Lie Algebras First usage possible from 101/2018. M-MATH-104349 Bott Periodicity First usage possible from 101/2018. M-MATH-104425 Dispersive Equations First usage possible from 101/12018. M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 101/12018. M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 101/12018. M-MATH-104827 Fourier Analysis and its Applications to PDEs First usage possible from 101/12018. M-MATH-103540 Boundary Element Methods First usage possible from 41/12019. M-MATH-105066 Nonlinear Maxwell Equations First usage possible from 41/12019. M-MATH-10510 Introduction to Periodic Elliptic Operators First usage possible from 101/12019. M-MATH-105093 Variational Methods First usage possible from 101/12019. M-MATH-10522 Harmonic Analysis First usage possible from 101/12019. M-MATH-105323 Topologis from 41/12020. M-MATH-105326 Numerical Analysis First usage possible from 41/12020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 41/12020. M-MATH-105321 Numerical Simulation in Molecular Dynamics First usage possible from 41/12020. M-MATH-105321 Numerical Simulation in Molecular Dynamics First usage possible from 41/12020. M-MATH-105321 Discrete Dynamical Systems 3 cf.	M-MATH-103545	Harmonic Analysis for Dispersive Equations	8 CR
M-MATH-103919 Introduction to Kinetic Theory 4 CF M-MATH-104261 Lie Groups and Lie Algebras First usage possible from 10/1/2018. 5 CF First Usage possible from 10/1/2018. 5 CF M-MATH-104349 Bott Periodicity First usage possible from 10/1/2018. 6 CF M-MATH-104425 Dispersive Equations First usage possible from 10/1/2018. 6 CF First usage possible from 10/1/2018. 6 CF First usage possible from 10/1/2018. 7 CC M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 10/1/2018. 7 Eourier Analysis and its Applications to PDEs First usage possible from 10/1/2018. 7 Eourier Analysis and its Applications to PDEs First usage possible from 10/1/2019. 7 Eourier Analysis and its Applications to PDEs First usage possible from 10/1/2019. 7 Eourier Analysis first usage possible from 10/1/2019. 7 Eourier Analysis first usage possible from 10/1/2019. 7 Eourier Methods First usage possible from 10/1/2019. 7 Eourier Mathods First usage possible from 10/1/2019. 7 Eourier Mathods First usage possible from 10/1/2019. 8 CF First usage possible from 10/1/2019. 8 CF First usage possible from 10/1/2019. 8 CF M-MATH-105093 Variational Methods First usage possible from 10/1/2019. 8 CF M-MATH-105323 Topological Groups First usage possible from 10/1/2019. 8 CF First usage possible from 10/1/2019. 8 CF M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 10/1/2020. 8 CF M-MATH-105326 Nonlinear Wave Equations First usage possible from 10/1/2020. 8 CF M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 1/1/2020. 8 CF M-MATH-105331 Introduction to Aperiodic Order First usage possible from 1/1/2020. 8 CF F	M-MATH-103700	Exponential Integrators	6 CR
M-MATH-104261 Lie Groups and Lie Algebras first usage possible from 10/1/2018. M-MATH-104349 Bott Periodicity first usage possible from 10/1/2018. M-MATH-104425 Dispersive Equations First usage possible from 10/1/2018. M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018. M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 10/1/2018. M-MATH-104827 Fourier Analysis and its Applications to PDEs First usage possible from 10/1/2019. M-MATH-103540 Boundary Element Methods First usage possible from 10/1/2019. M-MATH-105066 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105101 Introduction to Deriodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105093 M-MATH-105093 Topological Groups First usage possible from 10/1/2019. M-MATH-105324 Harmonic Analysis First usage possible from 10/1/2019. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 10/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 1/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 1/1/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105321 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 1/1/2020. M-MATH-105432 Discrete Dynamical Systems	M-MATH-103709	Numerical Linear Algebra for Scientific High Performance Computing	5 CR
First usage possible from 10/1/2018.	M-MATH-103919	Introduction to Kinetic Theory	4 CR
First usage possible from 10/1/2018.	M-MATH-104261		8 CR
### First usage possible from 10/1/2018. ### M-MATH-104426 Comparison of Numerical Integrators for Nonlinear Dispersive Equations First usage possible from 10/1/2018. #### M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 10/1/2018. #### M-MATH-104827 Fourier Analysis and its Applications to PDEs First usage possible from 4/1/2019. ######### M-MATH-103540 Boundary Element Methods First usage possible from 4/1/2019. ###################################	M-MATH-104349		5 CR
### First usage possible from 10/1/2018. M-MATH-104435 Selected Topics in Harmonic Analysis First usage possible from 10/1/2018. 6 CF First usage possible from 10/1/2019. 6 CF First usage possible from 4/1/2019. 7 CF First usage possible from 4/1/2019. 7 CF First usage possible from 4/1/2019. 8 CF First usage possible from 4/1/2019. 8 CF First usage possible from 4/1/2019. 8 CF First usage possible from 10/1/2019. 9 CF First usage possible f	M-MATH-104425		6 CR
First usage possible from 10/1/2018. M-MATH-104827 Fourier Analysis and its Applications to PDEs First usage possible from 4/1/2019. M-MATH-103540 Boundary Element Methods First usage possible from 4/1/2019. M-MATH-105066 Monlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105101 Introduction to Homogeneous Dynamics First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105332 Discrete Dynamical Systems 3 CF M-MATH-105432 Discrete Dynamical Systems	M-MATH-104426		4 CR
First usage possible from 4/1/2019. M-MATH-103540 Boundary Element Methods First usage possible from 4/1/2019. M-MATH-105066 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105101 Introduction to Homogeneous Dynamics First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-104435		3 CR
First usage possible from 4/1/2019. M-MATH-105066 Nonlinear Maxwell Equations First usage possible from 10/1/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105101 Introduction to Homogeneous Dynamics First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems	M-MATH-104827		6 CR
First usage possible from 10/1/2019. M-MATH-105096 An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019. M-MATH-105101 Introduction to Homogeneous Dynamics First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-103540		8 CR
First usage possible from 10/1/2019. M-MATH-105101 Introduction to Homogeneous Dynamics First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105066		8 CR
First usage possible from 10/1/2019. M-MATH-105093 Variational Methods First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105096	An Introduction to Periodic Elliptic Operators First usage possible from 10/1/2019.	3 CR
First usage possible from 10/1/2019. M-MATH-105323 Topological Groups First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 5 CF	M-MATH-105101	First usage possible from 10/1/2019.	6 CR
First usage possible from 4/1/2020. M-MATH-105324 Harmonic Analysis First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105093	First usage possible from 10/1/2019.	8 CR
First usage possible from 4/1/2020. M-MATH-105325 Splitting Methods for Evolution Equations First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 6 CF 6	M-MATH-105323		5 CR
First usage possible from 4/1/2020. M-MATH-105326 Nonlinear Wave Equations First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105324	First usage possible from 4/1/2020.	8 CR
First usage possible from 4/1/2020. M-MATH-105327 Numerical Simulation in Molecular Dynamics First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105325	First usage possible from 4/1/2020.	6 CR
First usage possible from 4/1/2020. M-MATH-105331 Introduction to Aperiodic Order First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105326	First usage possible from 4/1/2020.	4 CR
First usage possible from 4/1/2020. M-MATH-105432 Discrete Dynamical Systems 3 CF	M-MATH-105327	First usage possible from 4/1/2020.	8 CR
	M-MATH-105331		3 CR
	M-MATH-105432		3 CR

M-MATH-105462	Wave Propagation in Periodic Waveguides First usage possible from 10/1/2020.	8 CR
M-MATH-105463	Structural Graph Theory First usage possible from 10/1/2020.	4 CR
M-MATH-105487	Topological Data Analysis First usage possible from 10/1/2020.	6 CR
M-MATH-105579	Steins Method with Applications in Statistics First usage possible from 10/1/2020.	4 CR
M-MATH-105635	Moduli Spaces of Translation Surfaces First usage possible from 4/1/2021.	8 CR
M-MATH-105636	Analytical and Numerical Homogenization First usage possible from 4/1/2021.	6 CR
M-MATH-105649	Fractal Geometry First usage possible from 4/1/2021.	6 CR
M-MATH-105650	Introduction to Fluid Dynamics First usage possible from 4/1/2021.	3 CR
M-MATH-105651	Applications of Topological Data Analysis First usage possible from 4/1/2021.	4 CR
M-MATH-105837	Introduction to Kinetic Equations First usage possible from 10/1/2021.	3 CR
M-MATH-105838	Introduction to Microlocal Analysis First usage possible from 10/1/2021.	3 CR
M-MATH-105839	Lie-Algebras (Linear Algebra 3) First usage possible from 10/1/2021.	8 CR
M-MATH-105840	Statistical Learning First usage possible from 10/1/2021.	8 CR
M-MATH-105897	Selected Methods in Fluids and Kinetic Equations neu First usage possible from 4/1/2022.	3 CR
M-MATH-105931	Metric Geometry neu First usage possible from 4/1/2022.	8 CR

2 Modules

2.1 Module: Adaptive Finite Elemente Methods [M-MATH-102900]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scale
6Recurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105898	Adaptive Finite Element Methods	6 CR	Dörfler

Prerequisites

2.2 Module: Advanced Inverse Problems: Nonlinearity and Banach Spaces [M-MATH-102955]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105927	Advanced Inverse Problems: Nonlinearity and Banach Spaces	5 CR	Rieder

Prerequisites

2.3 Module: Algebra [M-MATH-101315]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-102253	B Algebra	8 CR Herrlich, Kühnlein	

Prerequisites

None

2.4 Module: Algebraic Geometry [M-MATH-101724]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-103340	Algebraic Geometry	8 CR	Herrlich, Kühnlein

2.5 Module: Algebraic Number Theory [M-MATH-101725]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-103346	Algebraic Number Theory	8 CR	Kühnlein

2.6 Module: Algebraic Topology [M-MATH-102948]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105915	Algebraic Topology	8 CR	Kammeyer, Sauer

Prerequisites

2.7 Module: Algebraic Topology II [M-MATH-102953]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105926	Algebraic Topology II	8 CR	Sauer

Prerequisites

2.8 Module: An Introduction to Periodic Elliptic Operators [M-MATH-105096]

Responsible: Prof. Dr. Roland Griesmaier **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2019)

Additional Examinations (Usage from 10/1/2019)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110306	An Introduction to Periodic Elliptic Operators	3 CR	Griesmaier

Prerequisites

None

2.9 Module: Analytical and Numerical Homogenization [M-MATH-105636]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2021)

Additional Examinations (Usage from 4/1/2021)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-111272	Analytical and Numerical Homogenization	6 CR	Hochbruck

Prerequisites

none

Competence Goal

The topic of the lecture are numerical multiscale methods presented exemplarily for elliptic problems. Students know the basic analytical results for existence and uniqueness of the solution of multiscale problems and from homogenization theory. In addition, they know methods for the numerical approximation of multiscale and the homogenized solution. They are able to analyze the convergence of these methods and asses the pros and cons of the different approaches.

Content

- Analytical fundamentals (basic results from analysis for elliptic partial differential equations and from homogenization theory)
- Approximation of the homogenized solution(e.g. heterogeneous multiscale method)
- Approximation of the multiscale solution (e.g. local orthogonal decomposition)

Annotation

Upon request the lecture will be held in english.

2.10 Module: Applications of Topological Data Analysis [M-MATH-105651]

Responsible: Dr. Andreas Ott

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2021)

Additional Examinations (Usage from 4/1/2021)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-111290	Applications of Topological Data Analysis	4 CR	Ott

Prerequisites

None

2.11 Module: Aspects of Geometric Analysis [M-MATH-103251]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-106461	Aspects of Geometric Analysis	4 CR	Lamm

Competence Certificate

oral exam; duration: about 20 minutes

Prerequisites

none

Competence Goal

- · The students have got to know topics of Geometric analysis.
- · They are able to use and explain the techniques they have learned in the course.

Content

Classical or recent topics of Geometric analysis, for example

- · Geometric evolution equations,
- · Geometric variational problems,
- · The theory of minimal surfaces,
- · Regularity of geometric objects,
- · The isoperimetric problem,
- Spectral theory on manifolds.

Recommendation

Elementare Geometrie, Klassische Methoden partieller Differentialgleichungen/Partial differential equations, Functional analysis

2.12 Module: Aspects of Time Integration [M-MATH-102934]

Responsible: Prof. Dr Katharina Schratz **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
2

Mandatory				
T-MATH-105904	Aspects of Time Integration	4 CR	Hochbruck, Jahnke,	
			Schratz	

2.13 Module: Astroparticle Physics I [M-PHYS-102075]

Responsible: Prof. Dr. Guido Drexlin

Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-PHYS-102432	Astroparticle Physics I	8 CR	Drexlin, Valerius

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

2.14 Module: Banach Algebras [M-MATH-102913]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105886	Banach Algebras	3 CR	Herzog, Schmoeger

Prerequisites

none

2.15 Module: Basics of Nanotechnology I [M-PHYS-102097]

Responsible: apl. Prof. Dr. Gernot Goll **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
4	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory			
T-PHYS-102529	Basics of Nanotechnology I	4 CR	Goll

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

2.16 Module: Basics of Nanotechnology II [M-PHYS-102100]

Responsible: apl. Prof. Dr. Gernot Goll **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
4	Grade to a tenth	Each summer term	1 term	German	4	1

Mandatory			
T-PHYS-102531	Basics of Nanotechnology II	4 CR	Goll

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

2.17 Module: Batteries and Fuel Cells [M-ETIT-100532]

Responsible: Prof. Dr.-Ing. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion5Grade to a tenthEach winter term1 termGerman41

Mandatory				
	T-ETIT-100983	Batteries and Fuel Cells	5 CR	Krewer

Prerequisites

none

2.18 Module: Bifurcation Theory [M-MATH-103259]

Responsible: Dr. Rainer Mandel

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-106487	Bifurcation Theory	5 CR	Mandel

Prerequisites

None

Annotation

Course is held in English

2.19 Module: Biopharmaceutical Purification Processes [M-CIWVT-103065]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106029	Biopharmaceutical Purification Processes	6 CR	Hubbuch

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO).

The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

Process development of biopharmaceutical processes

Content

Detailed discussion of biopharmaceutical purification processes

Workload

- · Attendance time (Lecture): 60 h
- Homework: 90 h
- · Exam Preparation: 30 h

Learning type

- 22705 Biopharmazeutische Aufarbeitungsverfahren, 3V
- 22706 Übung zu Biopharmazeutische Aufarbeitungsverfahren, 1Ü

Literature

Vorlesungsskript

2.20 Module: Bott Periodicity [M-MATH-104349]

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2018)

Additional Examinations (Usage from 10/1/2018)

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108905	Bott Periodicity	5 CR	Tuschmann

Prerequisites

None

2.21 Module: Boundary and Eigenvalue Problems [M-MATH-102871]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory					
T-MATH-105833	Boundary and Eigenvalue Problems		Frey, Hundertmark, Lamm, Plum, Reichel, Schnaubelt		

2.22 Module: Boundary Element Methods [M-MATH-103540]

Responsible: PD Dr. Tilo Arens

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2019)

Additional Examinations (Usage from 4/1/2019)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-109851	Boundary Element Methods	8 CR	Arens

Prerequisites

None

2.23 Module: Boundary value problems for nonlinear differential equations [M-MATH-102876]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105847	Boundary Value Problems for Nonlinear Differential Equations	8 CR	Plum, Reichel

2.24 Module: Brownian Motion [M-MATH-102904]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory					
T-MATH-105868	Brownian Motion	4 CR	Bäuerle, Fasen-		
			Hartmann, Last		

Prerequisites

none

2.25 Module: Classical Methods for Partial Differential Equations [M-MATH-102870]

Responsible: Prof. Dr. Michael Plum

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion8Grade to a tenthEach winter term1 term41

Mandatory					
T-MATH-105832	Classical Methods for Partial Differential Equations		Frey, Hundertmark, Lamm, Plum, Reichel, Schnaubelt		

2.26 Module: Cognitive Systems [M-INFO-100819]

Responsible: Prof. Dr. Gerhard Neumann

Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: Computer Science

Credits
6Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-INFO-101356	Cognitive Systems	6 CR	Neumann, Waibel

2.27 Module: Combinatorics [M-MATH-102950]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
see AnnotationsDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory			
T-MATH-105916	Combinatorics	8 CR	Aksenovich

Competence Certificate

The final grade is given based on the written final exam (3h).

By successfully working on the problem sets, a bonus can be obtained. To obtain the bonus, one has to achieve 50% of the points on the solutions of the exercise sheets 1-6 and also of the exercise sheets 7-12. If the grade in the final written exam is between 4,0 and 1,3, then the bonus improves the grade by one step (0,3 or 0,4).

Prerequisites

none

Competence Goal

The students understand, describe, and use fundamental notions and techniques in combinatorics. They can analyze, structure, and formally describe typical combinatorial questions. The students can use the results and methods such as inclusion-exclusion, generating functions, Young tableaux, as well as the developed proof ideas, in solving combinatorial problems. In particular, they can analyze the existence and the number of ordered and unordered arrangements of a given size. The students understand and critically use the combinatorial methods. Moreover, the students can communicate using English technical terminology.

Content

The course is an introduction into combinatorics. Starting with counting problems and bijections, classical methods such as inclusion-exclusion principle and generating functions are discussed. Further topics include Catalan families, permutations, Young tableaux, partial orders, and combinatorial designs.

Module grade calculation

The grade of the module ist the grade of the written exam.

Annotation

- · Regular cycle: every 2nd year, summer semester
- Course is held in English

2.28 Module: Combustion Technology [M-CIWVT-103069]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106104	Combustion Technology	6 CR	Trimis

Competence Certificate

Learning Control is an oral examination with a duration of about 20 minutes (section 4 subsection 2 SPO). Grade of the module is the grade of the oral examination.

Prerequisites

None

Competence Goal

- The students are able to describe and explain the characteristics of the different flame types.
- The students can quantitatively estimate/calculate major combustion characteristics like flame temperature and flame velocity. They further understand the physicochemical mechanisms affecting flammability limits and quenching distances.
- The students understand and can assess the influence/interaction of turbulence, heat and mass transfer to reacting flows.
- · The students understand the flame structure and the hierarchical structure of reaction kinetic mechanisms.
- The students understand and can assess the influence of interaction between different time scales of chemical kinetics and fluid flow in reacting flows.
- The students are able to assess and evaluate burner operability with regard to the application.

Content

- Introduction and significance of combustion technology
- Thermodynamics of combustion: Mass and energy/enthalpy balances
- · Equilibrium composition
- · Flame temperature
- Reaction mechanisms in combustion processes
- · Laminar flame velocity and thermal flame theory
- Kinetics related combustion characteristics and experimental characterization: laminar flame velocity, flammability limits, ignition temperature, ignition energy, ignition delay time, quenching distance, flash point, octane and cetane number
- · Turbulent flame propagation
- Industrial burner types

Workload

- Lectures and Exercises: 45 h
- Homework: 25 h
- Exam Preparation: 110 h

- K.K. Kuo: Principles of Combustion, John Wiley & Sons, Hoboken, New York 2005
- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 2006
- S.R. Turns: An Introduction to Combustion Concepts and Applications, McGraw-Hill, Boston 2000
- I. Glassman: Combustion, Academic Press, New York, London 1996

2.29 Module: Commutative Algebra [M-MATH-104053]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108398	Commutative Algebra	8 CR	Herrlich

Prerequisites

None

2.30 Module: Comparison Geometry [M-MATH-102940]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105917	Comparison Geometry	5 CR	Tuschmann

Prerequisites

none

2.31 Module: Comparison of Numerical Integrators for Nonlinear Dispersive Equations [M-MATH-104426]

Responsible: Prof. Dr Katharina Schratz **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2018)

Additional Examinations (Usage from 10/1/2018)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-109040	Comparison of Numerical Integrators for Nonlinear Dispersive Equations	4 CR	Schratz

Prerequisites

None

Content

We will compare numerical integrators (e.g., splitting methods, exponential integrators) for nonlinear dispersive equations such as the nonlinear Schrödinger equation and Kortweg-de Vries equation. We will analyze their convergence properties with regard to the regularity assumptions on the solution.

2.32 Module: Complex Analysis [M-MATH-102878]

Responsible: Dr. Christoph Schmoeger
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105849	Complex Analysis	8 CR	Herzog, Plum, Reichel,	
			Schmoeger,	
			Schnaubelt	

Content

- · infinite products
- · Mittag-Leffler theorem
- Montel's theorem
- Riemann mapping theorem
- conformal mappings
- univalent (schlicht) functions
- · automorphisms of some domains
- · harmonic functions
- · Schwarz reflection principle
- regular and singular points of power series

2.33 Module: Compressive Sensing [M-MATH-102935]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105894	Compressive Sensing	5 CR	Rieder

2.34 Module: Computational Fluid Dynamics [M-CIWVT-103072]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106035	Computational Fluid Dynamics	6 CR	Nirschl

Competence Certificate

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

Learning the fundamentals of CFD for the calculation of flow problems.

Content

Navier-Stokes equitations, numerical schemes, turbulence, multiphase flows.

Workload

- · Attendance time (Lecture): 64 h
- · Homework: 56 h
- · Exam Preparation: 601 h

Literature

Nirschl: Skript zur Vorlesung CFD

Ferziger, Peric: Numerische Strömungsmechanik Oertel, Laurien: Numerische Strömungsmechanik

2.35 Module: Computer Architecture [M-INFO-100818]

Responsible: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: Computer Science

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach summer term1 termGerman41

Mandatory			
T-INFO-101355	Computer Architecture	6 CR	Karl

2.36 Module: Computer Graphics [M-INFO-100856]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher **Organisation:** KIT Department of Informatics

Part of: Computer Science

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory			
T-INFO-101393	Computer Graphics	6 CR	Dachsbacher
T-INFO-104313	Computer Graphics Pass	0 CR	Dachsbacher

2.37 Module: Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems [M-MATH-102883]

Responsible: Prof. Dr. Michael Plum

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105854	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	8 CR	Plum

Organisation:

2.38 Module: Condensed Matter Theory I, Fundamentals [M-PHYS-102054]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Prof. Dr. Alexander Shnirman KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each winter term	1 term	English	4	1

Mandatory			
T-PHYS-102559	Condensed Matter Theory I, Fundamentals	8 CR	Garst, Mirlin, Shnirman

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Further details: see German language version.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

 The module M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a limited class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- · Electronic transport properties of solids, Boltzmann equation;
- Solids in an external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- · Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

- · C. Kittel, Einführung in die Festkörperphysik (Oldenburg, 1980) / Introduction to Solid State Physics.
- · C. Kittel, Quantum Theory of Solids.
- N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, N.Y 1976).
- J.H. Ziman, Principles of the Theory of Solids (Cambridge, Univ. Press, 1972).
- A. A. Abrikosov, Fundamentals of the Theory of Metals

2.39 Module: Condensed Matter Theory I, Fundamentals and Advanced Topics [M-PHYS-102053]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
12	Grade to a tenth	Each winter term	1 term	English	4	1

Mandatory			
T-PHYS-102558	Condensed Matter Theory I, Fundamentals and Advanced Topics	1	Garst, Mirlin, Shnirman

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Further details: see German language version.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102054 - Condensed Matter Theory I, Fundamentals must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a broader class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- · Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- · Electronic transport properties of solids, Boltzmann equation;
- Solids in the external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- · Electron-electron interaction, Stoner theory of ferromagnetism;
- · Landau theory of Fermi liquids; Phonons and electron-phonon interaction;
- Superconductivity: BCS theory, electrodynamics of superconductors, Ginzburg-Landau theory.

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

- · C. Kittel, Einführung in die Festkörperphysik (Oldenburg, 1980) / Introduction to Solid State Physics.
- C. Kittel, Quantum Theory of Solids.
- N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, N.Y 1976).
- J.H. Ziman, Principles of the Theory of Solids (Cambridge, Univ. Press, 1972).
- · A. A. Abrikosov, Fundamentals of the Theory of Metals

2.40 Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals [M-PHYS-102313]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each summer term	1 term	English	4	1

Mandatory			
T-PHYS-104591	Condensed Matter Theory II: Many-Body Systems, Fundamentals		Garst, Mirlin, Narozhnyy, Schmalian

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites to the oral exam: see German version.

Modeled Conditions

The following conditions have to be fulfilled:

The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics
must not have been started.

Competence Goal

Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a limited class of advanced problems in the field of condensed matter physics.

Content

Estimated structure of the lecture:

- 1. Green's functions for non-interacting particles
- 2. Many-body Green's functions
- 3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
- 4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
- 5. Functional formulation of many-body theory
- 6. Superconducting systems
- 7. Non-equilibrium systems and Keldysh technique
- 8. Many-body systems in one dimension

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.

- · A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- · L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischenPhysik, Bd IX)
- G.D. Mahan, Many-particle physics
- · A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- · J.W. Negele, H. Orland, Quantum many-particle sysytems.
- · J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
- · G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid.

2.41 Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics [M-PHYS-102308]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
12	Grade to a tenth	Each summer term	1 term	English	4	1

Mandatory				
	Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics		Garst, Mirlin, Narozhnyy, Schmalian	

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites to the oral exam: see German version.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals must not have been started.

Competence Goal

Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a broader class of advanced problems in the field of condensed matter physics.

Content

Estimated structure of the lecture:

- 1. Green's functions for non-interacting particles
- 2. Many-body Green's functions
- 3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
- 4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
- 5. Functional formulation of many-body theory
- 6. Superconducting systems
- 7. Non-equilibrium systems and Keldysh technique
- 8. Many-body systems in one dimension
- 9. Kondo effect
- 10. Strongly correlated electrons: Hubbard model and Mott metal-insulator transition
- 11. Introduction to mesoscopic physics

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischenPhysik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle sysytems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
- G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid.

2.42 Module: Continuous Time Finance [M-MATH-102860]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105930	Continuous Time Finance	8 CR	Bäuerle, Fasen- Hartmann, Trabs	

2.43 Module: Control Theory [M-MATH-102941]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105909	Control Theory	6 CR	Schnaubelt	

Prerequisites

none

2.44 Module: Convex Geometry [M-MATH-102864]

Responsible: Prof. Dr. Daniel Hug

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105831	Convex Geometry	8 CR	Hug

Competence Goal

The students

- know fundamental combinatorial, geometric and analytic properties of convex sets and convex functions and apply these to related problems,
- are familiar with fundamental geometric and analytic inequalities for functionals of convex sets and their
 applications to geometric extremal problems and can present central ideas and techniques of proofs,
- · know selected integral formulas for convex sets and the required results on invariant measures.
- · know how to work self-organized and self-reflexive.

Content

- 1. Convex Sets
- 1.1. Combinatorial Properties
- 1.2. Support and Separation Properties
- 1.3. Extremal Representations
- 2. Convex Functions
- 2.1. Basic Properties
- 2.2. Regularity
- 2.3. Support Function
- 3. Brunn-Minkowski Theory
- 3.1. Hausdorff Metric
- 3.2. Volume and Surface Area
- 3.3. Mixed Volumes
- 3.4. Geometric Inequalities
- 3.5. Surface Area Measures
- 3.6. Projection Functions
- 4. Integralgeometric Formulas
- 4.1. Invariant Measures
- 4.2. Projection and Section Formulas

2.45 Module: Deep Learning and Neural Networks [M-INFO-104460]

Responsible: Prof. Dr. Alexander Waibel **Organisation:** KIT Department of Informatics

Part of: Computer Science (Usage from 4/1/2019)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach summer term1 termGerman41

Mandatory			
T-INFO-109124	Deep Learning and Neural Networks	6 CR	Waibel

2.46 Module: Differential Geometry [M-MATH-101317]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-102275	Differential Geometry	8 CR	Grensing, Leuzinger, Tuschmann

Prerequisites

2.47 Module: Discrete Dynamical Systems [M-MATH-105432]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2020)

Additional Examinations (Usage from 10/1/2020)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion3Grade to a tenthIrregular1 termGerman41

Mandatory			
T-MATH-110952	Discrete Dynamical Systems	3 CR	Herzog

Prerequisites

2.48 Module: Discrete Time Finance [M-MATH-102919]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory		
T-MATH-105839	Discrete Time Finance	Bäuerle, Fasen- Hartmann, Trabs

Prerequisites

2.49 Module: Dispersive Equations [M-MATH-104425]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2018)

Additional Examinations (Usage from 10/1/2018)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-109001	Dispersive Equations	6 CR	Reichel

Prerequisites

2.50 Module: Dynamical Systems [M-MATH-103080]

Responsible: Prof. Dr. Jens Rottmann-Matthes
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Mathematical Specialization (Elective Field Mathematical Specialization)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-106114	Dynamical Systems	8 CR	Rottmann-Matthes

Prerequisites

2.51 Module: Electromagnetics and Numerical Calculation of Fields [M-ETIT-100386]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
4	Grade to a tenth	Each winter term	1 term	English	4	2

Mandatory			
T-ETIT-100640	Electromagnetics and Numerical Calculation of Fields	4 CR	Zwick

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students with very different background in electromagnetic field theory will be brought to a high level of comprehension. They will understand the concept of electric & magnetic fields and of electric potential & vector potential and they will be able to solve simple problems of electric & magnetic fields using mathematics. They will understand the equations and solutions of wave creation and wave propagation. Finally the student will have learnt the basics of numerical field calculation and be able to use software packages of numerical field calculation in a comprehensive and critical way.

The student will

- be able to deal with all quantities of electromagnetic field theory (E, D, B, H, J, M, P, ...), in particular: how to calculate and how to measure them,
- derive various equations from the Maxwell equations to solve simple field problems (electrostatics, magnetostatics, steady currents, electromagnetics),
- be able to deal with the concept of field energy density and solve practical problems using it (coefficients of capacitance and coefficients of inductance),
- be able to derive and use the wave equation, in particular: to solve problems how to create a wave and calculate solutions of wave propagation through various media,
- be able to outline the concepts, the main application areas and the limitations of methods of numerical field calculation (FDM, FDTD, FIM, FEM, BEM, MoM, TLM)
- be able to use one exemplary software package of numerical field calculation and solve simple practical problems with it.

Content

This course first gives a comprehensive recap of Maxwell equations and important equations of electromagnetic field theory. In the second part the most important methods of numerical field calculation are introduced.

Maxwell's equations, materials equations, boundary conditions, fields in ferroelectric and ferromagnetic materials

electric potentials, electric dipole, Coulomb integral, Laplace and Poisson's equation, separation of variables in cartesian, cylindrical and spherical coordinates

Dirichlet Problem, Neumann Problem, Greens function, Field energy density and Poynting vector,

electrostatic field energy, coefficients of capacitance, vector potential, Coulomb gauge, Biot-Savart-law, magnetic field energy, coefficients of inductance magnetic flux and coefficients of mutual inductance, field problems in steady electric currents.

law of induction, displacement current

general wave equation for E and H, Helmholtz equation

skin effect, penetration depth, eddy currents

retarded potentials, Coulomb integral with retarded potentials

wave equation for potential and Vector potential and A, Lorentz gauge, plane waves

Hertzian dipole, near field solution, far field solution

transmission lines, fields in coaxial transmission lines

waveguides, TM-waves, TE-waves

finite difference method FDM

finite difference - time domain FDTD, Yee 's algorithm

finite difference - frequency domain

finite integration method FIM

finite element method FEM

boundary element method BEM, Method of Moments (MOM), Transmission Line Matrix Methal (TLM),

solving large systems of linear equations

basic rules for good numerical field calculation

The lecturer reserves the right to alter the contents of the course without prior notification.

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (3 h 15 appointments each) = 45 h

Self-study (4 h 15 appointments each) = 60 h

Preparation / post-processing = 20 h

Total effort approx. 125 hours = 4 LP

Recommendation

Fundamentals of electromagnetic field theory.

Literature

Matthew Sadiku (2001), Numerical Techniques in Electromagnetics.

CRC Press, Boca Raton, 0-8493-1395-3

Allen Taflove and Susan Hagness (2000), Computational electrodynamics: the finite-difference time-domain method.

Artech House, Boston, 1-58053-076-1

Nathan Ida and Joao Bastos (1997), Electromagnetics and calculation of fields.

Springer Verlag, New York, 0-387-94877-5

Z. Haznadar and Z. Stih (2000), Electromagnetic Fields, Waves and Numerical Methods.

IOS Press, Ohmsha, 158603 064 7

M.V.K. Chari and S.J. Salon (2000), Numerical Methods in Electromagnetism, Academic Press, 0 12 615760 X

2.52 Module: Electronic Properties of Solids I, with Exercises [M-PHYS-102089]

Responsible: Prof. Dr. Matthieu Le Tacon

Prof. Dr. Wolfgang Wernsdorfer

Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
10	Grade to a tenth	Each winter term	1 term	English	4	1

Mandatory		
T-PHYS-102577	Electronic Properties of Solids I, with Exercises	Le Tacon, Wernsdorfer, Wulfhekel

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102090 - Electronic Properties of Solids I, without Exercises must not have been started.

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Literature

- · R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter

2.53 Module: Electronic Properties of Solids I, without Exercises [M-PHYS-102090]

Responsible: Prof. Dr. Matthieu Le Tacon

Prof. Dr. Wolfgang Wernsdorfer

Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each winter term	1 term	English	4	1

Mandatory					
T-PHYS-102578	Electronic Properties of Solids I, without Exercises		Le Tacon, Wernsdorfer, Wulfhekel		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102089 - Electronic Properties of Solids I, with Exercises must not have been started.

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Literature

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- · H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter

2.54 Module: Electronic Properties of Solids II, with Exercises [M-PHYS-102108]

Responsible: Prof. Dr. Matthieu Le Tacon

Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each summer term	1 term	English	4	1

Mandatory						
T-PHYS-104422	Electronic Properties of Solids II, with Exercises	8 CR	Le Tacon, Rotzinger, Ustinov, Wernsdorfer			

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102109 - Electronic Properties of Solids II, without Exercises must not have been started.

Organisation:

2.55 Module: Electronic Properties of Solids II, without Exercises [M-PHYS-102109]

Responsible: Prof. Dr. Matthieu Le Tacon

Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion4Grade to a tenthEach summer term1 termEnglish41

Mandatory					
T-PHYS-104423	Electronic Properties of Solids II, without Exercises	4 CR	Le Tacon, Rotzinger,		
			Ustinov, Wernsdorfer		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102108 - Electronic Properties of Solids II, with Exercises must not have been started.

Content

Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Literature

- V.V. Schmidt, "The Physics of Superconductors: Introduction to Fundamentals and Applications", Springer (1997), ISBN 978-3540612438
- M. Tinkham, "Introduction to Superconductivity: Vol I", Dover Publ. (2004), ISBN: 978-0486435039
- W. Buckel und R. Kleiner, "Supraleitung: Grundlagen und Anwendungen", Wiley-VCH (2004), ISBN: 978-3527403486

2.56 Module: Evolution Equations [M-MATH-102872]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105844	Evolution Equations	8 CR	Frey, Kunstmann,			
			Schnaubelt			

2.57 Module: Exponential Integrators [M-MATH-103700]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-107475	Exponential Integrators	6 CR	Hochbruck	

Competence Certificate

Oral exam of approximately 20 minutes

Prerequisites

None

Content

In this class we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems.

The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highly oscillatory problems with purely imaginary eigenvalues of large modulus.

Apart from motivating the construction of exponential integrators for various classes of problems, our main intention in this class is to present the mathematics behind these methods. We will derive error bounds that are independent of stiffness or highest frequencies in the system.

Since the implementation of exponential integrators requires the evaluation of the product of a matrix function with a vector, we will briefly discuss some possible approaches as well.

2.58 Module: Extremal Graph Theory [M-MATH-102957]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion8Grade to a tenthIrregular1 termEnglish41

Mandatory			
T-MATH-105931	Extremal Graph Theory	8 CR	Aksenovich

Competence Certificate

The final grade is given based on an oral exam (approx. 30 min.).

Competence Goal

The students understand, describe, and use fundamental notions and techniques in extremal graph theory. They can analyze, structure, and formally describe typical combinatorial questions. The students understand and use Szemeredi's regularity lemma and Szemeredi's theorem, can use probabilistic techniques, such as dependent random choice and multistep random colorings, know the best bounds for the extremal numbers of complete graphs, cycles, complete bipartite graphs, and bipartite graphs with bounded maximum degree. They understand and can use the Ramsey theorem for graphs and hypergraphs, as well as stepping-up techniques for bounding Ramsey numbers. Moreover, the students know and understand the behavior of Ramsey numbers for graphs with bounded maximum degree. The students can communicate using English technical terminology.

Content

The course is concerned with advanced topics in graph theory. It focuses on the areas of extremal functions, regularity, and Ramsey theory for graphs and hypergraphs. Further topics include Turán's theorem, Erdös-Stone theorem, Szemerédi's lemma, graph colorings and probabilistic techniques.

Annotation

Course is held in English

Recommendation

Basic knowledge of linear algebra, analysis and graph theory is recommended.

2.59 Module: Extreme Value Theory [M-MATH-102939]

Responsible: Prof. Dr. Vicky Fasen-Hartmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory			
T-MATH-105908	Extreme Value Theory	4 CR	Fasen-Hartmann

Prerequisites

2.60 Module: Finite Element Methods [M-MATH-102891]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (mandatory)

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105857	Finite Element Methods		Dörfler, Hochbruck, Jahnke, Rieder, Wieners			

2.61 Module: Finite Group Schemes [M-MATH-103258]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
OnceDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-106486	Finite Group Schemes	4 CR	Januszewski

2.62 Module: Forecasting: Theory and Practice [M-MATH-102956]

Responsible: Prof. Dr. Tilmann Gneiting **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
2 termsLanguage
EnglishLevel
4Version
2

Mandatory			
T-MATH-105928	Forecasting: Theory and Practice	8 CR	Gneiting

Prerequisites

None

Annotation

• Regular cycle: every 2nd year, starting winter semester 16/17

· Course is held in English

2.63 Module: Formal Systems [M-INFO-100799]

Responsible: Prof. Dr. Bernhard Beckert **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach winter term1 termGerman41

Mandatory					
T-INFO-101336	Formal Systems	6 CR	Beckert		

2.64 Module: Foundations of Continuum Mechanics [M-MATH-103527]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
3Grading scale
Grade to a tenthRecurrence
OnceDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-107044	Foundations of Continuum Mechanics	3 CR	Wieners	

Prerequisites

2.65 Module: Fourier Analysis [M-MATH-102873]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105845	Fourier Analysis	8 CR	Schnaubelt	

Content

· Fourier series

· Fourier transform on L1 and L2

- · Tempered distributions and their Fourier transform
- Explizit solutions of the Heat-, Schrödinger- and Wave equation in Rn
- the Hilbert transform
- the interpolation theorem of Marcinkiewicz
- Singular integral operators
- the Fourier multiplier theorem of Mihlin

2.66 Module: Fourier Analysis and its Applications to PDEs [M-MATH-104827]

Responsible: TT-Prof. Dr. Xian Liao

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2019)

Additional Examinations (Usage from 4/1/2019)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
3

Mandatory				
T-MATH-109850	Fourier Analysis and its Applications to PDEs	6 CR	Liao	

Prerequisites

2.67 Module: Fractal Geometry [M-MATH-105649]

Responsible: PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2021)

Additional Examinations (Usage from 4/1/2021)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory	Mandatory				
T-MATH-1	11296	Fractal Geometry	6 CR	Winter	

Prerequisites

2.68 Module: Functional Analysis [M-MATH-101320]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-102255	Functional Analysis	8 CR	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			

Prerequisites

2.69 Module: Functions of Matrices [M-MATH-102937]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105906	Functions of Matrices	8 CR	Grimm

Prerequisites

2.70 Module: Functions of Operators [M-MATH-102936]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105905	Functions of Operators	6 CR	

2.71 Module: Fuzzy Sets [M-INFO-100839]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck **Organisation:** KIT Department of Informatics

Part of: Computer Science (Usage from 4/1/2019)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach summer term1 termGerman41

Mandatory				
T-INFO-101376	Fuzzy Sets	6 CR	Hanebeck	

2.72 Module: Generalized Regression Models [M-MATH-102906]

Responsible: PD Dr. Bernhard Klar

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
2

Mandatory	Mandatory						
T-MATH-105870	Generalized Regression Models		Ebner, Fasen- Hartmann, Klar, Trabs				

Prerequisites

2.73 Module: Geometric Analysis [M-MATH-102923]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105892	Geometric Analysis	8 CR	Lamm

Prerequisites

2.74 Module: Geometric Group Theory [M-MATH-102867]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory					
T-MATH-105842	Geometric Group Theory	8 CR	Herrlich, Leuzinger, Link, Sauer, Tuschmann		

2.75 Module: Geometric Group Theory II [M-MATH-102869]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory	Mandatory						
T-MATH-105875	Geometric Group Theory II	8 CR	Herrlich, Leuzinger, Sauer				

2.76 Module: Geometric Numerical Integration [M-MATH-102921]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105919	Geometric Numerical Integration	6 CR	Hochbruck, Jahnke

Prerequisites

2.77 Module: Geometry of Schemes [M-MATH-102866]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory	Mandatory			
T-MATH-105841	Geometry of Schemes	8 CR	Herrlich, Kühnlein	

2.78 Module: Global Differential Geometry [M-MATH-102912]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory	landatory			
T-MATH-105885	Global Differential Geometry	8 CR	Grensing, Tuschmann	

Prerequisites

2.79 Module: Graph Theory [M-MATH-101336]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scale
8Recurrence
Grade to a tenthDuration
1 rregularLanguage
1 termLevel
EnglishVersion
4

Mandatory			
T-MATH-102273	Graph Theory	8 CR	Aksenovich

Competence Certificate

The final grade is given based on the written final exam (3h).

By successfully working on the problem sets, a bonus can be obtained. To obtain the bonus, one has to achieve 50% of the points on the solutions of the exercise sheets 1-6 and also of the exercise sheets 7-12. If the grade in the final written exam is between 4,0 and 1,3, then the bonus improves the grade by one step (0,3 or 0,4).

Prerequisites

None

Competence Goal

The students understand, describe and use fundamental notions and techniques in graph theory. They can represent the appropriate mathematical questions in terms of graphs and use the results such as Menger's theorem, Kuratowski's theorem, Turan's theorem, as well as the developed proof ideas, to solve these problems. The students can analyze graphs in terms of their characteristics such as connectivity, planarity, and chromatic number. They are well positioned to understand graph theoretic methods and use them critically. Moreover, the students can communicate using English technical terminology.

Content

The course Graph Theory treats the fundamental properties of graphs, starting with basic ones introduced by Euler and including the modern results obtained in the last decade. The following topics are covered: structure of trees, paths, cycles and walks in graphs, minors, unavoidable subgraphs in dense graphs, planar graphs, graph coloring, Ramsey theory, and regularity in graphs.

Annotation

- · Regular cycle: every 2nd year, winter semester
- Course is held in English

2.80 Module: Group Actions in Riemannian Geometry [M-MATH-102954]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105925	Group Actions in Riemannian Geometry	5 CR	Tuschmann

Prerequisites

2.81 Module: Harmonic Analysis [M-MATH-105324]

Responsible: Prof. Dr. Dorothee Frey

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory			
T-MATH-111289	Harmonic Analysis	8 CR	

Content

· Fourier series

Fourier transform on L1 and L2

· Tempered distributions and their Fourier transform

• Explizit solutions of the Heat-, Schrödinger- and Wave equation in Rn

• the Hilbert transform

· the interpolation theorem of Marcinkiewicz

Singular integral operators

• the Fourier multiplier theorem of Mihlin

2.82 Module: Harmonic Analysis for Dispersive Equations [M-MATH-103545]

Responsible: apl. Prof. Dr. Peer Kunstmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-107071	Harmonic Analysis for Dispersive Equations	8 CR	Kunstmann

Prerequisites

None

Content

Fourier transform, Fourier multipliers, interpolation, singular integral operators, Mihlin's Theorem, Littlewood-Paley decomposition, oscillating integrals, dispersive estimates, Strichartz estimates, nonlinear equations.

2.83 Module: Heat Transfer II [M-CIWVT-103051]

Responsible: Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
4Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
3

Mandatory			
T-CIWVT-106067	Heat Transfer II	4 CR	Wetzel

Competence Certificate

The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO). Module grade is the grade of the oral examination.

Prerequisites

None

Competence Goal

Students can deduce the basic differential equations of thermofluiddynamics and know possible simplifications. They know different analytical and numerical solution methods for the transient temperature field equation in quiescent media and are able to use them actively. Students are able to apply these solution methods independently to other heat conduction problems such as the heat transfer in fins and needles.

Content

Advanced topics in heat transfer:

Thermo-fluid dynamic transport equations, transient heat conduction; thermal boundary conditions; analytical methods (combination and separation of variables, Laplace transform); numerical methods (finite difference and volume methods); heat transfer in fins and needles

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- · Attendance time (Lecture): 30 h
- · Homework: 50 h
- · Exam Preparation: 40 h

Literature

Von Böckh/Wetzel: "Wärmeübertragung", Springer, 6. Auflage 2015

VDI-Wärmeatlas, Springer-VDI, 10. Auflage, 2011

2.84 Module: High Temperature Process Engineering [M-CIWVT-103075]

Responsible: Prof. Dr.-Ing. Dieter Stapf

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach summer term1 termGerman41

Mandatory			
T-CIWVT-106109	High Temperature Process Engineering	6 CR	Stapf

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- · Attendance time (Lecture): 45 h
- Homework: 75 h
- · Exam Preparation: 60 h

2.85 Module: Homotopy Theory [M-MATH-102959]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-105933	Homotopy Theory	8 CR	Sauer

2.86 Module: Infinite dimensional dynamical systems [M-MATH-103544]

Responsible: Prof. Dr. Jens Rottmann-Matthes **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2018)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-107070	Infinite dimensional dynamical systems	4 CR	Rottmann-Matthes

Prerequisites

2.87 Module: Integral Equations [M-MATH-102874]

Responsible: PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion8Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-105834	Integral Equations	8 CR	Arens, Griesmaier, Hettlich

2.88 Module: Internet seminar for evolution equations [M-MATH-102918]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105890	Internet Seminar for Evolution Equations	8 CR	Frey, Kunstmann, Schnaubelt	

Prerequisites

2.89 Module: Internship [M-MATH-102861]

Responsible: Dr. Sebastian Grensing

Organisation: KIT Department of Mathematics

Part of: Internship

Credits
10Grading scale
pass/failRecurrence
Each termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105888	Internship	10 CR	Grensing

Workload

Gesamter Arbeitsaufwand: 300 Stunden.

Präsenzzeit: 270 Stunden im Unternehmen.

Selbststudium: 30 Stunden

· Ausarbeitung des Berichtes

· Vorbereitung und Halten der Präsentation

2.90 Module: Introduction into Particulate Flows [M-MATH-102943]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
3Grading scale
Grade to a tenthRecurrence
OnceDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105911	Introduction into Particulate Flows	3 CR	Dörfler

Prerequisites

2.91 Module: Introduction to Aperiodic Order [M-MATH-105331]

Responsible: Prof. Dr. Tobias Hartnick

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110811	Introduction to Aperiodic Order	3 CR	Hartnick

Prerequisites

2.92 Module: Introduction to Cosmology [M-PHYS-102175]

Responsible: Prof. Dr. Guido Drexlin **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory			
T-PHYS-102384	Introduction to Cosmology	6 CR	Drexlin

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

2.93 Module: Introduction to Fluid Dynamics [M-MATH-105650]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2021)

Additional Examinations (Usage from 4/1/2021)

CreditsGrading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory			
T-MATH-111297	Introduction to Fluid Dynamics	3 CR	Reichel

Prerequisites

None

Competence Goal

The main aim of this lecture is to introduce students to mathematical fluid dynamics. In particular, by the end of the course students will be able to

- · discuss and explain the various formulations of the Euler equations and when these formulations are equivalent,
- · state major theorems and their relation,
- · discuss weak formulations, existence and uniqueness results.

Content

Mathematical description and analysis of fluid dynamics:

- · physical motivation of the incompressible Euler and Navier-Stokes equations,
- · Vorticity-Stream formulation and Eulerian and Lagrangian coordinates,
- · Local existence theory and energy methods,
- · Weak solutions and the Beale-Kato-Majda criterion.

Recommendation

Partial Differential Equations

2.94 Module: Introduction to Geometric Measure Theory [M-MATH-102949]

Responsible: PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105918	Introduction to Geometric Measure Theory	6 CR	Winter

Prerequisites

2.95 Module: Introduction to Homogeneous Dynamics [M-MATH-105101]

Responsible: Prof. Dr. Tobias Hartnick
Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2019)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2019)

Additional Examinations (Usage from 10/1/2019)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110323	Introduction to Homogeneous Dynamics	6 CR	Hartnick

Prerequisites

2.96 Module: Introduction to Kinetic Equations [M-MATH-105837]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2021)

Additional Examinations (Usage from 10/1/2021)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
2

Mandatory			
T-MATH-111721	Introduction to Kinetic Equations	3 CR	Zillinger

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Competence Goal

The main aim of this lecture is to introduce students to the theory of kinetic transport equations. In particular, by the end of the course students will be able to

- discuss properties of the free transport, Boltzmann and Vlasov-Poisson equations,
- · state major theorems and their relation,
- · discuss notions of solutions and their properties,
- discuss the effects of phase mixing and challenges of nonlinear equations.

Content

Mathematical description and analysis of kinetic transport equations:

- · the free transport, Boltzmann and Vlasov-Poisson equations,
- · linear theory, phase mixing and Landau damping,
- · equilibrium solutions and stability,
- nonlinear results and methods.
- · renormalized solutions.

Module grade calculation

The module grade is the grade of the final oral exam.

Workload

Totel workload: 90 h Attendance: 30 h

· lectures and examination

Self studies: 60 h

- · follow-up and deepening of the course content,
- literature study and internet research on the course content,
- · preparation for the module examination

Recommendation

The course "Classical Methods for Partial Differential Equations" should be studied beforehand.

2.97 Module: Introduction to Kinetic Theory [M-MATH-103919]

Responsible: Prof. Dr. Martin Frank

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory			
T-MATH-108013	Introduction to Kinetic Theory	4 CR	Frank

Prerequisites

None

Competence Goal

After successfully taking part in the module's classes and exams, students have gained knowledge and abilities as described in the "Inhalt" section. Specifically, Students know common means of mesoscopic and macroscopic description of particle systems. Furthermore, students are able to describe the basics of multiscale methods, such as the asypmtotic analysis and the method of moments. Students are able to apply numerical methods to solve engineering problems related to particle systems. They can name the assumptions that are needed to be made in the process. Students can judge whether specific models are applicable to the specific problem and discuss their results with specialists and colleagues.

Content

- · From Newton's equations to Boltzmann's equation
- · Rigorous derivation of the linear Boltzmann equation
- Properties of kinetic equations (existence & uniqueness, H theorem)
- The diffusion limit
- From Boltzmann to Euler & Navier-Stokes
- · Method of Moments
- · Closure techniques
- Selected numerical methods

Recommendation

Partial Differential Equations, Functional Analysis

2.98 Module: Introduction to Matlab and Numerical Algorithms [M-MATH-102945]

Responsible: Dr. Daniel Weiß

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
	T-MATH-105913	Introduction to Matlab and Numerical Algorithms	5 CR	Weiß, Wieners

Prerequisites

2.99 Module: Introduction to Microlocal Analysis [M-MATH-105838]

Responsible: TT-Prof. Dr. Xian Liao

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2021)

Additional Examinations (Usage from 10/1/2021)

CreditsGrading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory			
T-MATH-111722	Introduction to Microlocal Analysis	3 CR	Liao

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Competence Goal

- · Students will become familiar with the notions of Fourier multipliers and pseudo-differential operators
- · Students can state major theorems and their relation
- Students will understand the structure of the propagation of singularities by introducing the wave front set and apply them to the domain of partial differential equations, control theory, etc.

Content

- 1. Pseudo-differential operators
- 2. Symbolic calculus
- 3. Wavefront set
- 4. Propagation of singularities
- 5. Microlocal defective measure

Module grade calculation

The module grade is the grade of the final oral exam.

Workload

Totel workload: 90 h Attendance: 30 h

· lectures and examination

Self studies: 60 h

- · follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- · preparation for the module examination

Recommendation

The following courses should be studied beforehand: "Classical Methods for Partial Differential Equations" und "Functional Analysis".

2.100 Module: Introduction to Scientific Computing [M-MATH-102889]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
2

Mandatory						
T-MATH-105837	Introduction to Scientific Computing		Dörfler, Hochbruck, Jahnke, Rieder, Wieners			

Prerequisites

2.101 Module: Inverse Problems [M-MATH-102890]

Responsible: Prof. Dr. Roland Griesmaier
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105835	Inverse Problems	8 CR	Arens, Griesmaier,
			Hettlich, Rieder

2.102 Module: Key Competences [M-MATH-102994]

Organisation: KIT Department of Mathematics
Part of: Interdisciplinary Qualifications

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
2	pass/fail	Each term	1 term	German	4	3

Election notes

For self assignment of taken interdisciplinary qualifications of HoC, ZAK or SPZ the 'Teilleistungen' with the title "Self Assignment HoC-ZAK-SPZ ..." have to be selected according to the grading scale, not graded or graded.

Key Competences (I	Key Competences (Election: at least 2 credits)					
T-MATH-106119	Introduction to Python	3 CR	Weiß			
T-MATH-111515	Self-Booking-HOC-SPZ-ZAK-1-Graded	2 CR				
T-MATH-111517	Self-Booking-HOC-SPZ-ZAK-2-Graded	2 CR				
T-MATH-111516	Self-Booking-HOC-SPZ-ZAK-5-Ungraded	2 CR				
T-MATH-111520	Self-Booking-HOC-SPZ-ZAK-6-Ungraded	2 CR				
T-MATH-111851	Introduction to Python - Programming Project	1 CR	Weiß			

Prerequisites

2.103 Module: Key Moments in Geometry [M-MATH-104057]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108401	Key Moments in Geometry	5 CR	Tuschmann

Prerequisites

2.104 Module: L2-Invariants [M-MATH-102952]

Responsible: Dr. Holger Kammeyer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105924	L2-Invariants	5 CR	Kammeyer, Sauer

Prerequisites

2.105 Module: Lie Groups and Lie Algebras [M-MATH-104261]

Responsible: Prof. Dr. Tobias Hartnick

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2018)

Additional Examinations (Usage from 10/1/2018)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory				
T-MATH-108799	Lie Groups and Lie Algebras	8 CR	Hartnick, Leuzinger	

2.106 Module: Lie-Algebras (Linear Algebra 3) [M-MATH-105839]

Responsible: Prof. Dr. Tobias Hartnick

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2021)

Additional Examinations (Usage from 10/1/2021)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-111723	Lie-Algebras (Linear Algebra 3)	8 CR	

2.107 Module: Localization of Mobile Agents [M-INFO-100840]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck **Organisation:** KIT Department of Informatics

Part of: Computer Science (Usage from 4/1/2019)

Credits
6Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-INFO-101377	Localization of Mobile Agents	6 CR	Hanebeck

2.108 Module: Markov Decision Processes [M-MATH-102907]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105921	Markov Decision Processes	5 CR	Bäuerle

Prerequisites

2.109 Module: Master's Thesis [M-MATH-102917]

Responsible: Dr. Sebastian Grensing

Organisation: KIT Department of Mathematics

Part of: Master's Thesis

Credits
30Grading scale
Grade to a tenthRecurrence
Each termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105878	Master's Thesis	30 CR	Grensing

Modeled Conditions

The following conditions have to be fulfilled:

- 1. You need to have earned at least 70 credits in the following fields:
 - Wildcard Technical Field
 - Applied Mathematics
 - Internship
 - Chemical and Process Engineering
 - Electrical Engineering / Information Technology
 - Experimental Physics
 - Computer Science
 - Mathematical Specialization
 - Interdisciplinary Qualifications

2.110 Module: Mathematical Methods in Signal and Image Processing [M-MATH-102897]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105862	Mathematical Methods in Signal and Image Processing	8 CR	Rieder

Prerequisites

2.111 Module: Mathematical Methods of Imaging [M-MATH-103260]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
	T-MATH-106488	Mathematical Methods of Imaging	5 CR	Rieder

Prerequisites

2.112 Module: Mathematical Modelling and Simulation in Practise [M-MATH-102929]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
2

Mandatory			
T-MATH-105889	Mathematical Modelling and Simulation in Practise	4 CR	Thäter

Prerequisites

2.113 Module: Mathematical Statistics [M-MATH-102909]

Responsible: PD Dr. Bernhard Klar

Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory					
T-MATH-105872	Mathematical Statistics	4 CR	Ebner, Fasen-		
			Hartmann, Klar, Trabs		

Prerequisites

2.114 Module: Mathematical Topics in Kinetic Theory [M-MATH-104059]

Responsible: Prof. Dr. Dirk Hundertmark **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2018)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-108403	Mathematical Topics in Kinetic Theory	4 CR	Hundertmark	

Prerequisites

None

Competence Goal

The students are familiar with the basic questions in kinetic theory and methodical approaches to their solutions. With the acquired knowledge they are able to understand the required analytical methods and are able to apply them to the basic equations in kinetic theory.

Content

- · Boltzmann equation: Cauchy problem and properties of solutions
- · entropy and H theorem
- · equilibrium and convergence to equilibrium
- other models of kinetic theory

2.115 Module: Maxwell's Equations [M-MATH-102885]

Responsible: PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105856	Maxwell's Equations	8 CR	Arens, Griesmaier, Hettlich			

2.116 Module: Medical Imaging [M-MATH-102896]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandator	у			
T-MATH-	105861	Medical Imaging	8 CR	Rieder

Prerequisites

None

2.117 Module: Medical Imaging Techniques I [M-ETIT-100384]

Responsible: Prof. Dr. Olaf Dössel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion3Grade to a tenthEach winter term1 termGerman41

Mandatory				
T-ETIT-101930	Medical Imaging Techniques I	3 CR	Dössel	

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students have a thorough understanding of all methods of medical imaging with ionizing radiation. They know the physical basics, the technical solutions and the essential aspects when using imaging in medicine.

Content

- X-ray physics and technology of X-ray imaging
- Digital radiography, X-ray image intensifier, flat X-ray detectors
- Theory of imaging systems, modulation transfer function
- and quantum detection efficiency
- Computer tomography CT
- Ionizing radiation, dosimetry and radiation protection
- SPECT and PET

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h 15 appointments each) = 30 h

Self-study (3 h 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

2.118 Module: Medical Imaging Techniques II [M-ETIT-100385]

Responsible: Prof. Dr. Olaf Dössel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
3	Grade to a tenth	Each summer term	1 term	German	4	1

Mandatory			
T-ETIT-101931	Medical Imaging Techniques II	3 CR	Dössel

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Competence Goal

Students have a thorough understanding of all methods of medical imaging without ionizing radiation. They know the physical basics, the technical solutions and the essential aspects when using imaging in medicine.

Content

- Ultrasound imaging
- Thermography
- Optical tomography
- Impedance tomography
- Imaging of bioelectric sources
- Endoscopy
- Magnetic resonance imaging
- Multi-modal imaging
- Molecular imaging

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h 15 appointments each) = 30 h

Self-study (3 h 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

Recommendation

The contents of the M-ETIT-100384 module are required.

2.119 Module: Methods of Signal Processing [M-ETIT-100540]

Responsible: Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-ETIT-100694	Methods of Signal Processing	6 CR	Heizmann

Prerequisites

2.120 Module: Metric Geometry [M-MATH-105931]

Responsible: Prof. Dr. Alexander Lytchak **Organisation:** KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2022)

Additional Examinations (Usage from 4/1/2022)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory				
T-MATH-111933	Metric Geometry	8 CR	Lytchak	

Competence Certificate

oral examination of circa 20 minutes

Prerequisites

None

Module grade calculation

The module grade is the grade of the final oral exam.

2.121 Module: Models of Mathematical Physics [M-MATH-102875]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105846	Models of Mathematical Physics	8 CR	Hundertmark, Plum, Reichel			

2.122 Module: Modern Experimental Physics I, Atoms and Cores [M-PHYS-101704]

Responsible: Studiendekan Physik **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-PHYS-105132	Modern Experimental Physics I, Atoms and Nuclei	8 CR	Studiendekan Physik

Competence Certificate

See components of this module

Prerequisites

2.123 Module: Modern Experimental Physics II, Molecules and Solid States [M-PHYS-101705]

Responsible: Studiendekan Physik **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-PHYS-105133	Modern Experimental Physics II. Molecules and Solid States	8 CR	Studiendekan Physik

Competence Certificate

See components of this module

Prerequisites

2.124 Module: Modular Forms [M-MATH-102868]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105843	Modular Forms	8 CR	Kühnlein	

2.125 Module: Moduli Spaces of Translation Surfaces [M-MATH-105635]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2021)

Additional Examinations (Usage from 4/1/2021)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory				
T-MATH-111271	Moduli Spaces of Translation Surfaces	8 CR		

Prerequisites

None

2.126 Module: Monotonicity Methods in Analysis [M-MATH-102887]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion3Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-105877	Monotonicity Methods in Analysis	3 CR	Herzog

2.127 Module: Multigrid and Domain Decomposition Methods [M-MATH-102898]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
OnceDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105863	Multigrid and Domain Decomposition Methods	4 CR	Wieners

Prerequisites

none

Competence Goal

The students became acquainted with multigrid and domain decomposition methods. They learn algorithms, results on convergence, and representative applications.

Content

- · The two-grid method
- · Classical multigrid theory
- · Additive subspace correction method
- Multiplicative subspace correction method
- · Multigrid methods for saddle point problems

2.128 Module: Neural Networks [M-INFO-100846]

Responsible: Prof. Dr. Alexander Waibel **Organisation:** KIT Department of Informatics

Part of: Computer Science

Credits
6Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
German/EnglishLevel
4Version
1

Mandatory			
T-INFO-101383	Neural Networks	6 CR	Waibel

2.129 Module: Nonlinear Analysis [M-MATH-103539]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2017)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-107065	Nonlinear Analysis	8 CR	Lamm

Prerequisites

None

2.130 Module: Nonlinear Control Systems [M-ETIT-100371]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion3Grade to a tenthEach summer term1 termGerman41

Mandatory			
T-ETIT-100980	Nonlinear Control Systems	3 CR	Kluwe

Prerequisites

2.131 Module: Nonlinear Evolution Equations [M-MATH-102877]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105848	Nonlinear Evolution Equations	8 CR	Frey, Schnaubelt

2.132 Module: Nonlinear Functional Analysis [M-MATH-102886]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105876	Nonlinear Functional Analysis	3 CR	Herzog

2.133 Module: Nonlinear Maxwell Equations [M-MATH-103257]

Responsible: Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-106484	Nonlinear Maxwell Equations	3 CR	Schnaubelt

Prerequisites

none

Content

- Short introduction to nonlinear contraction semigroups in Hilbert spaces and to the spaces H(curl) and H(div).
- Semilinear case:
 Maxwell's equations with linear material laws and nonlinear conductivity. Wellposedness by means of maximal monotone operators. Long-term behavior.
- Quasilinear case:
 Maxwell's equations with nonlinear instantaneous material laws. Local wellposedness on the whole space via
 linearisation, apriori estimates and regularization. Blow-up examples. Outlook to results on domains.

2.134 Module: Nonlinear Maxwell Equations [M-MATH-105066]

Responsible: Prof. Dr. Roland Schnaubelt **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2019)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2019)

Additional Examinations (Usage from 10/1/2019)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-110283	Nonlinear Maxwell Equations	8 CR	Schnaubelt

Prerequisites

2.135 Module: Nonlinear Wave Equations [M-MATH-105326]

Responsible: Dr. Birgit Schörkhuber

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 4/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110806	Nonlinear Wave Equations	4 CR	Schörkhuber

Prerequisites

None

2.136 Module: Nonparametric Statistics [M-MATH-102910]

Responsible: PD Dr. Bernhard Klar

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory	Mandatory		
T-MATH-105873	Nonparametric Statistics		Ebner, Fasen- Hartmann, Klar, Trabs

Prerequisites

None

2.137 Module: Numerical Analysis of Helmholtz Problems [M-MATH-105764]

Responsible: TT-Prof. Dr. Barbara Verfürth **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2021)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
2

Mandatory			
T-MATH-111514	Numerical Analysis of Helmholtz Problems	3 CR	Verfürth

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Module grade calculation

The module grade is the grade of the final oral exam.

2.138 Module: Numerical Continuation Methods [M-MATH-102944]

Responsible: Prof. Dr. Jens Rottmann-Matthes **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-1059	912	Numerical Continuation Methods	5 CR	Rottmann-Matthes

Prerequisites

2.139 Module: Numerical Linear Algebra for Scientific High Performance Computing [M-MATH-103709]

Responsible: Jun.-Prof. Dr. Hartwig Anzt **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2017)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2017)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
2

Mandatory					
ebra for Scientific High Performance	5 CR	Anzt			
6	ebra for Scientific High Performance	ebra for Scientific High Performance 5 CR			

Prerequisites

None

2.140 Module: Numerical Linear Algebra in Image Processing [M-MATH-104058]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108402	Numerical Linear Algebra in Image Processing	6 CR	Grimm

Prerequisites

None

2.141 Module: Numerical Methods for Differential Equations [M-MATH-102888]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion8Grade to a tenthEach winter term1 term41

Mandatory						
T-MATH-105836	Numerical Methods for Differential Equations		Dörfler, Hochbruck, Jahnke, Rieder, Wieners			

2.142 Module: Numerical Methods for Hyperbolic Equations [M-MATH-102915]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105900	Numerical Methods for Hyperbolic Equations	6 CR	Dörfler	

Prerequisites

none

Competence Goal

.

2.143 Module: Numerical Methods for Integral Equations [M-MATH-102930]

Responsible: PD Dr. Tilo Arens

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105901	Numerical Methods for Integral Equations	8 CR	Arens, Hettlich	

2.144 Module: Numerical Methods for Maxwell's Equations [M-MATH-102931]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scale
6Recurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105920	Numerical Methods for Maxwell's Equations	6 CR	Hochbruck, Jahnke

2.145 Module: Numerical Methods for Time-Dependent Partial Differential Equations [M-MATH-102928]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory					
T-MATH-105899	Numerical Methods for Time-Dependent Partial Differential Equations	8 CR	Hochbruck, Jahnke		

2.146 Module: Numerical Methods in Computational Electrodynamics [M-MATH-102894]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105860	Numerical Methods in Computational Electrodynamics		Dörfler, Hochbruck, Jahnke, Rieder,			
			Wieners			

Prerequisites

2.147 Module: Numerical Methods in Fluid Mechanics [M-MATH-102932]

Responsible: Prof. Dr. Willy Dörfler

PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion4Grade to a tenthIrregular1 term41

Mandatory				
T-MATH-105902	Numerical Methods in Fluid Mechanics	4 CR	Dörfler, Thäter	

2.148 Module: Numerical Methods in Mathematical Finance [M-MATH-102901]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

М	landatory			
-	T-MATH-105865	Numerical Methods in Mathematical Finance	8 CR	Jahnke

Prerequisites

2.149 Module: Numerical Methods in Mathematical Finance II [M-MATH-102914]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105880	Numerical Methods in Mathematical Finance II	8 CR	Jahnke	

Prerequisites

2.150 Module: Numerical Optimisation Methods [M-MATH-102892]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105858	Numerical Optimisation Methods		Dörfler, Hochbruck, Jahnke, Rieder, Wieners

2.151 Module: Numerical Simulation in Molecular Dynamics [M-MATH-105327]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-110807	Numerical Simulation in Molecular Dynamics	8 CR	Grimm

Prerequisites

None

2.152 Module: Optical Waveguides and Fibers [M-ETIT-100506]

Responsible: Prof. Dr.-Ing. Christian Koos

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion4Grade to a tenthEach winter term1 termEnglish41

Mandatory			
T-ETIT-101945	Optical Waveguides and Fibers	4 CR	Koos

Competence Certificate

Type of Examination: Oral exam

Duration of Examination: approx. 20 minutes

Modality of Exam: The written exam is offered continuously upon individual appointment.

Prerequisites

None

Competence Goal

The students

- conceive the basic principles of light-matter-interaction and wave propagation in dielectric media and can explain
 the origin and the implications of the Lorentz model and of Kramers-Kronig relation,
- are able to quantitatively analyze the dispersive properties of optical media using Sellmeier relations and scientific databases,
- can explain and mathematically describe the working principle of an optical slab waveguide and the formation of guided modes,
- · are able to program a mode solver for a slab waveguide in Matlab,
- · are familiar with the basic principle of surface plasmon polariton propagation,
- know basic structures of planar integrated waveguides and are able to model special cases with semi-analytical
 approximations such as the Marcatili method or the effective-index method,
- are familiar with the basic concepts of numerical mode solvers and the associated limitations,
- are familiar with state-of-the-art waveguide technologies in integrated optics and the associated fabrication methods
- · know basic concepts of of step-index fibers, graded-index fibers and microstructured fibers,
- · are able to derive and solve basic relations for step-index fibers from Maxwell's equations,
- · are familiar with the concept of hybrid and linearly polarized fiber modes,
- can mathematically describe signal propagation in single-mode fibers design dispersion-compensated transmission links,
- · conceive the physical origin of fiber attenuation effects,
- · are familiar with state-of-the-art fiber technologies and the associated fabrication methods,
- · can derive models for dielectric waveguide structures using the mode expansion method,
- · conceive the principles of directional couplers, multi-mode interference couplers, and waveguide gratings,
- · can mathematically describe active waveguides and waveguide bends.

Content

- 1. Introduction: Optical communications
- 2. Fundamentals of wave propagation in optics: Maxwell's equations in optical media, wave equation and plane waves, material dispersion, Kramers-Kroig relation and Sellmeier equations, Lorentz and Drude model of refractive index, signal propagation in dispersive media.
- 3. Slab waveguides: Reflection from a plane dielectric boundary, slab waveguide eigenmodes, radiation modes, interand intramodal dispersion, metal-dielectric structures and surface plasmon polariton propagation.
- 4. Planar integrated waveguides: Basic structures of integrated optical waveguides, guided modes of rectangular waveguides (Marcatili method and effective-index method), basics of numerical methods for mode calculations (finite difference- and finite-element methods), waveguide technologies in integrated optics and associated fabrication methods
- 5. Optical fibers: Optical fiber basics, step-index fibers (hybrid modes and LP-modes), graded-index fibers (infinitely extended parabolic profile), microstructured fibers and photonic-crystal fibers, fiber technologies and fabrication methods, signal propagation in single-mode fibers, fiber attenuation, dispersion and dispersion compensation
- 6. Waveguide-based devices: Modeling of dielectric waveguide structures using mode expansion and orthogonality relatons, multimode interference couplers and directional couplers, waveguide gratings, material gain and absorption in optical waveguides, bent waveguides

Module grade calculation

The module grade is the grade of the oral exam.

There is, however, a bonus system based on the problem sets that are solved during the tutorials: During the term, 3 problem sets will be collected in the tutorial and graded without prior announcement. If for each of these sets more than 70% of the problems have been solved correctly, a bonus of 0.3 grades will be granted on the final mark of the oral exam.

Workload

Total 120 h, hereof 45 h contact hours (30 h lecture, 15 h tutorial) and 75 h homework and self-studies.

Recommendation

Solid mathematical and physical background, basic knowledge of electrodynamics

Literature

B.E.A. Saleh, M.C. Teich: Fundamentals of Photonics G.P. Agrawal: Fiber-optic communication systems C.-L. Chen: Foundations for guided-wave optics

Katsunari Okamoto: Fundamentals of Optical Waveguides

K. Iizuka: Elements of Photonics

2.153 Module: Optimal Control and Estimation [M-ETIT-102310]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

Credits
3Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
1Version
1

Mandatory			
T-ETIT-104594	Optimal Control and Estimation	3 CR	Hohmann

Prerequisites

none

2.154 Module: Optimisation and Optimal Control for Differential Equations [M-MATH-102899]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion4Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-105864	Optimisation and Optimal Control for Differential Equations	4 CR	

Prerequisites

none

2.155 Module: Optimization in Banach Spaces [M-MATH-102924]

Responsible: Prof. Dr. Roland Griesmaier

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory			
T-MATH-105893	Optimization in Banach Spaces	5 CR	Griesmaier, Hettlich

Competence Certificate

The exam takes place in form of an oral examination of approximately 30 minutes.

Prerequisites

none

Competence Goal

The students can transfer properties from finite dimensional optimization problems to infinite dimensional cases. Furthermore, they can apply these results to problems from approximation theory, calculus of variation and optimal control. The students know about the main theorems and their proofs and can explain conclusions with the help of examples.

Content

Basics from Functional Analysis (in particular separation theorems, properties of convex functions and generalized derivatives), duality theory of convex problems, differentiable optimization problems (Lagrange multiplier), sufficient optimality conditions, existence results, applications in approximation theory, calculus of variation, and optimal control theory.

Module grade calculation

The grade of the module is the grade of the oral examination.

Workload

Total workload: 150 hours Time of attendance: 60 hours

· lecture including course related examinations

Self-study: 90 hours

- · enhancement of course content by post-processing the lectures at home
- · working on exercises
- enhancement of course content by additional literature and internet research
- · preparation of the course related modul-exam

Recommendation

Some basic knowledge of finite dimensional optimization theory and functional analysis is desirable.

2.156 Module: Optimization of Dynamic Systems [M-ETIT-100531]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion5Grade to a tenthEach winter term1 termEnglish41

Mandatory				
T-ETIT-100685	Optimization of Dynamic Systems	5 CR	Hohmann	

Competence Certificate

The assessment consists of a written exam (120 min) taking place in the recess period.

Prerequisites

none

Competence Goal

- The students know as well the mathematical basics as the fundamental methods and algorithms to solve constraint and unconstraint nonlinear static optimization problems.
- They can solve constraint and unconstraint dynamic optimization by using the calculus of variations approach and the Dynamic Programming method.
- Also they are able to transfer dynamic optimization problem to static problems.
- The students know the mathematic relations, the pros and cons and the limits of the particular optimization methods.
- They can transfer problems from other fields of their studies in a convenient optimization problem formulation and they are able to select and implement suitable optimization algorithms for them by using common software tools.

Content

The module teaches the mathematical basics that are required to solve optimization problems. The first part of the lecture treats methods for solving static optimization problems. The second part of the lecture focuses on solving dynamic optimization problems by using the method of Euler-Lagrange and the Hamilton method as well as the dynamic programming approach.

Module grade calculation

The module grade is the grade of the written exam.

Workload

Each credit point stands for an amount of work of 30h of the student. The amount of work includes

- 1. presence in lecture/exercises/tutorial(optional) (2+1 SWS: 45h1.5 LP)
- 2. preparation/postprocessing of lecture/exercises (90h3 LP)
- 3. preparation/presence in the written exam (15h0.5 LP)

2.157 Module: Parallel Computing [M-MATH-101338]

Responsible: Dr. rer. nat. Mathias Krause

Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion5Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-102271	Parallel Computing	5 CR	Krause, Wieners

Prerequisites

None

2.158 Module: Particle Physics I [M-PHYS-102114]

Responsible: Prof. Dr. Ulrich Husemann

Prof. Dr. Markus Klute Prof. Dr. Thomas Müller Prof. Dr. Günter Quast Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory					
T-PHYS-102369	Particle Physics I	8 CR	Husemann, Klute, Müller, Quast, Rabbertz		

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

2.159 Module: Pattern Recognition [M-INFO-100825]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scale
6Recurrence
Grade to a tenthDuration
Each summer termLanguage
1 termLevel
GermanVersion
4

Mandatory				
T-INFO-101362	Pattern Recognition	6 CR	Beyerer, Zander	

2.160 Module: Percolation [M-MATH-102905]

Responsible: Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
2

Mandatory			
T-MATH-105869	Percolation	5 CR	Hug, Last, Winter

Prerequisites

none

Competence Goal

The students

- · are acquainted with basic models of discrete and continuum percolation,
- acquire the skills needed to use specific probabilistic and graph-theoretical methods for the analysis of these models,
- know how to work self-organised and self-reflexive.

2.161 Module: Physical Foundations of Cryogenics [M-CIWVT-103068]

Responsible: Prof. Dr.-Ing. Steffen Grohmann

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory				
T-CIWVT-106103	Physical Foundations of Cryogenics	6 CR	Grohmann	

Competence Certificate

The examination is an oral examination with a duration of 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Understanding of the mechanisms of entropy generation, and the interaction of the first and the second law in thermodynamic cycles; understanding of cryogenic material properties; application, analysis and assessment of real gas models for classical helium I; understanding of quantum fluid properties of helium II based on Bose-Einstein condensation, understanding of cooling principles at lowest temperatures.

Content

Relation between energy and temperature, energy transformation on microscopic and on macroscopic scales, physical definitions of entropy and temperature, thermodynamic equlibria, reversibility of thermodynamic cycles, helium as classical and as quantum fluid, low-temperature material properties, cooling methods at temperatures below 1 K.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- · Attendance time (Lecture): 45 h
- Homework: 45 h
- · Exam Preparation: 90 h

Literature

Schroeder, D.V.: An introduction to thermal physics. Addison Wesley Longman (2000) Pobell; F.: Matter and methods at low temperatures. 3rd edition, Springer (2007)

2.162 Module: Poisson Processes [M-MATH-102922]

Responsible: Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory	Mandatory					
T-MATH-105922	Poisson Processes	5 CR	Fasen-Hartmann, Hug, Last, Winter			

Competence Certificate

oral exam

Prerequisites

none

Competence Goal

The students know about important properties of the Poisson process. The focus is on probabilistic methods and results which are independent of the specific phase space. The students understand the central role of the Poisson process as a specific point process and as a random measure.

Content

- Distributional properties of Poisson processes
- The Poisson process as a particular point process
- · stationary Poisson and point processes
- Random measures and Cox processes
- Poisson cluster processes and compound Poisson processes
- · The spatial Gale-Shapley algorithm

Module grade calculation

Marking: grade of exam

2.163 Module: Potential Theory [M-MATH-102879]

Responsible: Prof. Dr. Andreas Kirsch

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory						
T-MATH-105850	Potential Theory	8 CR	Arens, Hettlich, Kirsch, Reichel			

2.164 Module: Probability Theory and Combinatorial Optimization [M-MATH-102947]

Responsible: Prof. Dr. Daniel Hug

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105923	Probability Theory and Combinatorial Optimization	8 CR	Hug, Last	

Prerequisites

none

2.165 Module: Process Modeling in Downstream Processing [M-CIWVT-103066]

Responsible: apl. Prof. Dr. Matthias Franzreb

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106101	Process Modeling in Downstream Processing	4 CR	Franzreb

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students are able to sum up and explain equilibrium and kinetic equations relevant for chromatography modeling. They are able to explain the methods used for determination of equilibrium and kinetic parameters and can discuss examples. They are familiar with the principle of complex downstream processes, e.g. simulated moving beds, and can explain the differences to conventional chromatography. Using commercial software they are able to simulate chromatography processes and to analyze the results. On this basis they can optimize process parameters and fit them in order to meet given targets such as purity or yield. They can evaluate different processes and choose the variant for a given task.

Content

Fundamentals and practical examples of chromatography modeling, Design rules for Simulated Moving Beds, Design of Experiments (DOE)

Workload

· Attendance time (Lecture): 30 h

· Homework: 60 h

Exam Preparation: 30 h

2.166 Module: Processing of Nanostructured Particles [M-CIWVT-103073]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106107	Processing of Nanostructured Particles	6 CR	Nirschl

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Ability to design a process technology for the manufacturing and production of nanoscale particles

Content

Development of technical process in particle engineering; particle characterisation, interface engineering, particle synthesis; Typical processes: grinding, mixing, ganulation, selective separation,

classifying; fundamentals of apparatus and devices; simulation techniques, simulation tools

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- · Attendance time (Lecture): 60 h
- · Homework: 60 h
- · Exam Preparation: 60 h

Literature

Skriptum zur Vorlesung

2.167 Module: Project Centered Software-Lab [M-MATH-102938]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105907	Project Centered Software-Lab	4 CR	Thäter

Prerequisites

none

2.168 Module: Random Graphs [M-MATH-102951]

Responsible: Dr. Matthias Schulte

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105929	Random Graphs	6 CR	Schulte

Prerequisites

none

2.169 Module: Real-Time Systems [M-INFO-100803]

Responsible: Prof. Dr.-Ing. Thomas Längle **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scale
6Recurrence
Grade to a tenthDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-INFO-101340	Real-Time Systems	6 CR	Längle

2.170 Module: Robotics I - Introduction to Robotics [M-INFO-100893]

Responsible: Prof. Dr.-Ing. Tamim Asfour **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach winter term1 termGerman43

Mandatory			
T-INFO-108014	Robotics I - Introduction to Robotics	6 CR	Asfour

2.171 Module: Robotics III - Sensors and Perception in Robotics [M-INFO-104897]

Responsible: Prof. Dr.-Ing. Tamim Asfour **Organisation:** KIT Department of Informatics

Part of: Computer Science (Usage from 4/1/2019)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
3	Grade to a tenth	Each summer term	1 term	German/English	4	1

Mandatory			
T-INFO-109931	Robotics III - Sensors and Perception in Robotics	3 CR	Asfour

Competence Goal

Students can name the main sensor principles used in robotics.

Students can explain the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and semantic scene understanding.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

2.172 Module: Ruin Theory [M-MATH-104055]

Responsible: Prof. Dr. Vicky Fasen-Hartmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108400	Ruin Theory	4 CR	Fasen-Hartmann

Prerequisites

None

2.173 Module: Scattering Theory [M-MATH-102884]

Responsible: PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105855	Scattering Theory	8 CR	Arens, Griesmaier, Hettlich	

2.174 Module: Security [M-INFO-100834]

Responsible: Prof. Dr. Jörn Müller-Quade **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6German41

Mandatory					
T-INFO-101371	Security		6 CR	Hofheinz, Müller-	
				Quade	

2.175 Module: Selected Methods in Fluids and Kinetic Equations [M-MATH-105897]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2022)

Additional Examinations (Usage from 4/1/2022)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory			
T-MATH-111853	Selected Methods in Fluids and Kinetic Equations	3 CR	

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The main aim of this lecture is to introduce students to tools and techniques developed in recent years to analyze the evolution of fluids and kinetic equations.

The students will learn how to use these techniques and how to apply them to families of equations.

Content

In this lecture we discuss selected techniques and tools that have lead to significant progress in the analysis of fluids and kinetic eqautions.

These, for instance, include:

- energy methods and local well-posedness results (e.g. fixed point results, Osgood lemma)
- Newton iteration
- Cauchy-Kowalewskaya and ghost energy approaches

No prior knowledge of fluids or kinetic equations is required.

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Total workload: 90 hours

Attendance: 30 h

lectures and examination

Self studies: 60 h

- · follow-up and deepening of the course content,
- · literature study and internet research on the course content,
- · preparation for the module examination

Recommendation

The modules "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

2.176 Module: Selected Topics in Harmonic Analysis [M-MATH-104435]

Responsible: Prof. Dr. Dirk Hundertmark **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2018)

Additional Examinations (Usage from 10/1/2018)

Credits
3Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-109065	Selected Topics in Harmonic Analysis	3 CR	Hundertmark

Prerequisites

None

Competence Goal

The students are familiar with the concepts of singular integral operators and weighted estimates in Harmonic Analysis. They know the relations between the BMO space and the Muckenhoupt weights and also how to use dyadic analysis operators to obtain estimates for Calderon-Zygmund operators.

Content

- Calderon-Zygmund and Singular Integral operators
- BMO space and Muckenhoupt weights
- Reverse Holder Inequality and Factorisation of Ap weights
- Extrapolation Theory and weighted norm inequalities for singular integral operators

2.177 Module: Seminar [M-MATH-102730]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (mandatory)

Additional Examinations

Credits
3Grading scale
pass/failRecurrence
Each termDuration
1 termLanguage
GermanLevel
4Version
3

Elective Seminar (Election: 1 item)			
T-MATH-105686	Seminar Mathematics	3 CR	Kühnlein

2.178 Module: Seminar Advanced Topics in Parallel Programming [M-INFO-101887]

Responsible: Prof. Dr. Achim Streit

Organisation: KIT Department of Informatics

Part of: Computer Science (Usage from 4/1/2019)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion3Grade to a tenthEach summer term1 termGerman/English41

Mandatory			
T-INFO-103584	Seminar Advanced Topics in Parallel Programming	3 CR	Streit

2.179 Module: Sobolev Spaces [M-MATH-102926]

Responsible: Prof. Dr. Andreas Kirsch

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion5Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-105896	Sobolev Spaces	5 CR	Kirsch

2.180 Module: Software Engineering II [M-INFO-100833]

Responsible: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Computer Science

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory					
T-INFO-101370	Software Engineering II	6 CR	Koziolek, Reussner,		
			Tichy		

Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design

2.181 Module: Spatial Stochastics [M-MATH-102903]

Responsible: Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105867	Spatial Stochastics	8 CR	Hug, Last, Winter

Prerequisites

none

Competence Goal

The students are familiar with some basic spatial stochastic processes. They do not only understand how to deal with general properties of distributions, but also know how to describe and apply specific models (Poisson process, Gaussian random fields). They know how to work self-organised and self-reflexive.

Content

- · Point processes
- · Random measures
- · Poisson processes
- · Gibbs point processes
- · Ralm distributions
- · Spatial ergodic theorem
- Spectral Theory of random fields
- Gaussian fields

Recommendation

It is recommended to attend the following modules beforehand: Probability Theory

2.182 Module: Special Functions and Applications in Potential Theory [M-MATH-101335]

Responsible: Prof. Dr. Andreas Kirsch

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-102274	Special Functions and Applications in Potential Theory	5 CR	Kirsch

Prerequisites

None

2.183 Module: Special Topics of Numerical Linear Algebra [M-MATH-102920]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105891	Special Topics of Numerical Linear Algebra	8 CR	Hochbruck

Prerequisites

none

2.184 Module: Spectral Theory [M-MATH-101768]

Responsible: Prof. Dr. Dorothee Frey

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory						
T-MATH-103414	Spectral Theory - Exam	8 CR	Frey, Herzog,			
			Kunstmann,			
			Schmoeger,			
			Schnaubelt			

Recommendation

It is recommended to attend the module 'Functional Analysis' previously.

2.185 Module: Spectral Theory of Differential Operators [M-MATH-102880]

Responsible: Prof. Dr. Michael Plum

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105851	Spectral Theory of Differential Operators	8 CR	Plum

2.186 Module: Spin Manifolds, Alpha Invariant and Positive Scalar Curvature [M-MATH-102958]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory		
T-MATH-105932	Spin Manifolds, Alpha Invariant and Positive Scalar Curvature	5 CR Klaus, Tuschmann

2.187 Module: Splitting Methods [M-MATH-102933]

Responsible: Prof. Dr Katharina Schratz **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
5Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105903	Splitting Methods	5 CR	Hochbruck, Jahnke,	
			Schratz	

2.188 Module: Splitting Methods for Evolution Equations [M-MATH-105325]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110805	Splitting Methods for Evolution Equations	6 CR	Jahnke

Prerequisites

None

2.189 Module: Statistical Learning [M-MATH-105840]

Responsible: Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2021)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2021)

Additional Examinations (Usage from 10/1/2021)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-111726	Statistical Learning	8 CR	Trabs

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Competence Goal

The students will

- know the fundamental principles and problems of machine learning and can relate learning methods to these principles,
- · be able to explain how certain learning methods work and can apply them,
- · be able to devolop and to discuss a statistical analysis of certain learning methods,
- · be able to understand independently and to apply new learning methods.

Content

- 1 Regression
- 1.1 Empirical risk minimization
- 1.2 Lasso
- 1.3 Random forests
- 1.4 Neuronal networks
- 2 Classification
- 2.1 Bayes classifier
- 2.2 Logistic regression
- 2.3 Discriminant analysis
- 2.4 k nearest neighbour
- 2.5 Support vector machines
- 3 Unsupervised learning
- 3.1 Principal component analysis
- 3.2 Generative networks

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Total effort: 240 hours

The workload consists of:

- attendence time in lectures (including the exam): 90 hours
- self-study (including preparation and post-processing of lectures, solving of weekly excerises, preparation for the exam): 150 hours

Recommendation

The module "Probability Theory" is strongly recommended. The module "Statistics" (M-MATH-103220) is recommended.

2.190 Module: Statistical Thermodynamics [M-CIWVT-103059]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
3

Mandatory			
T-CIWVT-106098	Statistical Thermodynamics	6 CR	Enders

Prerequisites

Thermodynamics III

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-103058 - Thermodynamics III must have been passed.

Competence Goal

The students are able to understand the basics of statistical mechanics and they are able to recognize the advantage and disadvantage for application in chemical engineering.

Content

Boltzmann-method, Gibbs-method, real gases, quations of state, polymers

2.191 Module: Steins Method with Applications in Statistics [M-MATH-105579]

Responsible: Dr. rer. nat. Bruno Ebner **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2020)

Additional Examinations (Usage from 10/1/2020)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-111187	Steins Method with Applications in Statistics	4 CR	Ebner, Hug

Prerequisites

None

2.192 Module: Stochastic Control [M-MATH-102908]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Ma	andatory			
T.	-MATH-105871	Stochastic Control	4 CR	Bäuerle

Prerequisites

2.193 Module: Stochastic Differential Equations [M-MATH-102881]

Responsible: Prof. Dr. Dorothee Frey

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105852	Stochastic Differential Equations	8 CR	Frey, Schnaubelt

Content

· Brownian motion

- · Martingales and Martingal inequalities
- · Stochastic integrals and Ito's formula
- Existence and uniqueness of solutions for systems of stochastic differential equations
- · Perturbation and stability results
- Application to equations in financial mathematics, physics and engineering
- · Connection with diffusion equations and potential theory

2.194 Module: Stochastic Evolution Equations [M-MATH-102942]

Responsible: Prof. Dr. Lutz Weis

Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

CreditsGrading scaleRecurrenceDurationLevelVersion8Grade to a tenthIrregular1 term41

Mandatory			
T-MATH-105910	Stochastic Evolution Equations	8 CR	Weis

Prerequisites

2.195 Module: Stochastic Geometry [M-MATH-102865]

Responsible: Prof. Dr. Daniel Hug

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105840	Stochastic Geometry	8 CR	Hug, Last, Winter

Competence Goal

The students

- know the fundamental geometric models and characteristics in stochastic geometry,
- · are familiar with properties of Poisson processes of geometric objects,
- · know examples of applications of models of stochastic geometry,
- · know how to work self-organised and self-reflexive.

Content

- · Random Sets
- · Geometric Point Processes
- · Stationarity and Isotropy
- · Germ Grain Models
- · Boolean Models
- · Foundations of Integral Geometry
- · Geometric densities and characteristics
- Random Tessellations

Recommendation

It is recommended to attend the module 'Spatial Stochastics' beforehand.

2.196 Module: Stochastic Information Processing [M-INFO-100829]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck **Organisation:** KIT Department of Informatics

Part of: Computer Science (Usage from 10/1/2019)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-INFO-101366	Stochastic Information Processing	6 CR	Hanebeck

2.197 Module: Structural Graph Theory [M-MATH-105463]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2020)

Additional Examinations (Usage from 10/1/2020)

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
EnglishLevel
4Version
1

Mandatory			
T-MATH-111004	Structural Graph Theory	4 CR	Aksenovich

Prerequisites

None

Competence Goal

After successful completion of the course, the participants should be able to present and analyse main results in Structural Graph Theory. They should be able to establish connections between graph minors and other graph parameters, give examples, and apply fundamental results to related problems.

Content

The purpose of this course is to provide an introduction to some of the central results and methods of structural graph theory. Our main point of emphasis will be on graph minor theory and the concepts devised in Robertson and Seymour's intricate proof of the Graph Minor Theorem: in every infinite set of graphs there are two graphs such that one is a minor of the other.

Our second point of emphasis (time permitting) will be on Hadwiger's conjecture: that every graph with chromatic number at least r has a K_r minor. We shall survey what is known about this conjecture, including some very recent progress.

Recommendation

A solid background in the fundamentals of graph theory.

2.198 Module: Technical Optics [M-ETIT-100538]

Responsible: Prof. Dr. Cornelius Neumann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Electrical Engineering / Information Technology (Electrical Engineering / Information Technology)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion5Grade to a tenthEach winter term1 termGerman41

Mandatory			
T-ETIT-100804	Technical Optics	5 CR	Neumann

Prerequisites

2.199 Module: Technomathematical Seminar [M-MATH-102863]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics
Part of: Experimental Physics (mandatory)

Wildcard Technical Field

Electrical Engineering / Information Technology (mandatory)

Chemical and Process Engineering (mandatory)

Credits
3Grading scale
pass/failRecurrence
Each termDuration
1 termLevel
4Version
1

Mandatory				
T-MATH-105884	Technomathematical Seminar	3 CR	Jahnke, Kühnlein	

2.200 Module: Telematics [M-INFO-100801]

Responsible: Prof. Dr. Martina Zitterbart **Organisation:** KIT Department of Informatics

Part of: Computer Science

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion6Grade to a tenthEach winter term1 termGerman41

Mandatory			
T-INFO-101338	Telematics	6 CR	Zitterbart

2.201 Module: The Riemann Zeta Function [M-MATH-102960]

Responsible: Dr. Fabian Januszewski

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-105934	The Riemann Zeta Function	4 CR	Januszewski

2.202 Module: Theoretical Nanooptics [M-PHYS-102295]

Responsible: Prof. Dr. Carsten Rockstuhl **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Irregular	1 term	English	4	1

Mandatory			
T-PHYS-104587	Theoretical Nanooptics	6 CR	Rockstuhl

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Content

- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolates and oblates.
- · Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to
 optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- · Transformation optics
- · Analytical modeling and phenomenological tools to describe nanooptical systems

Workload

180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examination and the excercises (135)

Recommendation

Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.

Literature

- L. Novotny and B. Hecht, Principle of Nano-Optics, Cambridge
- · S. A. Maier, Plasmonics, Springer
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals: Molding the Flow of Light, University Press

2.203 Module: Theoretical Optics [M-PHYS-102277]

Responsible: Prof. Dr. Carsten Rockstuhl **Organisation:** KIT Department of Physics

Part of: Experimental Physics (Experimental Physics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version	
6	Grade to a tenth	Each summer term	1 term	English	4	1	

Mandatory			
T-PHYS-104578	Theoretical Optics	6 CR	Rockstuhl

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

2.204 Module: Theory of Turbulent Flows without and with Superimposed Combustion [M-CIWVT-103074]

Responsible: Prof. Dr.-Ing. Nikolaos Zarzalis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
4	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory			
T-CIWVT-106108	Theory of Turbulent Flows without and with Superimposed Combustion	4 CR	

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

- The students understand the similarity between momentum, heat and mass transfer.
- The students are able, based on the analogy between laminar and turbulent transport, to explain and quantify the "turbulent" diffusion.
- The students are able to evaluate measured distribution of turbulent parameters.
- Based on the turbulence and heat release interaction the students are able to evaluate experimental results of turbulent flames.

Content

Turbulence characterization; Derivation of the balance equations for mass, momentum and energy; Turbulent momentum, heat and mass transport; Derivation of the balance equation for the kinetic energy of the mean and fluctuating flow field; Derivation of the balance equation for enstrophy of the mean and fluctuating flow field; The turbulent energy cascade process; The interaction between turbulence and heat release by turbulent premixed flames.

Module grade calculation

The grade of the oral examination is the module grade.

Annotation

In the future, the module will no longer be offered in the summer semester but in the winter semester. Next time the course will take place in winter semester 22/23.

Workload

- · Attendance time (Lecture): 30 h
- · Homework: 15 h
- Exam Preparation: 75 h

Literature

Tennekes and Lumley, A first course in turbulence; N. Peters, Turbulent combustion; T. Poinsot, D. Veynante, Theoretical and numerical combustion

2.205 Module: Thermodynamics III [M-CIWVT-103058]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
6Grading scale
Grade to a tenthRecurrence
Each winter termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106033	Thermodynamics III	6 CR	Enders

Competence Certificate

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

Students are familiar with the basic principles for the description of complex, multicomponent mixtures and thermodynamic equilibria including equilibria with chemical reactions. They are able to select suitable models and to calculate the properties of multicomponent real systems.

Content

Phase- and reaction equilibria of real systems, equations of state for real mixtures, models for activity coefficients, polymer solutions, protein solutions, elektrolyte solutions.

Workload

- · Attendance time (Lecture): 60 h
- · Homework: 90 h
- Exam Preparation: 30 h

Literature

- 1. Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 2, 15. Auflage, Springer Verlag, 2010.
- 2. Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2008.
- 3. Gmehling, J, Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulations, Wiley-VCG Verlag, 2012

2.206 Module: Thermodynamics of Interfaces [M-CIWVT-103063]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering)

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-CIWVT-106100	Thermodynamics of Interfaces	4 CR	Enders

Prerequisites

None

Competence Goal

The students to be familiar with the peculiarities on fluid-fluid and fluid-solid interfacial properties. They are able to calculate interfacial properties (interfacial tension, density - and concentration profils, adsorption isotherms) using macroscopic and local-dependent methods.

Content

Gibbs-method, density functional theory, experimental methods for characterization of interfaces, adsorption

2.207 Module: Time Series Analysis [M-MATH-102911]

Responsible: PD Dr. Bernhard Klar

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
2

Mandatory					
T-MATH-105874	Time Series Analysis		Ebner, Fasen- Hartmann, Gneiting, Klar, Trabs		

Prerequisites

None

2.208 Module: Topological Data Analysis [M-MATH-105487]

Responsible: Prof. Dr. Tobias Hartnick

Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2020)

Additional Examinations (Usage from 10/1/2020)

CreditsGrading scale
6Recurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-111031	Topological Data Analysis	6 CR	Hartnick, Sauer

2.209 Module: Topological Groups [M-MATH-105323]

Responsible: Dr. rer. nat. Rafael Dahmen

Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2020)

Additional Examinations (Usage from 4/1/2020)

Credits
5Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110802	Topological Groups	5 CR	Dahmen, Tuschmann

Prerequisites

None

2.210 Module: Traveling Waves [M-MATH-102927]

Responsible: Prof. Dr. Jens Rottmann-Matthes
Organisation: KIT Department of Mathematics
Part of: Applied Mathematics (Analysis)

Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-105897	Traveling Waves	6 CR	Rottmann-Matthes

2.211 Module: Uncertainty Quantification [M-MATH-104054]

Responsible: Prof. Dr. Martin Frank

Organisation: KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics) (Usage from 4/1/2018)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 4/1/2018)

Additional Examinations (Usage from 4/1/2018)

Credits
4Grading scale
Grade to a tenthRecurrence
Each summer termDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-108399	Uncertainty Quantification	4 CR	Frank

Prerequisites

None

Competence Goal

After successfully taking part in the module's classes and exams, students have gained knowledge and abilities as described in the "Inhalt" section.

Specifically, students know several parametrization methods for uncertainties. Furthermore, students are able to describe the basics of several solution methods (stochastic collocation, stochastic Galerkin, Monte-Carlo). Students can explain the so-called curse of dimensionality.

Students are able to apply numerical methods to solve engineering problems formulated as algebraic or differential equations with uncertainties. They can name the advantages and disadvantages of each method. Students can judge whether specific methods are applicable to the specific problem and discuss their results with specialists and colleagues. Finally, students are able to implement the above methods in computer codes.

Content

In this class, we learn to propagate uncertain input parameters through differential equation models, a field called Uncertainty Quantification (UQ). Given uncertain input (parameter values, initial or boundary conditions), how uncertain is the output? The first part of the course ("how to do it") gives an overview on techniques that are used. Among these are:

- · Sensitivity analysis
- Monte-Carlo methods
- Spectral expansions
- Stochastic Galerkin method
- · Collocation methods, sparse grids

The second part of the course ("why to do it like this") deals with the theoretical foundations of these methods. The so-called "curse of dimensionality" leads us to questions from approximation theory. We look back at the very standard numerical algorithms of interpolation and quadrature, and ask how they perform in many dimensions.

Recommendation

Numerical methods for differential equations

2.212 Module: Unit Operations and Process Chains for Food of Animal Origin [M-CIWVT-104421]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering) (Usage from 10/1/2018)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
5	Grade to a tenth	Each winter term	1 term	German	4	3

Mandatory			
T-CIWVT-108996	Unit Operations and Process Chains for Food of Animal Origin	5 CR	Karbstein

Competence Certificate

Learning control is an oral examination with a duration about of 15 minutes.

Prerequisites

None

Competence Goal

Students understand and are able to explain conventional methods for producing foods, even complex ones, from animals. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content

<u>Lecture:</u> Milk and dairy products, meat and meat products, sausages, functional foods: Process chains and unit operations
Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Module grade calculation

Grade of the module is the grade of oral examination.

Workload

Lectures: 30 h Homework: 60 h Exam preparation: 30 h

Literature

- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- H.G. Kessler: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, Verlag A. Kessler, 1996, ISBN 3-9802378-4-2
- H.G. Kessler: Food and Bio Process Engineering Dairy Technology, Publishing House A. Kessler, 2002, ISBN 3-9802378-5-0
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209

2.213 Module: Unit Operations and Process Chains for Food of Plant Origin [M-CIWVT-104420]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: Chemical and Process Engineering (Chemical and Process Engineering) (Usage from 10/1/2018)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory			
T-CIWVT-108995	Unit Operations and Process Chains for Food of Plant Origin	6 CR	Karbstein

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students understand and are able to explain conventional methods for producing foods, even complex ones, from plants. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content

Food oils and fats, margarines and spreadable fats, cereals, fruits and vegetables, sugar, chocolate, coffee, bear, wine, spirits: Process chains and unit operations: Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Workload

- · Attendance time (Lecture): 45 h
- · Homework: 90 h
- · Exam Preparation: 45 h

Literature

- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- H.G. Kessler: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, Verlag A. Kessler, 1996, ISBN 3-9802378-4-2
- H.G. Kessler: Food and Bio Process Engineering Dairy Technology, Publishing House A. Kessler, 2002, ISBN 3-9802378-5-0
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209
- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)

2.214 Module: Variational Methods [M-MATH-105093]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2019)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2019)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2019)

Additional Examinations (Usage from 10/1/2019)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

Mandatory			
T-MATH-110302	Variational Methods	8 CR	Reichel

2.215 Module: Wave Propagation in Periodic Waveguides [M-MATH-105462]

Responsible: Prof. Dr. Roland Griesmaier **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Analysis) (Usage from 10/1/2020)

Applied Mathematics (Elective Field Applied Mathematics) (Usage from 10/1/2020)

Mathematical Specialization (Elective Field Mathematical Specialization) (Usage from 10/1/2020)

Additional Examinations (Usage from 10/1/2020)

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory			
T-MATH-111002	Wave Propagation in Periodic Waveguides	8 CR	Griesmaier

Prerequisites

None

2.216 Module: Wavelets [M-MATH-102895]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: Applied Mathematics (Elective Field Applied Mathematics)

Mathematical Specialization (Elective Field Mathematical Specialization)

Additional Examinations

Credits
8Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLevel
4Version
1

ı	Mandatory			
	T-MATH-105838	Wavelets	8 CR	Rieder

Prerequisites

3 Courses

3.1 Course: Adaptive Finite Element Methods [T-MATH-105898]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: M-MATH-102900 - Adaptive Finite Elemente Methods

Туре	Credits	Grading scale	Version
Oral examination	6	Grade to a third	1

Events					
ST 2022	0159610	Adaptive Finite Elemente Methoden	3 SWS	Lecture	Verfürth
ST 2022		Übung zu 0159610 (adaptive Finite Elemente Methoden)	1 SWS	Practice	Verfürth

Prerequisites

3.2 Course: Advanced Inverse Problems: Nonlinearity and Banach Spaces [T-MATH-105927]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102955 - Advanced Inverse Problems: Nonlinearity and Banach Spaces

Type Credits Grading scale Version
Oral examination 5 Grade to a third 1

Prerequisites

3.3 Course: Algebra [T-MATH-102253]

Responsible: Prof. Dr. Frank Herrlich

PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: M-MATH-101315 - Algebra

Type Oral examination Credits Grading scale Grade to a third 1

Events					
WT 21/22	0102200	Algebra	4 SWS	Lecture / 🗣	Herrlich
WT 21/22	0102210	Übungen zu 0102200 (Algebra)	2 SWS	Practice / 🗣	Herrlich, Kohlmüller
Exams					
WT 21/22	7700089	Algebra			Herrlich

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Version

3.4 Course: Algebraic Geometry [T-MATH-103340]

Responsible: Prof. Dr. Frank Herrlich

PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: M-MATH-101724 - Algebraic Geometry

Type Credits Grading scale
Oral examination 8 Grade to a third

Events					
ST 2022	0152000	Algebraische Geometrie	4 SWS	Lecture	Herrlich
ST 2022	0152100	Übungen zu 0152000 (Algebraische Geometrie)	2 SWS	Practice	Herrlich
Exams					
ST 2022	7700082	Algebraic Geometry			Herrlich

3.5 Course: Algebraic Number Theory [T-MATH-103346]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: M-MATH-101725 - Algebraic Number Theory

Type Credits Grading scale Oral examination 8 Grade to a third 1

3.6 Course: Algebraic Topology [T-MATH-105915]

Responsible: Dr. Holger Kammeyer

Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: M-MATH-102948 - Algebraic Topology

Type Written examination Credits 8 **Grading scale** Grade to a third

Recurrence Irregular **Version**

Prerequisites

3.7 Course: Algebraic Topology II [T-MATH-105926]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: M-MATH-102953 - Algebraic Topology II

Type Credits Grading scale Recurrence Written examination 8 Grade to a third Irregular 1

Prerequisites

3.8 Course: An Introduction to Periodic Elliptic Operators [T-MATH-110306]

Responsible: Prof. Dr. Roland Griesmaier **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105096 - An Introduction to Periodic Elliptic Operators

Type Oral examination 2 Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.9 Course: Analytical and Numerical Homogenization [T-MATH-111272]

Responsible: Prof. Dr. Marlis Hochbruck
Organisation: KIT Department of Mathematics

Part of: M-MATH-105636 - Analytical and Numerical Homogenization

Type Oral examination

Credits Grading scale Grade to a third

Grade to a third

Recurrence Irregular

1

Prerequisites

3.10 Course: Applications of Topological Data Analysis [T-MATH-111290]

Responsible: Dr. Andreas Ott

Organisation: KIT Department of Mathematics

Part of: M-MATH-105651 - Applications of Topological Data Analysis

Type Oral examination Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.11 Course: Aspects of Geometric Analysis [T-MATH-106461]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics

Part of: M-MATH-103251 - Aspects of Geometric Analysis

Type Credits Grading scale Grade to a third Recurrence Irregular 1

Events					
ST 2022	0176600	AG Geometrische Analysis	2 SWS	Seminar / 🗣	Lamm

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

Keine

3.12 Course: Aspects of Time Integration [T-MATH-105904]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke Prof. Dr Katharina Schratz

Organisation: KIT Department of Mathematics

Part of: M-MATH-102934 - Aspects of Time Integration

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	2

3.13 Course: Astroparticle Physics I [T-PHYS-102432]

Responsible: Prof. Dr. Guido Drexlin

Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-102075 - Astroparticle Physics I

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
WT 21/22	4022011	Astroteilchenphysik I: Dunkle Materie	3 SWS	Lecture / 🗣	Drexlin, Schlösser
WT 21/22	4022012	Übungen zur Astroteilchenphysik I: Dunkle Materie	1 SWS	Practice / 🗣	Drexlin, Schlösser

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

Prerequisites

3.14 Course: Banach Algebras [T-MATH-105886]

Responsible: PD Dr. Gerd Herzog

Dr. Christoph Schmoeger

Organisation: KIT Department of Mathematics

Part of: M-MATH-102913 - Banach Algebras

Type Oral examination

Credits 3

Grading scale Grade to a third

Version 1

Prerequisites

3.15 Course: Basics of Nanotechnology I [T-PHYS-102529]

Responsible: apl. Prof. Dr. Gernot Goll **Organisation:** KIT Department of Physics

Part of: M-PHYS-102097 - Basics of Nanotechnology I

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
WT 21/22	4021041	Grundlagen der Nanotechnologie I	2 SWS	Lecture / 🗣	Goll

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.16 Course: Basics of Nanotechnology II [T-PHYS-102531]

Responsible: apl. Prof. Dr. Gernot Goll **Organisation:** KIT Department of Physics

Part of: M-PHYS-102100 - Basics of Nanotechnology II

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
ST 2022	4021151	Grundlagen der Nanotechnologie II	2 SWS	Lecture / 🗣	Goll

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

Prerequisites

3.17 Course: Batteries and Fuel Cells [T-ETIT-100983]

Responsible: Prof. Dr.-Ing. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100532 - Batteries and Fuel Cells

TypeCreditsGrading scaleRecurrenceVersionWritten examination5Grade to a thirdEach winter term2

Events					
WT 21/22	2304207	Batteries and Fuel Cells	2 SWS	Lecture / 😘	Krewer
WT 21/22	2304213	Batteries and Fuel Cells (Exercise to 2304207)	1 SWS	Practice / 😘	Krewer, Witt, Mitarbeiter*innen
Exams					
WT 21/22	22 7304207 Batteries and Fuel Cells			Krewer	
ST 2022	7300006	Batteries and Fuel Cells	Batteries and Fuel Cells		

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Batteries and Fuel Cells

2304207, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

The lecture provides a practical insight into the current application areas and research topics of fuel cells and batteries. It deals with the design and functionality of electrochemical energy conversion and storage devices and provides knowledge about materials, cell designs, measurement methods, data analysis and modelling. The lecture and most slides are in German.

3.18 Course: Bifurcation Theory [T-MATH-106487]

Responsible: Dr. Rainer Mandel

Organisation: KIT Department of Mathematics
Part of: M-MATH-103259 - Bifurcation Theory

TypeCreditsGrading scaleRecurrenceVersionOral examination5Grade to a thirdIrregular1

Prerequisites

None

3.19 Course: Biopharmaceutical Purification Processes [T-CIWVT-106029]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103065 - Biopharmaceutical Purification Processes

Туре	Credits	Grading scale	Version
Written examination	6	Grade to a third	1

Events					
WT 21/22	22705	Biopharmaceutical Purification Processes	3 SWS	Lecture / 🗣	Hubbuch, Franzreb
WT 21/22	22706	Exercises on Biopharmaceutical Purification Processes (22705)	1 SWS	Practice /	Franzreb, Hubbuch
Exams	•	•		•	•
WT 21/22	7223011	Biopharmaceutical Purification Pr	Biopharmaceutical Purification Processes		
ST 2022	7223011	Biopharmaceutical Purification Pr	Biopharmaceutical Purification Processes		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO).

3.20 Course: Bott Periodicity [T-MATH-108905]

Responsible: Prof. Dr. Wilderich Tuschmann
Organisation: KIT Department of Mathematics
Part of: M-MATH-104349 - Bott Periodicity

TypeCreditsGrading scaleRecurrenceVersionOral examination5Grade to a thirdIrregular1

Prerequisites

3.21 Course: Boundary and Eigenvalue Problems [T-MATH-105833]

Responsible: Prof. Dr. Dorothee Frey

Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102871 - Boundary and Eigenvalue Problems

Type Oral examination Credits Grading scale Grade to a third 1

Events					
ST 2022	0157500	Boundary and Eigenvalue Problems	4 SWS	Lecture	Lamm
ST 2022	0157510	Tutorial for 0157500 Boundary and Eigenvalue Problems	2 SWS	Practice	Lamm
Exams					
WT 21/22	7700086	Boundary and Eigenvalue Problems	Boundary and Eigenvalue Problems		

3.22 Course: Boundary Element Methods [T-MATH-109851]

Responsible: PD Dr. Tilo Arens

Organisation: KIT Department of Mathematics

Part of: M-MATH-103540 - Boundary Element Methods

TypeCreditsGrading scaleRecurrenceVersionOral examination8Grade to a thirdIrregular1

Prerequisites

3.23 Course: Boundary Value Problems for Nonlinear Differential Equations [T-MATH-105847]

Responsible: Prof. Dr. Michael Plum

Prof. Dr. Wolfgang Reichel

Organisation: KIT Department of Mathematics

Part of: M-MATH-102876 - Boundary value problems for nonlinear differential equations

Type Oral examination Credits 8 **Grading scale**Grade to a third

Version

Exams			
WT 21/22	7700049	Boundary Value Problems for Nonlinear Differential Equations	Mandel, Plum

3.24 Course: Brownian Motion [T-MATH-105868]

Responsible: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics
Part of: M-MATH-102904 - Brownian Motion

Type Oral examination

Credits 4 **Grading scale**Grade to a third

Version 1

Prerequisites

3.25 Course: Classical Methods for Partial Differential Equations [T-MATH-105832]

Responsible: Prof. Dr. Dorothee Frey

Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102870 - Classical Methods for Partial Differential Equations

Type Credits Grading scale Written examination 8 Grade to a third 1

Events					
WT 21/22	0105300	Classical Methods for Partial Differential Equations	4 SWS	Lecture	Lamm
WT 21/22	0105310	Tutorial for 0105300 (Classical Methods for Partial Differential Equations)	Methods for Partial Differential		Lamm
Exams		•	-	•	
WT 21/22	7700045	Classical Methods for Partial Diffe	Classical Methods for Partial Differential Equations		
ST 2022	7700052	Classical Methods for Partial Diffe	Classical Methods for Partial Differential Equations		

3.26 Course: Cognitive Systems [T-INFO-101356]

Responsible: Prof. Dr. Gerhard Neumann

Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: M-INFO-100819 - Cognitive Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	24572	Kognitive Systeme	4 SWS	Lecture / Practice (/ 🗣	Waibel, Neumann	
Exams						
WT 21/22	7500158	Cognitive Systems Waibel/Neuman	Cognitive Systems Waibel/Neumann			
ST 2022	7500157	Cognitive Systems			Waibel, Neumann	

Legend: █ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.27 Course: Combinatorics [T-MATH-105916]

Responsible: Prof. Dr. Maria Aksenovich
Organisation: KIT Department of Mathematics
Part of: M-MATH-102950 - Combinatorics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	8	Grade to a third	see Annotations	2

Events					
ST 2022	0150300	Combinatorics	4 SWS	Lecture	Aksenovich, Weber, Winter
ST 2022	0150310	Tutorial for 0150300 (Combinatorics)	2 SWS	Practice	Aksenovich

Prerequisites

none

Annotation

The course is offered every second year.

3.28 Course: Combustion Technology [T-CIWVT-106104]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103069 - Combustion Technology

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each winter term	1

Events					
WT 21/22	22501	Fundamentals of Combustion Technology	2 SWS	Lecture / 🛱	Trimis
WT 21/22	22502	Exercises for 22501 Fundamentals of Combustion Technology			
Exams					
WT 21/22	7231201	Combustion Technology	Combustion Technology		
ST 2022	7231201	Combustion Technology			Trimis

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

None

3.29 Course: Commutative Algebra [T-MATH-108398]

Responsible: Prof. Dr. Frank Herrlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-104053 - Commutative Algebra

TypeCreditsGrading scaleRecurrenceVersionOral examination8Grade to a thirdIrregular1

Prerequisites

3.30 Course: Comparison Geometry [T-MATH-105917]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102940 - Comparison Geometry

Type Credits Grading scale Oral examination 5 Grade to a third Recurrence Irregular 1

Prerequisites

Keine

3.31 Course: Comparison of Numerical Integrators for Nonlinear Dispersive Equations [T-MATH-109040]

Responsible: Prof. Dr Katharina Schratz **Organisation:** KIT Department of Mathematics

Part of: M-MATH-104426 - Comparison of Numerical Integrators for Nonlinear Dispersive Equations

TypeCreditsGrading scaleRecurrenceVersionOral examination4Grade to a thirdIrregular1

Prerequisites

3.32 Course: Complex Analysis [T-MATH-105849]

Responsible: PD Dr. Gerd Herzog

Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102878 - Complex Analysis

Type Oral examination 8 Credits Grading scale Grade to a third 1

3.33 Course: Compressive Sensing [T-MATH-105894]

Responsible: Prof. Dr. Andreas Rieder

Organisation: KIT Department of Mathematics

Part of: M-MATH-102935 - Compressive Sensing

Type
Oral examinationCredits
5Grading scale
Grade to a thirdRecurrence
IrregularVersion

3.34 Course: Computational Fluid Dynamics [T-CIWVT-106035]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103072 - Computational Fluid Dynamics

Type Credits Grading scale Grade to a third Recurrence Each term 1

Events					
WT 21/22	22958	Computational Fluid Dynamics	2 SWS	Lecture / Practice	Nirschl, und Mitarbeiter
WT 21/22	22959	Übungen zu 22958 Numerische Strömungssimulation (in kleinen Gruppen)	1 SWS	Practice / 🗣	Nirschl, und Mitarbeiter
Exams					
WT 21/22	7291932	Computational Fluid Dynamics			Nirschl
ST 2022	7291932	Computational Fluid Dynamics	Nirschl		

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

3.35 Course: Computer Architecture [T-INFO-101355]

Responsible: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: M-INFO-100818 - Computer Architecture

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	2424570	Computer structures	3 SWS	Lecture / 🗣	Bauer, Karl	
Exams						
WT 21/22	7500034	Computer Architecture Karl			Karl	
ST 2022	7500190	Computer Architecture			Karl	

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

3.36 Course: Computer Graphics [T-INFO-101393]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher **Organisation:** KIT Department of Informatics

Part of: M-INFO-100856 - Computer Graphics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events						
WT 21/22	24081	Computergrafik	4 SWS	Lecture / 🗣	Dachsbacher	
Exams						
WT 21/22	7500430	Computer Graphics			Dachsbacher	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.37 Course: Computer Graphics Pass [T-INFO-104313]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-100856 - Computer Graphics

Type Credits Grading scale pass/fail Recurrence Each winter term 1

Events						
WT 21/22	Jung, Dolp					
Exams						
WT 21/22	7500508	Computer Graphics		Dachsbacher		

3.38 Course: Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems [T-MATH-105854]

Responsible: Prof. Dr. Michael Plum

Organisation: KIT Department of Mathematics

Part of: M-MATH-102883 - Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems

Type Oral examination 8 Credits Grading scale Grade to a third 1

Organisation:

3.39 Course: Condensed Matter Theory I, Fundamentals [T-PHYS-102559]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Prof. Dr. Alexander Shnirman KIT Department of Physics

Part of: M-PHYS-102054 - Condensed Matter Theory I, Fundamentals

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
WT 21/22	4024011	Theorie der Kondensierten Materie I	4 SWS	Lecture / 🗣	Gornyi
WT 21/22	4024012	Übungen zu Theorie der Kondensierten Materie I	2 SWS	Practice / 🖥	Gornyi, Narozhnyy, Snizhko

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.40 Course: Condensed Matter Theory I, Fundamentals and Advanced Topics [T-PHYS-102558]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics

Туре	Credits	Grading scale	Version
Oral examination	12	Grade to a third	1

Events					
WT 21/22	4024011	Theorie der Kondensierten Materie I	4 SWS	Lecture / 🗣	Gornyi
WT 21/22	4024012	Übungen zu Theorie der Kondensierten Materie I	2 SWS	Practice / 🖥	Gornyi, Narozhnyy, Snizhko

Legend: █ Online, ቆ Blended (On-Site/Online), ♠ On-Site, x Cancelled

Prerequisites

3.41 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals [T-PHYS-104591]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Mathematics

KIT Department of Physics

Part of: M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2022 4024111 Condensed Matter Theory II: 4 SWS Lecture / Sws Garst					Garst
ST 2022	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣	Garst, Azhar

Legend: █ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.42 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics [T-PHYS-102560]

Responsible: Prof. Dr. Markus Garst

Prof. Dr. Alexander Mirlin Dr. Boris Narozhnyy Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics

Туре	Credits	Grading scale	Version
Oral examination	12	Grade to a third	1

Events					
ST 2022		Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🗣	Garst
ST 2022	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣	Garst, Azhar

3.43 Course: Continuous Time Finance [T-MATH-105930]

Responsible: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102860 - Continuous Time Finance

Type Oral examination Credits Grading scale Grade to a third 1

Events					
ST 2022	0159400	Finanzmathematik in stetiger Zeit	4 SWS	Lecture	Bäuerle
ST 2022	0159500	Übungen zu 0159400 (Finanzmathematik in Stetiger Zeit)	2 SWS	Practice	Bäuerle

3.44 Course: Control Theory [T-MATH-105909]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: M-MATH-102941 - Control Theory

Type Oral examination

Credits 6

Grading scale Grade to a third

Version 1

Prerequisites

3.45 Course: Convex Geometry [T-MATH-105831]

Responsible: Prof. Dr. Daniel Hug

Organisation: KIT Department of Mathematics
Part of: M-MATH-102864 - Convex Geometry

Type Credits Grading scale
Oral examination 8 Grade to a third

Version

3.46 Course: Deep Learning and Neural Networks [T-INFO-109124]

Responsible: Prof. Dr. Alexander Waibel **Organisation:** KIT Department of Informatics

Part of: M-INFO-104460 - Deep Learning and Neural Networks

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	2400024	Deep Learning and Neural Networks	4 SWS	Lecture / 🗣	Waibel	
Exams						
WT 21/22	7500259	Deep Learning and Neural Networks			Waibel	
ST 2022	7500044	Deep Learning and Neural Networks			Waibel	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101383 - Neural Networks must not have been started.

3.47 Course: Differential Geometry [T-MATH-102275]

Responsible: Dr. Sebastian Grensing

Prof. Dr. Enrico Leuzinger Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: M-MATH-101317 - Differential Geometry

Type Credits Grading scale Grade to a third Each summer term 1

Events					
ST 2022	0100300	Differential Geometry	4 SWS	Lecture	Tuschmann
ST 2022	0100310	Tutorial for 0100300 (Differential Geometry)	2 SWS	Practice	Tuschmann, Kupper

3.48 Course: Discrete Dynamical Systems [T-MATH-110952]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics

Part of: M-MATH-105432 - Discrete Dynamical Systems

Type Oral examination Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.49 Course: Discrete Time Finance [T-MATH-105839]

Responsible: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102919 - Discrete Time Finance

Туре	Credits	Grading scale	Version
Written examination	8	Grade to a third	1

Events							
WT 21/22	0108400	Finanzmathematik in diskreter Zeit	4 SWS	Lecture / 🗣	Bäuerle		
WT 21/22	0108500	Übungen zu 0108400	2 SWS	Practice / 🗣	Bäuerle		
Exams	Exams						
WT 21/22	0100025	Discrete Time Finance			Bäuerle		
WT 21/22	6700054	Discrete Time Finance			Bäuerle		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.50 Course: Dispersive Equations [T-MATH-109001]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics

Part of: M-MATH-104425 - Dispersive Equations

Type Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.51 Course: Dynamical Systems [T-MATH-106114]

Responsible: Prof. Dr. Jens Rottmann-Matthes
Organisation: KIT Department of Mathematics
Part of: M-MATH-103080 - Dynamical Systems

TypeCreditsGrading scaleRecurrenceVersionOral examination8Grade to a thirdIrregular1

Prerequisites

3.52 Course: Electromagnetics and Numerical Calculation of Fields [T-ETIT-100640]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100386 - Electromagnetics and Numerical Calculation of Fields

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4	Grade to a third	Each winter term	1

Events						
WT 21/22	2308263	Electromagnetics and Numerical Calculation of Fields	2 SWS	Lecture / 😘	Pauli	
WT 21/22	2308265	Exercise for 2308263 Electromagnetics and Numerical Calculation of Fields	1 SWS	Practice / 🕃	Pauli, Giroto de Oliveira	
Exams						
WT 21/22	7308263	Electromagnetics and Numerical C	Electromagnetics and Numerical Calculation of Fields			

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Recommendation

Fundamentals of electromagnetic field theory.

3.53 Course: Electronic Properties of Solids I, with Exercises [T-PHYS-102577]

Responsible: Prof. Dr. Matthieu Le Tacon

Prof. Dr. Wolfgang Wernsdorfer

Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: M-PHYS-102089 - Electronic Properties of Solids I, with Exercises

Type Oral examination Credits Grading scale Grade to a third 1

Events					
WT 21/22	4021011	Electronic Properties of Solids I	4 SWS	Lecture / 🗣	Le Tacon, Willke
WT 21/22		Übungen zu Elektronische Eigenschaften von Festkörpern I	1 SWS	Practice	Le Tacon, Willke

Prerequisites

3.54 Course: Electronic Properties of Solids I, without Exercises [T-PHYS-102578]

Responsible: Prof. Dr. Matthieu Le Tacon

Prof. Dr. Wolfgang Wernsdorfer

Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: M-PHYS-102090 - Electronic Properties of Solids I, without Exercises

Type Credits Grading scale Oral examination 8 Grade to a third 1

Events					
WT 21/22	4021011	Electronic Properties of Solids I	4 SWS	Lecture / 🗣	Le Tacon, Willke

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♣ On-Site, x Cancelled

Prerequisites

3.55 Course: Electronic Properties of Solids II, with Exercises [T-PHYS-104422]

Responsible: Prof. Dr. Matthieu Le Tacon

Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-102108 - Electronic Properties of Solids II, with Exercises

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2022	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🗣	Ustinov
ST 2022	4021112	Übungen zu Elektronische Eigenschaften von Festkörpern II	2 SWS	Practice / 🗣	Ustinov, Fischer

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

Organisation:

3.56 Course: Electronic Properties of Solids II, without Exercises [T-PHYS-104423]

Responsible: Prof. Dr. Matthieu Le Tacon

Dr. Johannes Rotzinger Prof. Dr. Alexey Ustinov Prof. Dr. Wolfgang Wernsdorfer KIT Department of Physics

Part of: M-PHYS-102109 - Electronic Properties of Solids II, without Exercises

Type Credits Grading scale Oral examination 4 Grade to a third 1

Events					
ST 2022	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🗣	Ustinov

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.57 Course: Evolution Equations [T-MATH-105844]

Responsible: Prof. Dr. Dorothee Frey

apl. Prof. Dr. Peer Kunstmann Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102872 - Evolution Equations

Type Oral examination	Credits 8	Grading scale Grade to a third	Version 1
---------------------------------	---------------------	---------------------------------------	------------------

Events					
ST 2022	0156800	Evolutionsgleichungen	4 SWS	Lecture	Kunstmann
ST 2022	0156810	Übungen zu 0156800 (Evolutionsgleichungen)	2 SWS	Practice	Kunstmann

3.58 Course: Exponential Integrators [T-MATH-107475]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103700 - Exponential Integrators

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Irregular	1

Events					
WT 21/22	0108600	Exponential Integrators	3 SWS	Lecture / 🗣	Dörich, Leibold
WT 21/22	0108610	Tutorial for 0108600	1 SWS	Practice / 🗣	Dörich, Leibold
Exams					
WT 21/22	7700092	Exponential Integrators			Leibold, Dörich

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

Prerequisites

3.59 Course: Extremal Graph Theory [T-MATH-105931]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102957 - Extremal Graph Theory

TypeCreditsGrading scaleRecurrenceVersionOral examination8Grade to a thirdIrregular1

3.60 Course: Extreme Value Theory [T-MATH-105908]

Responsible: Prof. Dr. Vicky Fasen-Hartmann **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102939 - Extreme Value Theory

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	2

Events						
ST 2022	0155600	Extremwerttheorie	2 SWS	Lecture	Fasen-Hartmann	
ST 2022	0155610	Übungen zu 0155600	1 SWS	Practice	Fasen-Hartmann	
Exams	Exams					
ST 2022	7700080	Extreme Value Theory		_	Fasen-Hartmann	

3.61 Course: Finite Element Methods [T-MATH-105857]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102891 - Finite Element Methods

Type Oral examination Credits Grading scale Grade to a third 1

Events					
WT 21/22	0110300	Finite Element Methods	4 SWS	Lecture / 🗯	Dörfler, Sukhova
WT 21/22	0110310	Tutorial for 0110300 (Finite Element Methods)	2 SWS	Practice / 🗯	Dörfler, Sukhova
Exams					
WT 21/22	7700082	Finite Element Methods			Dörfler

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, $\mathbf x$ Cancelled

3.62 Course: Finite Group Schemes [T-MATH-106486]

Responsible: Dr. Fabian Januszewski

Organisation: KIT Department of Mathematics

Part of: M-MATH-103258 - Finite Group Schemes

Type Oral examination

Credits Grading scale Grade to a third

Grade to a third

Credits Once 1

3.63 Course: Forecasting: Theory and Practice [T-MATH-105928]

Responsible: Prof. Dr. Tilmann Gneiting **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102956 - Forecasting: Theory and Practice

Type Oral examination Credits Grading scale Grade to a third 2

3.64 Course: Formal Systems [T-INFO-101336]

Responsible: Prof. Dr. Bernhard Beckert

Organisation: KIT Department of Informatics

Part of: M-INFO-100799 - Formal Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events						
WT 21/22	24086	Formale Systeme	4 SWS	Lecture / Practice (Beckert, Ulbrich, Weigl	
Exams	Exams					
WT 21/22	7500036	Formal Systems			Beckert	
ST 2022	7500009	Formal Systems			Beckert	

3.65 Course: Foundations of Continuum Mechanics [T-MATH-107044]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103527 - Foundations of Continuum Mechanics

TypeCreditsGrading scaleRecurrenceVersionOral examination3Grade to a thirdOnce1

Prerequisites

3.66 Course: Fourier Analysis [T-MATH-105845]

Responsible: Prof. Dr. Roland Schnaubelt
Organisation: KIT Department of Mathematics
Part of: M-MATH-102873 - Fourier Analysis

Type Written examination

Credits 8 **Grading scale**Grade to a third

Version

3.67 Course: Fourier Analysis and its Applications to PDEs [T-MATH-109850]

Responsible: TT-Prof. Dr. Xian Liao

Organisation: KIT Department of Mathematics

Part of: M-MATH-104827 - Fourier Analysis and its Applications to PDEs

Type Oral examination 6 Grading scale Grade to a third Recurrence Irregular 3

Exams			
WT 21/22	7700087	Fourier Analysis and its Applications to PDEs	Liao

Prerequisites

3.68 Course: Fractal Geometry [T-MATH-111296]

Responsible: PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics
Part of: M-MATH-105649 - Fractal Geometry

Type Oral examination Credits 6 **Grading scale** Grade to a third

Recurrence Irregular

Version

Prerequisites

3.69 Course: Functional Analysis [T-MATH-102255]

Responsible: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-101320 - Functional Analysis

Type Credits Grading scale Recurrence Each winter term 2

Events					
WT 21/22	0104800	Functional Analysis	4 SWS	Lecture / 🗣	Plum
WT 21/22	0104810	Tutorial for 0104800 (Functional Analysis)	2 SWS	Practice / 🗣	Plum, Wunderlich
Exams		•		•	•
WT 21/22	0100047	Functional Analysis			Plum, Lamm, Hundertmark, Kunstmann, Schnaubelt, Frey

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♣ On-Site, x Cancelled

3.70 Course: Functions of Matrices [T-MATH-105906]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: M-MATH-102937 - Functions of Matrices

Type Credits Grading scale Oral examination 8 Grade to a third 1

Prerequisites

3.71 Course: Functions of Operators [T-MATH-105905]

Organisation: KIT Department of Mathematics

Part of: M-MATH-102936 - Functions of Operators

TypeOral examination

Credits 6 **Grading scale** Grade to a third

Version 1

3.72 Course: Fuzzy Sets [T-INFO-101376]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100839 - Fuzzy Sets

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	24611	Fuzzy Sets	3 SWS	Lecture / 🗣	Pfaff	
Exams						
WT 21/22	7500011	Fuzzy Sets			Pfaff	
ST 2022	7500001	Fuzzy Sets			Pfaff	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♣ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Fuzzy Sets

24611, SS 2022, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

In this module, the fundamental theory and practical applications of fuzzy sets are communicated. The course copes with fuzzy arithmetics, fuzzy logic, fuzzy relations, and fuzzy deduction. The representation of fuzzy sets and their properties are the theoretical foundation. Based on this theory, arithmetic and logical operations are axiomatically derived and analyzed. Furthermore, it is shown how arbitrary functions and relations are transferred into fuzzy sets. An application of the logic part of the module, fuzzy deduction, shows different approaches to applying rule-based systems on fuzzy sets. The final part of the curse treats the problem of fuzzy control.

Literature

Hilfreiche Quellen werden im Skript und in den Vorlesungsfolien genannt.

3.73 Course: Generalized Regression Models [T-MATH-105870]

Responsible: Dr. rer. nat. Bruno Ebner

Prof. Dr. Vicky Fasen-Hartmann

PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102906 - Generalized Regression Models

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	3

Events						
ST 2022	0161400	Generalisierte Regressionsmodelle	2 SWS	Lecture	Ebner	
ST 2022	0161410	Übungen zu 0161400 (generalisierte Regressionsmodelle)	1 SWS	Practice	Ebner	
Exams						
ST 2022	7700085	Generalized Regression Models	Generalized Regression Models			

3.74 Course: Geometric Analysis [T-MATH-105892]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics
Part of: M-MATH-102923 - Geometric Analysis

Type
Oral examinationCredits
8Grading scale
Grade to a thirdRecurrence
IrregularVersion

Prerequisites

3.75 Course: Geometric Group Theory [T-MATH-105842]

Responsible: Prof. Dr. Frank Herrlich

Prof. Dr. Enrico Leuzinger

Dr. Gabriele Link Prof. Dr. Roman Sauer

Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: M-MATH-102867 - Geometric Group Theory

Type Credits Grading scale Grade to a third Irregular 1

Exams				
WT 21/22	7700094	Geometric Group Theory	Llosa Isenrich	
WT 21/22	8200016	Geometric Group Theory	Leuzinger	

3.76 Course: Geometric Group Theory II [T-MATH-105875]

Responsible: Prof. Dr. Frank Herrlich

Prof. Dr. Enrico Leuzinger Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: M-MATH-102869 - Geometric Group Theory II

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

3.77 Course: Geometric Numerical Integration [T-MATH-105919]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-102921 - Geometric Numerical Integration

Type Oral examination 6 Grading scale Grade to a third 1

Prerequisites

3.78 Course: Geometry of Schemes [T-MATH-105841]

Responsible: Prof. Dr. Frank Herrlich

PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: M-MATH-102866 - Geometry of Schemes

Type Oral examination

Credits 8 **Grading scale** Grade to a third

Version

3.79 Course: Global Differential Geometry [T-MATH-105885]

Responsible: Dr. Sebastian Grensing

Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: M-MATH-102912 - Global Differential Geometry

Type Oral examination 8 Grading scale Grade to a third 1

Prerequisites

3.80 Course: Graph Theory [T-MATH-102273]

Responsible: Prof. Dr. Maria Aksenovich
Organisation: KIT Department of Mathematics
Part of: M-MATH-101336 - Graph Theory

Туре	Credits	Grading scale	Recurrence	Version
Written examination	8	Grade to a third	Irregular	1

Events						
WT 21/22	0104500	Graph Theory	4 SWS	Lecture / 🗣	Aksenovich, Weber	
WT 21/22	0104510	Tutorial for 0104500 (Graph Theory)	2 SWS	Practice / 🗣	Aksenovich, Weber	
Exams						
WT 21/22	7700038	Graph Theory			Aksenovich	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

None

3.81 Course: Group Actions in Riemannian Geometry [T-MATH-105925]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102954 - Group Actions in Riemannian Geometry

Type Credits Grading scale Oral examination 5 Grade to a third 1

Prerequisites

3.82 Course: Harmonic Analysis [T-MATH-111289]

Organisation: KIT Department of Mathematics
Part of: M-MATH-105324 - Harmonic Analysis

Type Credits
Oral examination 8

Version 1

Grading scale

Grade to a third

3.83 Course: Harmonic Analysis for Dispersive Equations [T-MATH-107071]

Responsible: apl. Prof. Dr. Peer Kunstmann **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103545 - Harmonic Analysis for Dispersive Equations

Type Oral examination Credits Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.84 Course: Heat Transfer II [T-CIWVT-106067]

Responsible: Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103051 - Heat Transfer II

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	2

Events						
WT 21/22	22809	Wärmeübertragung II	2 SWS	Lecture / 🗯	Wetzel, Dietrich	
Exams	Exams					
WT 21/22	7280031	Heat Transfer II			Wetzel	
ST 2022	7280031	Heat Transfer II			Wetzel	

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

3.85 Course: High Temperature Process Engineering [T-CIWVT-106109]

Responsible: Prof. Dr.-Ing. Dieter Stapf

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103075 - High Temperature Process Engineering

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events					
ST 2022	22505	Hochtemperaturverfahrenstechnik	2 SWS	Lecture / 🗣	Stapf
ST 2022 22506 Übung zu 22505 Hochtemperaturverfahrenstechnik			1 SWS	Practice / 🗣	Stapf, und Mitarbeiter
Exams					
WT 21/22	7231001	High Temperature Process Enginee	High Temperature Process Engineering		
ST 2022	7231001	High Temperature Process Enginee	High Temperature Process Engineering		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

None

3.86 Course: Homotopy Theory [T-MATH-105933]

Responsible: Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics
Part of: M-MATH-102959 - Homotopy Theory

Type Credits Grading scale Oral examination 8 Grade to a third 1

Exams			
WT 21/22	7700098	Homotopy Theory	Sauer

3.87 Course: Infinite dimensional dynamical systems [T-MATH-107070]

Responsible: Prof. Dr. Jens Rottmann-Matthes **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103544 - Infinite dimensional dynamical systems

Type Oral examination

Credits Grading scale Grade to a third

Grade to a third

Credits Grade to a third

Credits Grade to a third

Credits Grading scale Irregular

1

Prerequisites

3.88 Course: Integral Equations [T-MATH-105834]

Responsible: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102874 - Integral Equations

Type Oral examination

Credits Grading scale Grade to a third

Grade to a third

Credits Grade to a third

Oral examination

3.89 Course: Internet Seminar for Evolution Equations [T-MATH-105890]

Responsible: Prof. Dr. Dorothee Frey

apl. Prof. Dr. Peer Kunstmann Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102918 - Internet seminar for evolution equations

Туре	Credits	Grading scale	Version
Written examination	8	Grade to a third	1

Events						
WT 21/22	0105000	Internetseminar für Evolutionsgleichungen	2 SWS	Lecture / 🗣	Schnaubelt, Kunstmann, Frey	
Exams						
WT 21/22	77271	nternet Seminar for Evolution Equations			Schnaubelt	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.90 Course: Internship [T-MATH-105888]

Responsible: Dr. Sebastian Grensing

Organisation: KIT Department of Mathematics
Part of: M-MATH-102861 - Internship

Type Completed coursework Credits 10 **Grading scale** pass/fail

Version 1

3.91 Course: Introduction into Particulate Flows [T-MATH-105911]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: M-MATH-102943 - Introduction into Particulate Flows

Type Credits Grading scale Oral examination 3 Grade to a third 1

Prerequisites

3.92 Course: Introduction to Aperiodic Order [T-MATH-110811]

Responsible: Prof. Dr. Tobias Hartnick

Organisation: KIT Department of Mathematics

Part of: M-MATH-105331 - Introduction to Aperiodic Order

Type Oral examination Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.93 Course: Introduction to Cosmology [T-PHYS-102384]

Responsible: Prof. Dr. Guido Drexlin **Organisation:** KIT Department of Physics

Part of: M-PHYS-102175 - Introduction to Cosmology

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each winter term	1

Events					
WT 21/22	4022021	Einführung in die Kosmologie	2 SWS	Lecture / 🗣	Drexlin
WT 21/22	4022022	Übungen zur Einführung in die Kosmologie	1 SWS	Practice / 🗣	Drexlin, Huber

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Einführung in die Kosmologie

4022021, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

An Introduction to cosmology from the Big Bang to the present universe

3.94 Course: Introduction to Fluid Dynamics [T-MATH-111297]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105650 - Introduction to Fluid Dynamics

Type Oral examination Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.95 Course: Introduction to Geometric Measure Theory [T-MATH-105918]

Responsible: PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102949 - Introduction to Geometric Measure Theory

TypeCreditsGrading scaleVersionOral examination6Grade to a third1

Prerequisites

3.96 Course: Introduction to Homogeneous Dynamics [T-MATH-110323]

Responsible: Prof. Dr. Tobias Hartnick
Organisation: KIT Department of Mathematics

Part of: M-MATH-105101 - Introduction to Homogeneous Dynamics

Type Credits Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.97 Course: Introduction to Kinetic Equations [T-MATH-111721]

Responsible: Dr. Christian Zillinger

Organisation: KIT Department of Mathematics

Part of: M-MATH-105837 - Introduction to Kinetic Equations

Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	3	Grade to a third	Irregular	1 terms	1

Events						
WT 21/22	0100066	Introduction to Kinetic Equations	2 SWS	Lecture / 🗣	Zillinger	
Exams						
WT 21/22	00019	Introduction to Kinetic Equations			Zillinger	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♣ On-Site, x Cancelled

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Recommendation

The course "Classical Methods for Partial Differential Equations" should be studied beforehand.

Below you will find excerpts from events related to this course:

Introduction to Kinetic Equations

0100066, WS 21/22, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

This lecture provides an introduction to the mathematical analysis of kinetic transport equations.

In particular, we will study the description of gas and plasma dynamics and their mixing behavior in frequency (phase mixing).

We will study the mathematical description and analysis of kinetic transport equations:

- the free transport, Boltzmann and Vlasov-Poisson equations,
- linear theory, phase mixing and Landau damping,
- equilibrium solutions and stability,
- nonlinear results and methods,
- renormalized solutions.

3.98 Course: Introduction to Kinetic Theory [T-MATH-108013]

Responsible: Prof. Dr. Martin Frank

Organisation: KIT Department of Mathematics

Part of: M-MATH-103919 - Introduction to Kinetic Theory

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	4	Grade to a third	Each winter term	1

Events						
WT 21/22	0155450	Introduction to Kinetic Theory	2 SWS	Lecture /	Frank	
WT 21/22	0155460	Tutorial for 0155450 (Introduction to Kinetic Theory)	1 SWS	Practice	Frank	
Exams						
WT 21/22	7700078	Introduction to Kinetic Theory			Frank	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Kinetic Theory

0155450, WS 21/22, 2 SWS, Language: English, Open in study portal

Lecture (V)
Online

Content

Kinetic descriptions play an important role in a variety of physical, biological, and even social applications, for instance, in the description of gases, radiations, bacteria or financial markets. Typically, these systems are described locally not by a finite set of variables but instead by a probability density describing the distribution of a microscopic state. Its evolution is typically given by an integro-differential equation. Unfortunately, the large phase space associated with the kinetic description has made simulations impractical in most settings in the past. However, recent advances in computer resources, reduced-order modeling and numerical algorithms are making accurate approximations of kinetic models more tractable, and this trend is expected to continue in the future. On the theoretical mathematical side, two rather recent Fields medals (Pierre-Louis Lions 1994, Cédric Villani 2010) also indicate the continuing interest in this field, which was already the subject of Hilbert's sixth out of the 23 problems presented at the World Congress of Mathematicians in 1900.

This course gives an introduction to kinetic theory. Our purpose is to discuss the mathematical passage from a microscopic description of a system of particles, via a probabilistic description to a macroscopic view. This is done in a complete way for the linear case of particles that are interacting with a background medium. The nonlinear case of pairwise interacting particles is treated on a more phenomenological level.

An extremely broad range of mathematical techniques is used in this course. Besides mathematical modeling, we make use of statistics and probability theory, ordinary differential equations, hyperbolic partial differential equations, integral equations (and thus functional analysis) and infinite-dimensional optimization. Among the astonishing discoveries of kinetic theory are the statistical interpretation of the Second Law of Thermodynamics, induced by the Boltzmann-Grad limit, and the result that the macroscopic equations describing fluid motion (namely the Euler and Navier-Stokes equations) can be inferred from abstract geometrical properties of integral scattering operators.

Organizational issues

The lecture will be offered as live stream (Zoom). The link can be found in ILIAS.

3.99 Course: Introduction to Matlab and Numerical Algorithms [T-MATH-105913]

Responsible: Dr. Daniel Weiß

Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102945 - Introduction to Matlab and Numerical Algorithms

Type Credits Grading scale Written examination 5 Grade to a third 1

Prerequisites

3.100 Course: Introduction to Microlocal Analysis [T-MATH-111722]

Responsible: TT-Prof. Dr. Xian Liao

Organisation: KIT Department of Mathematics

Part of: M-MATH-105838 - Introduction to Microlocal Analysis

Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	3	Grade to a third	Irregular	1 terms	1

Exams			
WT 21/22	7700088	Introduction to Microlocal Analysis	Sun

Competence Certificate

oral examination of circa 30 minutes

Prerequisites

none

Recommendation

The courses "Classical Methods for Partial Differential Equations" and "Functional Analysis" should be studied beforehand.

3.101 Course: Introduction to Python [T-MATH-106119]

Responsible: Dr. Daniel Weiß

Organisation: KIT Department of Mathematics
Part of: M-MATH-102994 - Key Competences

Type Credits Grading scale Pactor Completed coursework 3 Grading scale pass/fail Each summer term 1

Events						
ST 2022	0169000	Einführung in Python	1 SWS	Lecture	Weiß	

3.102 Course: Introduction to Python - Programming Project [T-MATH-111851]

Responsible: Dr. Daniel Weiß

Organisation: KIT Department of Mathematics
Part of: M-MATH-102994 - Key Competences

TypeCreditsGrading scale
pass/failRecurrence
Each summer termVersion

3.103 Course: Introduction to Scientific Computing [T-MATH-105837]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102889 - Introduction to Scientific Computing

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	2

Events						
ST 2022	0165000	Einführung in das Wissenschaftliche Rechnen	3 SWS	Lecture / 🗣	Jahnke	
ST 2022	0166000	Praktikum zu 0165000 (Einführung in das Wissenschaftliche Rechnen)		Practical course /	Jahnke	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

3.104 Course: Inverse Problems [T-MATH-105835]

Responsible: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich Prof. Dr. Andreas Rieder

Organisation: KIT Department of Mathematics
Part of: M-MATH-102890 - Inverse Problems

Type Credits
Oral examination 8

Grading scaleGrade to a third

Version 1

Events						
WT 21/22	0105100	Inverse Problems	4 SWS	Lecture / 🗣	Rieder	
WT 21/22	0105110	Tutorial for 0105100 (Inverse Problems)	2 SWS	Practice / 🗣	Rieder	
Exams						
WT 21/22	7700075	Inverse Problems			Rieder	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.105 Course: Key Moments in Geometry [T-MATH-108401]

Responsible: Prof. Dr. Wilderich Tuschmann **Organisation:** KIT Department of Mathematics

Part of: M-MATH-104057 - Key Moments in Geometry

Type Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.106 Course: L2-Invariants [T-MATH-105924]

Responsible: Dr. Holger Kammeyer

Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: M-MATH-102952 - L2-Invariants

Type Oral examination

Credits 5 **Grading scale**Grade to a third

Version

Prerequisites

3.107 Course: Lie Groups and Lie Algebras [T-MATH-108799]

Responsible: Prof. Dr. Tobias Hartnick

Prof. Dr. Enrico Leuzinger

Organisation: KIT Department of Mathematics

Part of: M-MATH-104261 - Lie Groups and Lie Algebras

Type
Oral examinationCredits
8Grading scale
Grade to a thirdRecurrence
IrregularVersion
1

3.108 Course: Lie-Algebras (Linear Algebra 3) [T-MATH-111723]

Organisation: KIT Department of Mathematics

Part of: M-MATH-105839 - Lie-Algebras (Linear Algebra 3)

Type Oral examination 8 Grading scale Grade to a third Recurrence Irregular 1 terms 1

Exams				
WT 21/22	7700093	Lie-Algebras (Linear Algebra 3)	Hartnick	

Prerequisites

3.109 Course: Localization of Mobile Agents [T-INFO-101377]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck **Organisation:** KIT Department of Informatics

Part of: M-INFO-100840 - Localization of Mobile Agents

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events							
ST 2022	24613	Localization of Mobile Agents	3 SWS	Lecture / 🗣	Zea Cobo, Li		
Exams	Exams						
WT 21/22	7500020	Localization of Mobile Agents			Zea Cobo		
WT 21/22	7500324	Localization of Mobile Agents			Zea Cobo, Hanebeck		
ST 2022	7500004	Localization of Mobile Agents			Zea Cobo, Noack		

Legend: █ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Localization of Mobile Agents

24613, SS 2022, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle's position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues

Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature

Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.

3.110 Course: Markov Decision Processes [T-MATH-105921]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics

Part of: M-MATH-102907 - Markov Decision Processes

Type Credits Grading scale Oral examination 5 Grade to a third 1

Prerequisites

3.111 Course: Master's Thesis [T-MATH-105878]

Responsible: Dr. Sebastian Grensing

Organisation: KIT Department of Mathematics
Part of: M-MATH-102917 - Master's Thesis

Type Final Thesis Credits 30 **Grading scale** Grade to a third

Version 1

Final Thesis

This course represents a final thesis. The following periods have been supplied:

Submission deadline 6 months

Maximum extension period 3 months

Correction period 8 weeks

3.112 Course: Mathematical Methods in Signal and Image Processing [T-MATH-105862]

Responsible: Prof. Dr. Andreas Rieder **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102897 - Mathematical Methods in Signal and Image Processing

Type Credits Grading scale Oral examination 8 Grade to a third 1

Prerequisites

3.113 Course: Mathematical Methods of Imaging [T-MATH-106488]

Responsible: Prof. Dr. Andreas Rieder

Organisation: KIT Department of Mathematics

Part of: M-MATH-103260 - Mathematical Methods of Imaging

Type
Oral examinationCredits
5Grading scale
Grade to a thirdRecurrence
IrregularVersion

Prerequisites

None

3.114 Course: Mathematical Modelling and Simulation in Practise [T-MATH-105889]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102929 - Mathematical Modelling and Simulation in Practise

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	2

Events							
WT 21/22	0109400	Mathematical Modelling and Simulation	2 SWS	Lecture / 🗯	Thäter		
WT 21/22	0109410	Tutorial for 0109400	1 SWS	Practice / 🖥	Thäter		
Exams	Exams						
WT 21/22	7500113	Mathematical Modelling and Simul	Thäter				

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Mathematical Modelling and Simulation 0109400, WS 21/22, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

3.115 Course: Mathematical Statistics [T-MATH-105872]

Responsible: Dr. rer. nat. Bruno Ebner

Prof. Dr. Vicky Fasen-Hartmann

PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102909 - Mathematical Statistics

Type Credits Grading scale Oral examination 4 Grade to a third 1

Prerequisites

3.116 Course: Mathematical Topics in Kinetic Theory [T-MATH-108403]

Responsible: Prof. Dr. Dirk Hundertmark **Organisation:** KIT Department of Mathematics

Part of: M-MATH-104059 - Mathematical Topics in Kinetic Theory

Type Credits Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.117 Course: Maxwell's Equations [T-MATH-105856]

Responsible: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102885 - Maxwell's Equations

Type Oral examination Credits Grading scale Grade to a third 1

Exams				
WT 21/22	7700068	Maxwell's Equations	Arens	

3.118 Course: Medical Imaging [T-MATH-105861]

Responsible: Prof. Dr. Andreas Rieder

Organisation: KIT Department of Mathematics
Part of: M-MATH-102896 - Medical Imaging

TypeOral examination

Credits 8 **Grading scale**Grade to a third

Version 1

Prerequisites

3.119 Course: Medical Imaging Techniques I [T-ETIT-101930]

Responsible: Prof. Dr. Olaf Dössel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100384 - Medical Imaging Techniques I

Туре	Credits	Grading scale	Recurrence	Version
Written examination	3	Grade to a third	Each winter term	1

Events					
WT 21/22	2305261	Medical Imaging Techniques I	2 SWS	Lecture	Dössel
Exams				•	·
WT 21/22	7305261	Medical Imaging Techniques I			Dössel

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

3.120 Course: Medical Imaging Techniques II [T-ETIT-101931]

Responsible: Prof. Dr. Olaf Dössel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100385 - Medical Imaging Techniques II

Туре	Credits	Grading scale	Recurrence	Version
Written examination	3	Grade to a third	Each summer term	1

Events					
ST 2022	2305262	Medical Imaging Techniques II	2 SWS	Lecture / 🗣	Potyagaylo, Nahm
Exams	•	•		•	•
ST 2022	7305262	Medical Imaging Techniques II			Potyagaylo

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none

Recommendation

The contents of the M-ETIT-100384 module are required.

3.121 Course: Methods of Signal Processing [T-ETIT-100694]

Responsible: Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100540 - Methods of Signal Processing

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events					
WT 21/22	2302113	Methods of Signal Processing	2 SWS	Lecture / 🕃	Heizmann
WT 21/22	2302115	Methods of Signal Processing (Tutorial to 2302113)	1+1 SWS	Practice / 🗣	Heizmann
Exams				•	
WT 21/22	7302113	Methods of Signal Processing			Heizmann
ST 2022	7302113	Methods of Signal Processing			Heizmann

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.122 Course: Metric Geometry [T-MATH-111933]

Responsible: Prof. Dr. Alexander Lytchak

Organisation: KIT Department of Mathematics

Part of: M-MATH-105931 - Metric Geometry

Type Oral examination

Credits 8 **Grading scale**Grade to a third

Recurrence Irregular Version 1

Competence Certificate

oral examination of circa 20 minutes

Prerequisites

3.123 Course: Models of Mathematical Physics [T-MATH-105846]

Responsible: Prof. Dr. Dirk Hundertmark

Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel

Organisation: KIT Department of Mathematics

Part of: M-MATH-102875 - Models of Mathematical Physics

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

3.124 Course: Modern Experimental Physics I, Atoms and Nuclei [T-PHYS-105132]

Responsible: Studiendekan Physik **Organisation:** KIT Department of Physics

Part of: M-PHYS-101704 - Modern Experimental Physics I, Atoms and Cores

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	8	Grade to a third	Each summer term	1

Events					
ST 2022		Moderne Experimentalphysik I (Physik IV, Atome und Kerne)	4 SWS	Lecture / 🗣	Hunger
ST 2022	4010042	Übungen zu Moderne Experimentalphysik I	2 SWS	Practice / 🗣	Hunger, Eichhorn, Jobbitt

Legend: █ Online, ቆ Blended (On-Site/Online), ♠ On-Site, x Cancelled

Competence Certificate

Oral exam, approx. 45 min

Prerequisites

successful completion of the exercises

Modeled Conditions

The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:

3.125 Course: Modern Experimental Physics II. Molecules and Solid States [T-PHYS-105133]

Responsible: Studiendekan Physik **Organisation:** KIT Department of Physics

Part of: M-PHYS-101705 - Modern Experimental Physics II, Molecules and Solid States

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	8	Grade to a third	Each winter term	1

Events						
WT 21/22	4010051	Moderne Experimentalphysik II (Physik V, Moleküle und Festkörper)	4 SWS	Lecture	Wernsdorfer	
WT 21/22	4010052	Übungen zu Moderne Experimentalphysik II	2 SWS	Practice	Wernsdorfer, Haghighirad	
Exams						
WT 21/22	7800130	Modern Experimental Physics II. N	Modern Experimental Physics II. Molecules and Solid States			

Competence Certificate

Oral exam, approx. 45 min

Prerequisites

successful completion of the exercises

Modeled Conditions

The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:

3.126 Course: Modular Forms [T-MATH-105843]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics
Part of: M-MATH-102868 - Modular Forms

Type Oral examination

Credits 8 **Grading scale**Grade to a third

Version

3.127 Course: Moduli Spaces of Translation Surfaces [T-MATH-111271]

Organisation: KIT Department of Mathematics

Part of: M-MATH-105635 - Moduli Spaces of Translation Surfaces

TypeCreditsGrading scaleRecurrenceVersionOral examination8Grade to a thirdIrregular1

Prerequisites

3.128 Course: Monotonicity Methods in Analysis [T-MATH-105877]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics

Part of: M-MATH-102887 - Monotonicity Methods in Analysis

TypeCreditsGrading scaleVersionOral examination3Grade to a third1

3.129 Course: Multigrid and Domain Decomposition Methods [T-MATH-105863]

Responsible: Prof. Dr. Christian Wieners **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102898 - Multigrid and Domain Decomposition Methods

Type Oral examination Credits Grading scale Grade to a third 1

Competence Certificate

Mündliche Prüfung im Umfang von ca. 20 Minuten.

Prerequisites

3.130 Course: Neural Networks [T-INFO-101383]

Responsible: Prof. Dr. Alexander Waibel
Organisation: KIT Department of Informatics
Part of: M-INFO-100846 - Neural Networks

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events							
ST 2022	2400024	Deep Learning and Neural Networks	4 SWS	Lecture / 🗣	Waibel		
Exams	Exams						
WT 21/22	7500259	Deep Learning and Neural Netv	Deep Learning and Neural Networks				
ST 2022	7500044	Deep Learning and Neural Netv	Deep Learning and Neural Networks				

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-109124 - Deep Learning and Neural Networks must not have been started.

3.131 Course: Nonlinear Analysis [T-MATH-107065]

Responsible: Prof. Dr. Tobias Lamm

Organisation: KIT Department of Mathematics
Part of: M-MATH-103539 - Nonlinear Analysis

Type
Oral examinationCredits
8Grading scale
Grade to a thirdRecurrence
IrregularVersion
1

Prerequisites

3.132 Course: Nonlinear Control Systems [T-ETIT-100980]

Responsible: Dr.-Ing. Mathias Kluwe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100371 - Nonlinear Control Systems

TypeCreditsGrading scaleRecurrenceVersionWritten examination3Grade to a thirdEach summer term1

Events						
ST 2022	2303173	Nichtlineare Regelungssysteme	2 SWS	Lecture / 🗣	Kluwe	
Exams	Exams					
WT 21/22	7303173	Nonlinear Control Systems			Kluwe	
ST 2022	7303173	Nonlinear Control Systems			Kluwe	

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

Prerequisites

3.133 Course: Nonlinear Evolution Equations [T-MATH-105848]

Responsible: Prof. Dr. Dorothee Frey

Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102877 - Nonlinear Evolution Equations

Type Credits Grading scale Oral examination 8 Grade to a third 1

3.134 Course: Nonlinear Functional Analysis [T-MATH-105876]

Responsible: PD Dr. Gerd Herzog

Organisation: KIT Department of Mathematics

Part of: M-MATH-102886 - Nonlinear Functional Analysis

TypeCreditsGrading scaleVersionOral examination3Grade to a third1

3.135 Course: Nonlinear Maxwell Equations [T-MATH-106484]

Responsible: Prof. Dr. Roland Schnaubelt **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103257 - Nonlinear Maxwell Equations

Type Credits Grading scale Grade to a third Pregular 1

Prerequisites

Keine

3.136 Course: Nonlinear Maxwell Equations [T-MATH-110283]

Responsible: Prof. Dr. Roland Schnaubelt **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105066 - Nonlinear Maxwell Equations

Type Oral examination Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.137 Course: Nonlinear Wave Equations [T-MATH-110806]

Responsible: Dr. Birgit Schörkhuber

Organisation: KIT Department of Mathematics

Part of: M-MATH-105326 - Nonlinear Wave Equations

Type Credits Grading scale Grade to a third Irregular 1

Prerequisites

3.138 Course: Nonparametric Statistics [T-MATH-105873]

Responsible: Dr. rer. nat. Bruno Ebner

Prof. Dr. Vicky Fasen-Hartmann

PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102910 - Nonparametric Statistics

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	2

3.139 Course: Numerical Analysis of Helmholtz Problems [T-MATH-111514]

Responsible: TT-Prof. Dr. Barbara Verfürth **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105764 - Numerical Analysis of Helmholtz Problems

Туре	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination	3	Grade to a third	Irregular	1 terms	1

Events							
WT 21/22	0107000	Numerical Analysis of Helmholtz Problems	2 SWS	Lecture / 🗣	Verfürth		
Exams	Exams						
WT 21/22	7700090	Numerical Analysis of Helmholtz P	Numerical Analysis of Helmholtz Problems on 22.02.22				
WT 21/22	7700091	Numerical Analysis of Helmholtz P	Numerical Analysis of Helmholtz Problems on 29.03.22				

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.140 Course: Numerical Continuation Methods [T-MATH-105912]

Responsible: Prof. Dr. Jens Rottmann-Matthes **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102944 - Numerical Continuation Methods

TypeCreditsGrading scaleVersionOral examination5Grade to a third1

Prerequisites

3.141 Course: Numerical Linear Algebra for Scientific High Performance Computing [T-MATH-107497]

Responsible: Jun.-Prof. Dr. Hartwig Anzt **Organisation:** KIT Department of Mathematics

Part of: M-MATH-103709 - Numerical Linear Algebra for Scientific High Performance Computing

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	5	Grade to a third	Irregular	2

Events					
WT 21/22	2400138	Numerical Linear Algebra for Scientific High Performance Computing	2 SWS	Lecture	Anzt
ST 2022	0110650	Numerical Linear Algebra for Scientific High Performance Computing	2 SWS	Lecture	Anzt
Exams	•	•		•	
WT 21/22	7500122	Numerical Linear Algebra for Sci Computing	Numerical Linear Algebra for Scientific High Performance Computing		

Prerequisites

3.142 Course: Numerical Linear Algebra in Image Processing [T-MATH-108402]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: M-MATH-104058 - Numerical Linear Algebra in Image Processing

TypeCreditsGrading scaleRecurrenceVersionOral examination6Grade to a thirdIrregular1

Prerequisites

3.143 Course: Numerical Methods for Differential Equations [T-MATH-105836]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102888 - Numerical Methods for Differential Equations

Type Credits Grading scale Grade to a third Version 3

Events						
WT 21/22	0110700	Numerische Methoden für Differentialgleichungen	4 SWS	Lecture / 🗣	Jahnke	
WT 21/22	0110800	Übungen zu 0110700	2 SWS	Practice / 🗣	Jahnke, Stein	
Exams						
WT 21/22	7700044	Numerical Methods for Differential	Jahnke			
ST 2022	7700050	Numerical Methods for Differential Equations			Jahnke	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.144 Course: Numerical Methods for Hyperbolic Equations [T-MATH-105900]

Responsible: Prof. Dr. Willy Dörfler

Organisation: KIT Department of Mathematics

Part of: M-MATH-102915 - Numerical Methods for Hyperbolic Equations

Type Credits Grading scale Oral examination 6 Grade to a third 1

Prerequisites

3.145 Course: Numerical Methods for Integral Equations [T-MATH-105901]

Responsible: PD Dr. Tilo Arens

PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102930 - Numerical Methods for Integral Equations

Type Oral examination Credits Grading scale Grade to a third 1

3.146 Course: Numerical Methods for Maxwell's Equations [T-MATH-105920]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-102931 - Numerical Methods for Maxwell's Equations

Type Oral examination 6 Grading scale Grade to a third 1

Events					
ST 2022	0155800	Numerical methods for Maxwell's equations	3 SWS	Lecture	Hochbruck
ST 2022	0155810	Tutorial for 0155800	1 SWS	Practice	Hochbruck

3.147 Course: Numerical Methods for Time-Dependent Partial Differential Equations [T-MATH-105899]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-102928 - Numerical Methods for Time-Dependent Partial Differential Equations

Type Oral examination

Credits 8 **Grading scale**Grade to a third

Version

3.148 Course: Numerical Methods in Computational Electrodynamics [T-MATH-105860]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102894 - Numerical Methods in Computational Electrodynamics

Type Credits Grading scale Oral examination 6 Grade to a third 1

Prerequisites

3.149 Course: Numerical Methods in Fluid Mechanics [T-MATH-105902]

Responsible: Prof. Dr. Willy Dörfler

PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102932 - Numerical Methods in Fluid Mechanics

Type Oral examination Credits Grading scale Grade to a third 1

Events					
ST 2022	0164200	Numerische Methoden in der Strömungsmechanik	2 SWS	Lecture	Thäter
ST 2022	0164210	Übungen zu 0164210 (Numerische Methoden in der Strömungsmechanik)	1 SWS	Practice	Thäter

3.150 Course: Numerical Methods in Mathematical Finance [T-MATH-105865]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-102901 - Numerical Methods in Mathematical Finance

Type Credits Grading scale Oral examination 8 Grade to a third 1

Prerequisites

3.151 Course: Numerical Methods in Mathematical Finance II [T-MATH-105880]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-102914 - Numerical Methods in Mathematical Finance II

Type Credits Grading scale Oral examination 8 Grade to a third 1

Competence Certificate

Mündliche Prüfung im Umfang von ca. 30 Minuten

Prerequisites

3.152 Course: Numerical Optimisation Methods [T-MATH-105858]

Responsible: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr. Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-102892 - Numerical Optimisation Methods

Type Oral examination 8 Credits Grading scale Grade to a third 1

Exams	Exams				
WT 21/22	00037	Numerical Optimisation Methods	Wieners		

3.153 Course: Numerical Simulation in Molecular Dynamics [T-MATH-110807]

Responsible: PD Dr. Volker Grimm

Organisation: KIT Department of Mathematics

Part of: M-MATH-105327 - Numerical Simulation in Molecular Dynamics

Type Oral examination Credits Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.154 Course: Optical Waveguides and Fibers [T-ETIT-101945]

Responsible: Prof. Dr.-Ing. Christian Koos

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100506 - Optical Waveguides and Fibers

TypeCreditsGrading scaleRecurrenceVersionOral examination4Grade to a thirdEach winter term1

Events							
WT 21/22	2309464	Optical Waveguides and Fibers	2 SWS	Lecture / 🗣	Koos, Bao, Drayß		
WT 21/22	2309465	Tutorial for 2309464 Optical Waveguides and Fibers					
Exams							
WT 21/22	7309464	Optical Waveguides and Fibers	Optical Waveguides and Fibers				
ST 2022	7309464	Optical Waveguides and Fibers	Optical Waveguides and Fibers				

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Prerequisites

3.155 Course: Optimal Control and Estimation [T-ETIT-104594]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-102310 - Optimal Control and Estimation

Type Oral examination Credits Grading scale Grade to a third Each summer term 1

Events							
ST 2022	2303162	Optimale Regelung und Schätzung	2 SWS	Lecture / 🗣	Kluwe		
Exams							
WT 21/22	7303162	Optimal Control and Estimation			Kluwe		
ST 2022	7303162	Optimal Control and Estimation			Kluwe		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.156 Course: Optimisation and Optimal Control for Differential Equations [T-MATH-105864]

Organisation: KIT Department of Mathematics

Part of: M-MATH-102899 - Optimisation and Optimal Control for Differential Equations

Type Oral examination Credits Grading scale Grade to a third 1

Prerequisites

3.157 Course: Optimization in Banach Spaces [T-MATH-105893]

Responsible: Prof. Dr. Roland Griesmaier

PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102924 - Optimization in Banach Spaces

Type Oral examination Credits Grading scale Grade to a third 2

Competence Certificate

oral examination of approximately 30 minutes

Prerequisites

none

Recommendation

Some basic knowledge of finite dimensional optimization theory and functional analysis is desirable.

3.158 Course: Optimization of Dynamic Systems [T-ETIT-100685]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100531 - Optimization of Dynamic Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	5	Grade to a third	Each winter term	1

Events	Events						
WT 21/22	2303183	Optimization of Dynamic Systems	2 SWS	Lecture / 🗯	Hohmann		
WT 21/22	2303185	Optimization of Dynamic Systems (Tutorial to 2303183)	1 SWS	Practice / 😂	Bohn		
WT 21/22	2303851	Accompanying group tutorial for 2303183 Optimization of Dynamic Systems	1 SWS	Tutorial (/ 🗯	Bohn		
Exams							
WT 21/22	7303183	Optimization of Dynamic Systems	Hohmann				
ST 2022	7303183	Optimization of Dynamic Systems	Hohmann				

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Competence Certificate

The assessment consists of a written exam (120 min) taking place in the recess period.

Prerequisites

3.159 Course: Parallel Computing [T-MATH-102271]

Responsible: Dr. rer. nat. Mathias Krause

Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-101338 - Parallel Computing

Type Oral examination

Credits 5 **Grading scale** Grade to a third

Version

3.160 Course: Particle Physics I [T-PHYS-102369]

Responsible: Prof. Dr. Ulrich Husemann

Prof. Dr. Markus Klute Prof. Dr. Thomas Müller Prof. Dr. Günter Quast Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-102114 - Particle Physics I

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	8	Grade to a third	Each winter term	1

Events						
WT 21/22	4022031	Teilchenphysik I	3 SWS	Lecture / 🗣	Quast, Klute	
WT 21/22	4022032	Praktische Übungen zur Teilchenphysik I	2 SWS	/ •	Quast, Klute, Faltermann	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.161 Course: Pattern Recognition [T-INFO-101362]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Tim Zander

Organisation: KIT Department of Informatics

Part of: M-INFO-100825 - Pattern Recognition

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	2

Events						
ST 2022	24675	Pattern Recognition	4 SWS	Lecture / Practice	Beyerer	
Exams						
WT 21/22	7500111	Pattern Recognition			Beyerer	
ST 2022	7500032	Pattern Recognition			Beyerer	

Below you will find excerpts from events related to this course:

Pattern Recognition

24675, SS 2022, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) On-Site

Organizational issues

Vorlesung: montags 15:45 bis 16:30 Uhr und mittwochs 14:00 bis 15:30 Uhr

Übung: montags 16:30 bis 17:15 Uhr

Literature

Weiterführende Literatur

- Richard O. Duda, Peter E. Hart, Stork G. David. Pattern Classification. Wiley-Interscience, second edition, 2001
- K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, second edition, 1997
- R. Hoffman. Signalanalyse und -erkennung. Springer, 1998
- H. Niemann. Pattern analysis and understanding. Springer, second edition, 1990
- J. Schürmann. Pattern classification. Wiley & Sons, 1996
- S. Theodoridis, K. Koutroumbas. Pattern recognition. London: Academic, 2003
- V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000

3.162 Course: Percolation [T-MATH-105869]

Responsible: Prof. Dr. Daniel Hug

Prof. Dr. Günter Last PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics
Part of: M-MATH-102905 - Percolation

Type Oral examination

Credits 5 **Grading scale**Grade to a third

Version 2

Prerequisites

3.163 Course: Physical Foundations of Cryogenics [T-CIWVT-106103]

Responsible: Prof. Dr.-Ing. Steffen Grohmann

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103068 - Physical Foundations of Cryogenics

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each summer term	1

Events					
ST 2022	22030	Physical Foundations of Cryogenics	2 SWS	Lecture / 🗣	Grohmann
ST 2022	22031	Physical Foundations of Cryogenics - Exercises	1 SWS	Practice / 🗣	Grohmann
Exams		•	•	•	
WT 21/22	7200203	Physical Foundations of Cryog	Physical Foundations of Cryogenics		
ST 2022	7200203	Physical Foundations of Cryog	Physical Foundations of Cryogenics		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

None

3.164 Course: Poisson Processes [T-MATH-105922]

Responsible: Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Daniel Hug Prof. Dr. Günter Last PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102922 - Poisson Processes

Type Oral examination Credits Grading scale Grade to a third 1

Events					
ST 2022	0152700	Der Poisson-Prozess	2 SWS	Lecture	Last

Prerequisites

3.165 Course: Potential Theory [T-MATH-105850]

Responsible: PD Dr. Tilo Arens

PD Dr. Frank Hettlich Prof. Dr. Andreas Kirsch Prof. Dr. Wolfgang Reichel

Organisation: KIT Department of Mathematics

Part of: M-MATH-102879 - Potential Theory

Type Oral examination Credits 8

Grading scaleGrade to a third

Version

3.166 Course: Probability Theory and Combinatorial Optimization [T-MATH-105923]

Responsible: Prof. Dr. Daniel Hug

Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics

Part of: M-MATH-102947 - Probability Theory and Combinatorial Optimization

Type Credits
Oral examination 8

Grading scale Grade to a third

Version

Prerequisites

3.167 Course: Process Modeling in Downstream Processing [T-CIWVT-106101]

Responsible: apl. Prof. Dr. Matthias Franzreb

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103066 - Process Modeling in Downstream Processing

TypeCreditsGrading scaleRecurrenceVersionOral examination4Grade to a thirdEach winter term1

Events						
ST 2022	2022 22717 Process Modeling in Downstream Processing		2 SWS	Lecture / 🗣	Franzreb	
Exams	Exams					
WT 21/22	7223015	Process Modeling in Downstream Processing			Franzreb	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♣ On-Site, x Cancelled

Prerequisites

None

3.168 Course: Processing of Nanostructured Particles [T-CIWVT-106107]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103073 - Processing of Nanostructured Particles

Type Oral examination 6 Grading scale Grade to a third Each winter term 1 Version

Events						
WT 21/22	22921	Processing of Nanostructured Particles	2 SWS	Lecture / 🗣	Nirschl	
Exams						
WT 21/22	7291921	Processing of Nanostructured Part	Processing of Nanostructured Particles			
ST 2022	7291921	Processing of Nanostructured Particles			Nirschl	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

None

3.169 Course: Project Centered Software-Lab [T-MATH-105907]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102938 - Project Centered Software-Lab

Type Credits Grading scale Examination of another type 4 Grade to a third 1

Events						
ST 2022	0161700	Projektorientiertes Softwarepraktikum	4 SWS	Practical course	Thäter, Krause	

Prerequisites

3.170 Course: Random Graphs [T-MATH-105929]

Responsible: Dr. Matthias Schulte

Organisation: KIT Department of Mathematics
Part of: M-MATH-102951 - Random Graphs

Type Oral examination

Credits 6 **Grading scale**Grade to a third

Version 1

Prerequisites

3.171 Course: Real-Time Systems [T-INFO-101340]

Responsible: Prof. Dr.-Ing. Thomas Längle **Organisation:** KIT Department of Informatics

Part of: M-INFO-100803 - Real-Time Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	24576	Real-Time Systems	4 SWS	Lecture / Practice (/ ♀	Längle, Ledermann	
Exams	Exams					
WT 21/22	750002	Real-Time Systems			Längle	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.172 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour **Organisation:** KIT Department of Informatics

Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events							
WT 21/22	2424152	Robotics I - Introduction to Robotics	3/1 SWS	Lecture / 🗯	Asfour		
Exams	Exams						
WT 21/22	7500106	Robotics I - Introduction to Robotic	Robotics I - Introduction to Robotics				
ST 2022	7500218	Robotik I - Einführung in die Robotik			Asfour		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.173 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

Responsible: Prof. Dr.-Ing. Tamim Asfour **Organisation:** KIT Department of Informatics

Part of: M-INFO-104897 - Robotics III - Sensors and Perception in Robotics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	3	Grade to a third	Each summer term	2

Events							
ST 2022	2400067	Robotics III - Sensors and Perception in Robotics	2 SWS	Lecture / 🗣	Asfour		
Exams	Exams						
WT 21/22	7500207	Robotics III - Sensors and Perceptic	Robotics III - Sensors and Perception in Robotics				
ST 2022	7500242	Robotics III - Sensors and Perception in Robotics			Asfour		

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101352 - Robotics III - Sensors in Robotics must not have been started.

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics

2400067, SS 2022, 2 SWS, Language: German/English, Open in study portal

Lecture (V) On-Site

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Obejctives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Voraussetzungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird vorausgesetzt

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.

3.174 Course: Ruin Theory [T-MATH-108400]

Responsible: Prof. Dr. Vicky Fasen-Hartmann
Organisation: KIT Department of Mathematics
Part of: M-MATH-104055 - Ruin Theory

Type Oral examination

Credits 4 **Grading scale** Grade to a third

Recurrence Irregular **Version** 1

Prerequisites

3.175 Course: Scattering Theory [T-MATH-105855]

Responsible: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102884 - Scattering Theory

TypeCreditsGrading scaleVersionOral examination8Grade to a third1

3.176 Course: Security [T-INFO-101371]

Responsible: Prof. Dr. Dennis Hofheinz

Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-100834 - Security

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each summer term	1

Events						
ST 2022	24941	Security	3 SWS	Lecture / 🗣	Müller-Quade, Strufe, Wressnegger	
Exams	Exams					
WT 21/22	7500180	Security			Müller-Quade, Strufe	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.177 Course: Selected Methods in Fluids and Kinetic Equations [T-MATH-111853]

Organisation: KIT Department of Mathematics

Part of: M-MATH-105897 - Selected Methods in Fluids and Kinetic Equations

Type
Oral examinationCredits
3Grading scale
Grade to a thirdRecurrence
IrregularExpansion
1 termsVersion
1

Competence Certificate

oral examination of approx. 30 minutes

Prerequisites

none

Recommendation

The courses "Classical Methods for Partial Differential Equations" and "Functional Analysis" are recommended.

3.178 Course: Selected Topics in Harmonic Analysis [T-MATH-109065]

Responsible: Prof. Dr. Dirk Hundertmark **Organisation:** KIT Department of Mathematics

Part of: M-MATH-104435 - Selected Topics in Harmonic Analysis

Type Oral examination 2 Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.179 Course: Self-Booking-HOC-SPZ-ZAK-1-Graded [T-MATH-111515]

Organisation: KIT Department of Mathematics
Part of: M-MATH-102994 - Key Competences

Type Credits Grading scale Examination of another type 2 Grade to a third Recurrence Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

3.180 Course: Self-Booking-HOC-SPZ-ZAK-2-Graded [T-MATH-111517]

Organisation: KIT Department of Mathematics
Part of: M-MATH-102994 - Key Competences

Type Credits Grading scale Examination of another type 2 Grade to a third Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

3.181 Course: Self-Booking-HOC-SPZ-ZAK-5-Ungraded [T-MATH-111516]

Organisation: KIT Department of Mathematics
Part of: M-MATH-102994 - Key Competences

Type Credits Grading scale Pacturence Completed coursework 2 pass/fail Each term 1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

3.182 Course: Self-Booking-HOC-SPZ-ZAK-6-Ungraded [T-MATH-111520]

Organisation: KIT Department of Mathematics

Part of: M-MATH-102994 - Key Competences

Type
Completed courseworkCredits
2Grading scale
pass/failRecurrence
Each termVersion
1

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation

3.183 Course: Seminar Advanced Topics in Parallel Programming [T-INFO-103584]

Responsible: Prof. Dr. Achim Streit

Organisation: KIT Department of Informatics

Part of: M-INFO-101887 - Seminar Advanced Topics in Parallel Programming

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	3	Grade to a third	Each summer term	1

3.184 Course: Seminar Mathematics [T-MATH-105686]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics
Part of: M-MATH-102730 - Seminar

Type Credits Grading scale Completed coursework 3 Grading scale pass/fail 1

Exams			
WT 21/22	7700048	Seminar Mathematics	Kühnlein
ST 2022	7700025	Seminar Mathematics	Kühnlein

3.185 Course: Sobolev Spaces [T-MATH-105896]

Responsible: Prof. Dr. Andreas Kirsch

Organisation: KIT Department of Mathematics
Part of: M-MATH-102926 - Sobolev Spaces

Type Oral examination

Credits 5 **Grading scale**Grade to a third

Version

3.186 Course: Software Engineering II [T-INFO-101370]

Responsible: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-100833 - Software Engineering II

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events						
WT 21/22	24076	Software Engineering II	4 SWS	Lecture / 🗣	Reussner	
Exams	Exams					
WT 21/22	7500054	Software Engineering II			Reussner	
ST 2022	7500207	Software Engineering II			Reussner	

Below you will find excerpts from events related to this course:

Software Engineering II

24076, WS 21/22, 4 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Literature

Craig Larman, Applying UML and Patterns, 3rd edition, Prentice Hall, 2004. Weitere Literaturhinweise werden in der Vorlesung gegeben.

3.187 Course: Spatial Stochastics [T-MATH-105867]

Responsible: Prof. Dr. Daniel Hug

Prof. Dr. Günter Last PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102903 - Spatial Stochastics

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
WT 21/22	0105600	Spatial Stochastics	4 SWS	Lecture / 🗣	Last
WT 21/22	0105610	Tutorial for 0105600 (Spatial Stochastics)	2 SWS	Practice	Last
Exams					
WT 21/22	7700052	Spatial Stochastics			Last, Hug

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.188 Course: Special Functions and Applications in Potential Theory [T-MATH-102274]

Responsible: Prof. Dr. Andreas Kirsch

Organisation: KIT Department of Mathematics

Part of: M-MATH-101335 - Special Functions and Applications in Potential Theory

Type Credits Grading scale Oral examination 5 Grade to a third 1

Prerequisites

None

3.189 Course: Special Topics of Numerical Linear Algebra [T-MATH-105891]

Responsible: Prof. Dr. Marlis Hochbruck **Organisation:** KIT Department of Mathematics

Part of: M-MATH-102920 - Special Topics of Numerical Linear Algebra

Type Credits Grading scale Oral examination 8 Grade to a third 1

Exams			
WT 21/22	7700012	Special Topics of Numerical Linear Algebra	Neher

Prerequisites

3.190 Course: Spectral Theory - Exam [T-MATH-103414]

Responsible: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog

apl. Prof. Dr. Peer Kunstmann Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt KIT Department of Mathematics

Organisation: KIT Department of Mathematics
Part of: M-MATH-101768 - Spectral Theory

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Events					
ST 2022	0163700	Spectral Theory	4 SWS	Lecture	Plum
ST 2022	0163710	Übung zu 0163700 (Spektraltheorie)	2 SWS	Practice	Plum

Below you will find excerpts from events related to this course:

Spectral Theory

0163700, SS 2022, 4 SWS, Language: German, Open in study portal

Lecture (V)

Literature

- J.B. Conway: A Course in Functional Analysis.
- E.B. Davies: Spectral Theory and Differential Operators.
- · N. Dunford, J.T. Schwartz: Linear Operators, Part I.
- T. Kato: Perturbation Theory of Linear Operators.
- W. Rudin: Functional Analysis.
- D. Werner: Funktionalanalysis.

3.191 Course: Spectral Theory of Differential Operators [T-MATH-105851]

Responsible: Prof. Dr. Michael Plum

Organisation: KIT Department of Mathematics

Part of: M-MATH-102880 - Spectral Theory of Differential Operators

Type Oral examination Credits Grading scale Grade to a third 1

3.192 Course: Spin Manifolds, Alpha Invariant and Positive Scalar Curvature [T-MATH-105932]

Responsible: Stephan Klaus

Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: M-MATH-102958 - Spin Manifolds, Alpha Invariant and Positive Scalar Curvature

Type Oral examination Credits 5 **Grading scale**Grade to a third

Version

3.193 Course: Splitting Methods [T-MATH-105903]

Responsible: Prof. Dr. Marlis Hochbruck

Prof. Dr. Tobias Jahnke Prof. Dr Katharina Schratz

Organisation: KIT Department of Mathematics

Part of: M-MATH-102933 - Splitting Methods

Type Oral examination Credits Grading scale Grade to a third 1

3.194 Course: Splitting Methods for Evolution Equations [T-MATH-110805]

Responsible: Prof. Dr. Tobias Jahnke

Organisation: KIT Department of Mathematics

Part of: M-MATH-105325 - Splitting Methods for Evolution Equations

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Irregular	1

Events					
ST 2022	0160800	Splitting methods for evolution equations	3 SWS	Lecture / 🗣	Jahnke
Exams					
WT 21/22	7700062	Splitting Methods for Evolution Equations			Jahnke

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.195 Course: Statistical Learning [T-MATH-111726]

Responsible: Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-105840 - Statistical Learning

Туре	Credits	Grading scale	Version
Oral examination	8	Grade to a third	1

Exams			
WT 21/22	00031	Statistical Learning	Trabs
WT 21/22	00038	Statistical Learning (2nd attempt)	Trabs

Competence Certificate

The module will be completed with an oral exam (approx. 30 min).

Prerequisites

none

Recommendation

The module "Introduction to Stochastics" is recommended. The module "Probability theory" is preferable.

3.196 Course: Statistical Thermodynamics [T-CIWVT-106098]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103059 - Statistical Thermodynamics

Type Oral examination 6 Grading scale Grade to a third 1

Events					
ST 2022	22010	Statistische Thermodynamik	2 SWS	Lecture / 🗣	Enders
ST 2022	22011	Übungen zu 22010 Statistische Thermodynamik	1 SWS	Practice / 🗣	Enders
Exams					
WT 21/22	7200103	Statistical Thermodynamics			Enders
ST 2022	7200103	Statistical Thermodynamics			Enders

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Prerequisites

None

3.197 Course: Steins Method with Applications in Statistics [T-MATH-111187]

Responsible: Dr. rer. nat. Bruno Ebner

Prof. Dr. Daniel Hug

Organisation: KIT Department of Mathematics

Part of: M-MATH-105579 - Steins Method with Applications in Statistics

Type Oral examination

Credits Grading scale Grade to a third

Grading scale Irregular

1

Exams			
ST 2022	7700087	Steins Method with Applications in Statistics	Ebner

Prerequisites

3.198 Course: Stochastic Control [T-MATH-105871]

Responsible: Prof. Dr. Nicole Bäuerle

Organisation: KIT Department of Mathematics
Part of: M-MATH-102908 - Stochastic Control

Type Oral examination

Credits 4 **Grading scale**Grade to a third

Version 1

Prerequisites

3.199 Course: Stochastic Differential Equations [T-MATH-105852]

Responsible: Prof. Dr. Dorothee Frey

Prof. Dr. Roland Schnaubelt

Organisation: KIT Department of Mathematics

Part of: M-MATH-102881 - Stochastic Differential Equations

Type Credits Oral examination 8	Grading scale Grade to a third Version 1
--	--

3.200 Course: Stochastic Evolution Equations [T-MATH-105910]

Responsible: Prof. Dr. Lutz Weis

Organisation: KIT Department of Mathematics

Part of: M-MATH-102942 - Stochastic Evolution Equations

TypeCreditsGrading scaleVersionOral examination8Grade to a third1

Prerequisites

3.201 Course: Stochastic Geometry [T-MATH-105840]

Responsible: Prof. Dr. Daniel Hug

Prof. Dr. Günter Last PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102865 - Stochastic Geometry

Type Credits Grading scale
Oral examination 8 Grade to a third 1

Events					
ST 2022	0152600	Stochastic Geometry	4 SWS	Lecture	Winter
ST 2022		Tutorial for 0152600 (Stochastic Geometry)	2 SWS	Practice	Winter

3.202 Course: Stochastic Information Processing [T-INFO-101366]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck **Organisation:** KIT Department of Informatics

Part of: M-INFO-100829 - Stochastic Information Processing

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each winter term	1

Events					
WT 21/22	24113	Stochastic Information Processing	3 SWS	Lecture / 🕃	Hanebeck, Frisch
Exams					
WT 21/22	7500031	Stochastic Information Processing			Hanebeck
ST 2022	7500010	Stochastic Information Processing			Hanebeck

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Stochastic Information Processing

24113, WS 21/22, 3 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

In order to handle complex dynamic systems (e.g., in robotics), an in-step estimation of the system's internal state (e.g., position and orientation of the actuator) is required. Such an estimation is ideally based on the system model (e.g., a discretized differential equation describing the system dynamics) and the measurement model (e.g., a nonlinear function that maps the state space to a measurement subspace). Both system and measurement model are uncertain (e.g., include additive or multiplicative noise).

For continuous state spaces, an exact calculation of the probability densities is only possible in a few special cases. In practice, general nonlinear systems are often traced back to these special cases by simplifying assumptions. One extreme is linearization with subsequent application of linear estimation theory. However, this often leads to unsatisfactory results and requires additional heuristic measures. At the other extreme are numerical approximation methods, which only evaluate the desired distribution densities at discrete points in the state space. Although the working principle of these procedures is usually quite simple, a practical implementation often turns out to be difficult and especially for higher-dimensional systems it is computationally complex.

As a middle ground, analytical nonlinear estimation methods would therefore often be desirable. In this lecture the main difficulties in the development of such estimation methods are presented and corresponding solution modules are presented. Based on these building blocks, some analytical estimation methods are discussed in detail as examples, which are very suitable for practical implementation and offer a good compromise between computing effort and performance. Useful applications of these estimation methods are also discussed. Both known methods and the results of current research are presented.

Organizational issues

Der Prüfungstermin ist per E-Mail (gambichler@kit.edu) zu vereinbaren.

Literature Weiterführende Literatur

Skript zur Vorlesung

3.203 Course: Structural Graph Theory [T-MATH-111004]

Responsible: Prof. Dr. Maria Aksenovich **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105463 - Structural Graph Theory

TypeCreditsGrading scaleRecurrenceVersionOral examination4Grade to a thirdIrregular1

Prerequisites

3.204 Course: Technical Optics [T-ETIT-100804]

Responsible: Prof. Dr. Cornelius Neumann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100538 - Technical Optics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	5	Grade to a third	Each winter term	1

Events					
WT 21/22	2313720	Technical Optics	2 SWS	Lecture / 🗣	Neumann
WT 21/22	2313722	Technical Optics (Tutorial to 2313720)	1 SWS	Practice / 🗣	Neumann
Exams				•	
WT 21/22	/T 21/22				Neumann
ST 2022	7313720	Technical Optics			Neumann

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

Version

3.205 Course: Technomathematical Seminar [T-MATH-105884]

Responsible: Prof. Dr. Tobias Jahnke

PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of: M-MATH-102863 - Technomathematical Seminar

Type Credits Grading scale pass/fail

Exams				
WT 21/22	7700031	Technomathematical Seminar	Kühnlein	
ST 2022	7700056	Technomathematical Seminar	Kühnlein	

3.206 Course: Telematics [T-INFO-101338]

Responsible: Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: M-INFO-100801 - Telematics

Туре	Credits	Grading scale	Recurrence	Version
Written examination	6	Grade to a third	Each winter term	1

Events	Events					
WT 21/22	24128	Telematics	3 SWS	Lecture / 🗣	Heseding, König, Kopmann, Zitterbart	
Exams						
WT 21/22	7500166	Telematics			Zitterbart	
ST 2022	7500115	Telematics			Zitterbart	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Below you will find excerpts from events related to this course:

Telematics

24128, WS 21/22, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-to-end connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiary with the contents of the lecture Einführung in Rechnernetze or comparable lectures is assumed.

Learning Objectives

After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- have a profound understanding of different media access control procedures in local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanism to deal with these problems
- · be familiar with current developments such as SDN and data center networking
- be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-to-end communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.

Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.

Literature

S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley, 1997 J.F. Kurose, K.W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. 4rd Edition, Addison-Wesley, 2007 W. Stallings. Data and Computer Communications. 8th Edition, Prentice Hall, 2006 Weiterführende Literatur •D. Bertsekas, R. Gallager. Data Networks. 2nd Edition, Prentice-Hall, 1991 •F. Halsall. Data Communications, Computer Networks and Open Systems. 4th Edition, Addison-Wesley Publishing Company, 1996 •W. Haaß. Handbuch der Kommunikationsnetze. Springer, 1997 •A.S. Tanenbaum. Computer-Networks. 4th Edition, Prentice-Hall, 2004 •Internet-Standards •Artikel in Fachzeitschriften

3.207 Course: The Riemann Zeta Function [T-MATH-105934]

Responsible: Dr. Fabian Januszewski

Organisation: KIT Department of Mathematics

Part of: M-MATH-102960 - The Riemann Zeta Function

TypeCreditsGrading scaleVersionOral examination4Grade to a third1

3.208 Course: Theoretical Nanooptics [T-PHYS-104587]

Responsible: Prof. Dr. Carsten Rockstuhl **Organisation:** KIT Department of Physics

Part of: M-PHYS-102295 - Theoretical Nanooptics

Туре	Credits	Grading scale	Version
Oral examination	6	Grade to a third	1

Events						
WT 21/22	4023131	Theoretical Nanooptics	2 SWS	Lecture / 🗣	Fernandez Corbaton, Rockstuhl	
WT 21/22	4023132	Exercises to Theoretical Nanooptics	1 SWS	Practice / 🗣	Fernandez Corbaton, Rockstuhl	
Exams	Exams					
WT 21/22	7800126	Theoretical Nanooptics			Rockstuhl	

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

3.209 Course: Theoretical Optics [T-PHYS-104578]

Responsible: Prof. Dr. Carsten Rockstuhl **Organisation:** KIT Department of Physics

Part of: M-PHYS-102277 - Theoretical Optics

Туре	Credits	Grading scale	Version
Oral examination	6	Grade to a third	1

Events					
ST 2022	4023111	Theoretical Optics	2 SWS	Lecture / 🗣	Rockstuhl
ST 2022	4023112	Exercises to Theoretical Optics	1 SWS	Practice / 🗣	Rockstuhl, Whittam

Legend: █ Online, ∰ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Prerequisites

3.210 Course: Theory of Turbulent Flows without and with Superimposed Combustion [T-CIWVT-106108]

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103074 - Theory of Turbulent Flows without and with Superimposed Combustion

Type Oral examination Credits Grading scale Grade to a third Each winter term 1

Exams			
WT 21/22	7231208	Theory of Turbulent Flows without and with Superimposed Combustion	Zarzalis
ST 2022	7231208	Theory of Turbulent Flows without and with Superimposed Combustion	Zarzalis

Prerequisites

None

3.211 Course: Thermodynamics III [T-CIWVT-106033]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103058 - Thermodynamics III

Type Credits Grading scale Grade to a third 1

Events						
WT 21/22	22008	Thermodynamics III	2 SWS	Lecture / 🗣	Enders	
WT 21/22	22009	Thermodynamics III - Exercises	1 SWS	Practice / 🗯	Enders, und Mitarbeiter	
Exams	Exams					
WT 21/22	7200104	Thermodynamics III			Enders	

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

3.212 Course: Thermodynamics of Interfaces [T-CIWVT-106100]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103063 - Thermodynamics of Interfaces

Туре	Credits	Grading scale	Version
Oral examination	4	Grade to a third	1

Events					
ST 2022	22012	Grenzflächenthermodynamik	2 SWS	Lecture / 🗣	Enders
Exams	•				
WT 21/22	7200102	Thermodynamics of Interfaces			Enders
ST 2022	7200102	Thermodynamics of Interfaces			Enders

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \P On-Site, \times Cancelled

Competence Certificate

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten.

3.213 Course: Time Series Analysis [T-MATH-105874]

Responsible: Dr. rer. nat. Bruno Ebner

Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Tilmann Gneiting PD Dr. Bernhard Klar Prof. Dr. Mathias Trabs

Organisation: KIT Department of Mathematics

Part of: M-MATH-102911 - Time Series Analysis

Type Oral examination 4 Credits Grading scale Grade to a third 3

Events					
ST 2022	0161100	Time Series Analysis	2 SWS	Lecture	Schulz, Gneiting
ST 2022	0161110	Tutorial for 0161100 (Time Series Analysis)	1 SWS	Practice	Gneiting

3.214 Course: Topological Data Analysis [T-MATH-111031]

Responsible: Prof. Dr. Tobias Hartnick

Prof. Dr. Roman Sauer

Organisation: KIT Department of Mathematics

Part of: M-MATH-105487 - Topological Data Analysis

Type Oral examination 6 Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.215 Course: Topological Groups [T-MATH-110802]

Responsible: Dr. rer. nat. Rafael Dahmen

Prof. Dr. Wilderich Tuschmann

Organisation: KIT Department of Mathematics

Part of: M-MATH-105323 - Topological Groups

Type Oral examination Credits Grading scale Grade to a third Recurrence Irregular 1

Exams			
ST 2022	7700077	Topological Groups	Kühnlein

Prerequisites

3.216 Course: Traveling Waves [T-MATH-105897]

Responsible: Prof. Dr. Jens Rottmann-Matthes
Organisation: KIT Department of Mathematics
Part of: M-MATH-102927 - Traveling Waves

Type Oral examination

Credits 6 **Grading scale**Grade to a third

Version

3.217 Course: Uncertainty Quantification [T-MATH-108399]

Responsible: Prof. Dr. Martin Frank

Organisation: KIT Department of Mathematics

Part of: M-MATH-104054 - Uncertainty Quantification

Type Credits Grading scale Oral examination 4 Grade to a third Recurrence Irregular 1

Events					
ST 2022	0164400	Uncertainty Quantification	2 SWS	Lecture / 🗯	Frank
ST 2022		Tutorial for 0164400 (Uncertainty quantification)	1 SWS	Practice / 🗣	Frank

Legend: █ Online, 🍪 Blended (On-Site/Online), On-Site, 🗴 Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Uncertainty Quantification

0164400, SS 2022, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

"There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – there are things we do not know we don't know." (Donald Rumsfeld)

In this class, we learn to deal with the known unknowns, a field called Un- certainty Quantification (UQ). We particularly focus on the propagation of uncertainties (e.g. unknown data, unknown initial or boundary conditions) through models (mostly differential equations) and leave other important questions of UQ (especially inference) aside. Given uncertain input, how un- certain is the output? The uncertainties are modeled as random variables, and thus the solutions of the equations become random variables themselves.

Thus we summarize the necessary foundations of probability theory, with a focus on modeling correlated and uncorrelated random vectors. Further- more, we will see that every uncertain parameter becomes a dimension in the problem. We are thus quickly led to high-dimensional problems. Standard numerical methods suffer from the so-called curse of dimensionality, i.e. to reach a certain accuracy one needs excessively many model evaluations. Thus we study the fundamentals of approximation theory.

The first part of the course ("how to do it") gives an overview on techniques that are used. Among these are:

- · Sensitivity analysis
- · Monte-Carlo methods
- Spectral expansions
- · Stochastic Galerkin method
- · Collocation methods, sparse grids

The second part of the course ("why to do it like this") deals with the theoretical foundations of these methods. The so-called "curse of dimensionality" leads us to questions from approximation theory. We look back at the very standard numerical algorithms of interpolation and quadrature, and ask how they perform in many dimensions.

Organizational issues

The course will be offered in flipped classroom format. This means that the lectures will be made available as videos; students will also have lecture notes. We meet in presence for the tutorials, and there will also be office hours. The first meeting will be on April 25 in presence.

Literature

- R.C. Smith: Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014.
- T.J. Sullivan: Introduction to Uncertainty Quantification, Springer-Verlag, 2015.
- D. Xiu: Numerical Methods for Stochastic Computations, Princeton University Press, 2010.
- O.P. Le Maître, O.M. Knio: Spectral Methods for Uncertainty Quantification, Springer-Verlag, 2010.
- R. Ghanem, D. Higdon, H. Owhadi:Handbook of Uncertainty Quantification, Springer-Verlag, 2017.

3.218 Course: Unit Operations and Process Chains for Food of Animal Origin [T-CIWVT-108996]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104421 - Unit Operations and Process Chains for Food of Animal Origin

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	5	Grade to a third	Each winter term	3

Events					
ST 2022	22210	Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen (ehem. LVT)	2 SWS	Lecture / 🗣	Karbstein
ST 2022	22216	Fragestunde zu 22210	1 SWS	Colloquium (K / 🗣	Karbstein
Exams					
WT 21/22	7220015	Unit operations and process chains for food of animal origin Karbstein			Karbstein
ST 2022	7220015	Unit operations and process chains for food of animal origin Karbstein			

Legend: ☐ Online, ∰ Blended (On-Site/Online), ♀ On-Site, x Cancelled

Competence Certificate

The learning control is an oral examination lasting approx. 15 minutes.

Prerequisites

None

3.219 Course: Unit Operations and Process Chains for Food of Plant Origin [T-CIWVT-108995]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104420 - Unit Operations and Process Chains for Food of Plant Origin

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	6	Grade to a third	Each winter term	1

Events					
WT 21/22	22210	Verfahren und Prozessketten für Lebensmittel pflanzlicher Herkunft (ehem. LVT)	3 SWS	Lecture / 🖥	Karbstein
Exams					
WT 21/22	7220009	Unit operations and process chains for food of plant origin			Karbstein
ST 2022	7220009	Unit operations and process chains	Karbstein		

Legend: █ Online, ቆ Blended (On-Site/Online), ♥ On-Site, x Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

3.220 Course: Variational Methods [T-MATH-110302]

Responsible: Prof. Dr. Wolfgang Reichel **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105093 - Variational Methods

TypeCreditsGrading scaleVersionOral examination8Grade to a third1

3.221 Course: Wave Propagation in Periodic Waveguides [T-MATH-111002]

Responsible: Prof. Dr. Roland Griesmaier **Organisation:** KIT Department of Mathematics

Part of: M-MATH-105462 - Wave Propagation in Periodic Waveguides

Type Credits Grading scale Grade to a third Recurrence Irregular 1

Prerequisites

3.222 Course: Wavelets [T-MATH-105838]

Responsible: Prof. Dr. Andreas Rieder

Organisation: KIT Department of Mathematics

Part of: M-MATH-102895 - Wavelets

Type Oral examination Credits 8 **Grading scale**Grade to a third

Recurrence Irregular **Version**

Competence Certificate

Mündliche Prüfung im Umfang von ca. 30 Minuten.

Prerequisites