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Lecture 2. An explicit formula for the solution of the
initial value problem.



Recall from the first lecture

The initial value problem for the Benjamin–Ono equation

∂tu = ∂x(|Dx |u − u2) , u = u(t, x) ,

u(t, x + 2π) = u(t, x) (x ∈ T) or u(t, x) −→
x→∞

0 ,

|̂Dx |f (ξ) := |ξ|f̂ (ξ) , ξ ∈ Z or ξ ∈ R .

is globally wellposed on the Sobolev space H2
real, and satisfies a Lax pair

identity with the following operators on the Hardy space L2
+,

Lu := Dx − Tu , Bu = i(T|Dx |u − T 2
u ) .

This leads to the conservation laws

〈LkuΠu,Πu〉 , k ≥ 0 ,

which control the norms Hk/2 of u.



Another consequence of the Lax pair identity

Theorem (Fokas–Ablowitz (1983),... Wu (2016), PG–Kappeler (2021))

If u ∈ C (R,H2
real) solves the Benjamin–Ono equation, then

dLu(t)

dt
= [Bu(t), Lu(t)] .

Corollary

Define the family of unitary operators {U(t)}t∈R by

U ′(t) = Bu(t)U(t) , U(0) = Id .

Then Lu(t) = U(t)Lu(0)U(t)∗ .

Proof. Compute the time derivative of U(t)∗Lu(t)U(t).



Inverse Spectral Theory and explicit formulae

The spectrum of Lu is a conservation law of the Benjamin–Ono equation.

→ Strategy : solve the initial value problem by inverse spectral theory.

On the line. Fokas–Ablowitz (1983),
Coifman–Wickerhauser (1991) u ∈ S (R) and small, ...

On the torus. Recent complete resolution by PG–Kappeler–Topalov
(2021) through some nonlinear Fourier Transform. Sharp
wellposedness in Hs(T), s > −1/2.

In this lecture, we shall bypass the inverse spectral step and establish
directly explicit formulae for the solution thanks to commuting properties
of the Lax operators with the structure of the Hardy space.
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The explicit formula on the torus

L2
+(T) is equipped with the shift operator and its adjoint

S := Teix , S
∗ = Te−ix

and with the inner product 〈f |g〉 =

∫ 2π

0

f (x)g(x)
dx

2π
.

Theorem (PG, 2022)

The solution u ∈ C (R,H2
real(T)) of the Benjamin–Ono equation with

u(0) = u0 is given by

u(t) = Πu(t) + Πu(t)− 〈u0|1〉 ,
∀z ∈ D , Πu(t, z) = 〈(Id− zeite2itLu0S∗)−1Πu0|1〉



Proof (torus)

Because of the equation ∂tu = ∂x(|Dx |u − u2), we have
〈u(t)|1〉 = 〈u0|1〉, and therefore, since u(t) is real valued,

u(t) = Πu(t) + Πu(t)− 〈u(t)|1〉 = Πu(t) + Πu(t)− 〈u0|1〉 .

Fourier expansion of Πu(t) :

∀z ∈ D , Πu(t, z) =
∞∑
n=0

zn〈Πu(t)|Sn1〉 = 〈(Id− zS∗)−1Πu(t)|1〉 .

Apply the unitary operator U(t)∗ to both sides of this inner product,

∀z ∈ D , Πu(t, z) = 〈(Id− zU(t)∗S∗U(t))−1U(t)∗Πu(t)|U(t)∗1〉 .

We are going to calculate explicitly U(t)∗1,U(t)∗Πu(t),U(t)∗S∗U(t)
using U ′(t) = Bu(t)U(t) and some commutator identities.
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Proof (torus), continued

Lemma

[S∗,Bu] = i((Lu + Id)2S∗ − S∗L2
u)

Assume this lemma. Then we have

d

dt
U(t)∗S∗U(t) = U(t)∗[S∗,Bu(t)]U(t) = iU(t)∗((Lu(t) + Id)2S∗ − S∗L2

u(t))U(t)

= i(Lu0 + Id)2U(t)∗S∗U(t)− iU(t)∗S∗U(t)L2
u0
.

and U(t)∗S∗U(t) = eit(Lu0
+Id)2

S∗e−itL
2
u0 . Recall that

Lu(1) = −Πu , Bu(1) = −iL2
u(1) , so that

d

dt
U(t)∗1 = −U(t)∗Bu(t)(1) = iU(t)∗L2

u(t)(1) = iL2
u0
U(t)∗1

U(t)∗1 = eitL
2
u0 (1) ,

U(t)∗Πu(t) = −U(t)∗Lu(t)1 = −Lu0U(t)∗1 = eitL
2
u0 Πu0 .



Proof (torus), conclusion

Plug the obtained expressions

U(t)∗1 = eitL
2
u0 (1) , U(t)∗Πu(t) = eitL

2
u0 Πu0 ,

U(t)∗S∗U(t) = eit(Lu0
+Id)2

S∗e−itL
2
u0

into the formula

∀z ∈ D , Πu(t, z) = 〈(Id− zU(t)∗S∗U(t))−1U(t)∗Πu(t)|U(t)∗1〉 .

We finally infer

∀z ∈ D , Πu(t, z) = 〈(Id− zeit+2itLu0S∗)−1Πu0|1〉 .



Proof of the lemma

Lemma

Lu(1) = −Πu , Bu(1) = −iL2
u(1) , [S∗,Bu] = i((Lu + Id)2S∗ − S∗L2

u)

Proof. Commutation identity with Toeplitz operators,

∀b ∈ L∞(T) , [S∗,Tb] = 〈 . |1〉S∗Πb .

Adjoint Leibniz formula : S∗D = DS∗ + S∗ . Combining these two
identities, we infer S∗Lu = (Lu + Id)S∗ − 〈 . |1〉S∗Πu and finally

[S∗,Bu] = i([S∗,T|D|u]− Tu[S∗,Tu]− [S∗,Tu]Tu)

= i(〈 . |1〉S∗DΠu − Tu〈 . |1〉S∗Πu − (〈 . |1〉S∗Πu)Tu)

= i(〈 . |1〉(DS∗Πu − TuS
∗Πu + S∗Πu)− 〈 . |Tu1〉S∗Πu)

= i(〈 . |1〉(LuS∗Πu + S∗Πu) + 〈 . |Lu1〉S∗Πu)

= i((Lu + Id)〈 . |1〉S∗Πu + (〈 . |1〉S∗Πu)Lu)

= i((Lu + Id)((Lu + Id)S∗ − S∗Lu) + ((Lu + Id)S∗ − S∗Lu)Lu)

= i((Lu + Id)2S∗ − S∗L2
u) .



The explicit formula on the line

The shift operator has to be replaced by the Lax–Beurling semigroup

S(η) := Teiηx , η ≥ 0 , S(η)f (x) = eiηx f (x) .

Infinitesimal generator : multiplication by x . We define G = x∗, so that

S(η)∗ = Te−iηx = e−iηG , η ≥ 0 , Ĝf (ξ) = i
d f̂

dξ
1ξ>0 ,

Dom(G ) = {f ∈ L2
+(R) : f̂|]0,+∞[ ∈ H1(]0,+∞[)} .

Define I+(f ) := f̂ (0+) if f̂|]0,δ[ ∈ H1(]0, δ[) for some δ > 0.

Theorem (PG, 2022)

The solution u ∈ C (R,H2
real(R)) of the Benjamin–Ono equation with

u(0) = u0 is given by u(t) = Πu(t) + Πu(t) with

∀z ∈ C+ , Πu(t, z) =
1

2iπ
I+[(G − 2tLu0 − zId)−1Πu0] .



Proof (line) : inverse Fourier transform

Start with the inverse Fourier transform for every f ∈ L2
+(R),

∀z ∈ C+ , f (z) =
1

2π

∫ ∞
0

eizξ f̂ (ξ) dξ .

Plancherel theorem : we have, in L2,

f̂ (ξ) = lim
ε→0

∫
R
e−ixξ

f (x)

1 + iεx
dx = lim

ε→0
〈S(ξ)∗f |χε〉 ,

where χε(x) := (1− iεx)−1 . Plugging the second formula into the first
one, we infer

f (z) = lim
ε→0

1

2π

∫ ∞
0

eizξ〈S(ξ)∗f |χε〉dξ

= lim
ε→0

1

2π

∫ ∞
0

eizξ〈e−iξG f |χε〉dξ

= lim
ε→0

1

2iπ
〈(G − zId)−1f |χε〉

=
1

2iπ
I+[(G − zId)−1f ] .



Proof (line), continued

Since u(t) is real valued, u(t) = Πu(t) + Πu(t).
The previous inverse Fourier transform formula reads

∀z ∈ C+ , Πu(t, z) =
1

2iπ
lim
ε→0+

〈(G − zId)−1Πu(t)|(1− iεx)−1〉 .

Apply the unitary operator U(t)∗ to both sides of this inner product,

∀z ∈ C+ , Πu(t, z) =
1

2iπ
〈(U(t)∗GU(t)−zId)−1U(t)∗Πu(t)|U(t)∗(1−iεx)−1〉 .

Again, we are going to calculate explicitly

lim
ε→0+

U(t)∗(1− iεx)−1,U(t)∗Πu(t),U(t)∗GU(t)

using U ′(t) = Bu(t)U(t) and some commutator identity.
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Proof(line), continued

Lemma

[G ,Bu] = −2Lu + i [L2
u,G ] .

Assume this lemma and calculate

d

dt
U(t)∗GU(t) = U(t)∗[G ,Bu(t)]U(t)

= U(t)∗(−2Lu(t) + i [L2
u(t),G ])U(t)

= −2Lu0 + i [L2
u0
,U(t)∗GU(t)] .

Integrating this ODE, we get

U(t)∗GU(t) = −2tLu0 + eitL
2
u0Ge−itL

2
u0 .



Proof(line), continued

Recall — see the first lecture— ∂tΠu = iL2
u(Πu) + Bu(Πu) . We infer

d

dt
U(t)∗Πu(t) = U(t)∗(∂tΠu(t)− Bu(t)Πu(t)) = iU(t)∗L2

u(t)Πu(t)

= iL2
u0
U(t)∗Πu(t) ,

from which we conclude U(t)∗Πu(t) = eitL
2
u0 Πu0 .

Finally, we have

d

dt
U(t)∗χε = −U(t)∗Bu(t)χε = −iU(t)∗(T|D|u(t)χε − T 2

u(t)χε)

and the right hand side converges in L2
+ to

−iU(t)∗(DΠu(t)− Tu(t)Πu(t)) = −iU(t)∗Lu(t)Πu(t)

= −iLu0U(t)∗Πu(t) = −iLu0e
itL2

u0 Πu0 = lim
ε→0

iL2
u0
eitL

2
u0χε .

By integrating in time, we infer U(t)∗χε − eitL
2
u0χε → 0 in L2

+.



Proof(line), conclusion

Plugging the obtained identities

U(t)∗Πu(t) = eitL
2
u0 Πu0 , U(t)∗χε − eitL

2
u0χε −→

ε→0+
0 ,

U(t)∗GU(t) = −2tLu0 + eitL
2
u0Ge−itL

2
u0 ,

into the formula

∀z ∈ C+ , Πu(t, z) =
1

2iπ
〈(U(t)∗GU(t)− zId)−1U(t)∗Πu(t)|U(t)∗χε〉 ,

we infer

Πu(t, z) = lim
ε→0

1

2iπ
〈
(
eitL

2
u0Ge−itL

2
u0 − 2tLu0 − zId

)−1

eitL
2
u0 Πu0|eitL

2
u0χε〉

= lim
ε→0

1

2iπ
〈(G − 2tLu0 − zId)−1Πu0|χε〉

=
1

2iπ
I+[(G − 2tLu0 − zId)−1Πu0] .



Proof of the lemma

Lemma

[G ,Bu] = −2Lu + i [L2
u,G ] .

Proof. For every f ∈ Dom(G ), b ∈ H1(R), then Tbf ∈ Dom(G ) and
[G ,Tb]f = i

2π I+(f )Πb . Using this identity and [G ,D] = iId, we obtain

∀f ∈ Dom(G ) ∩Dom(Lu) , [G , Lu]f = if − i

2π
I+(f )Πu .

We infer, for f ∈ Dom(G ) ∩Dom(L2
u),

[G ,Bu]f = i([G ,T|D|u]f − Tu[G ,Tu]f − [G ,Tu]Tuf )

=
i

2π
(iI+(f )(DΠu − TuΠu)− iI+(Tuf )Πu)

=
i

2π
(iI+(f )LuΠu + iI+(Luf )Πu)

= i(Lu(if − [G , Lu]f ) + iLuf − [G , Lu]Luf )

= −2Luf + i [L2
u,G ]f .


