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Workshop on Analysis of PDEs in Karlsruhe

Karlsruher Institut für Technologie, March 2023 1



Introduction

• Main goal : to investigate dispersion phenomena for linear evolution

equations with applications to some nonlinear PDEs involved in physics, fluid

and quantum mechanics, biology,...
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The waves decrease and vanish as the time goes to infinity
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- Among the iconic examples of linear evolution equations on Rd, one can

mention

- the heat equation : ∂tu−∆u = 0

- the transport equation : ∂tu+ b · ∇u = 0

- the Schrödinger equation : i∂tu−∆u = 0

- the wave equation : ∂2
t u−∆u = 0

- One can explicitly solve all these equations which are of different types
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Dispersion phenomena express that waves with different frequencies move at
different velocities

For instance, for the free linear Schrödinger equation on Rd

(S)

{
i∂tu−∆u = 0

u|t=0 = u0 ,

taking the partial Fourier transform F of (S) with respect to the variable x,
we obtain

i∂tFu(ξ) + |ξ|2Fu(ξ) = 0.

Then integrating in time the resulting ODE, we get

Fu(t, ξ) = eit|ξ|
2
F(u0)(ξ).

Applying the inverse Fourier formula, we obtain (oscillating integral)

u(t, x) = (2π)−d
∫
ei(x·ξ+t|ξ|2)F(u0)(ξ)dξ

=
(

ei
|·|2
4t

(4πit)
d
2

? u0

)
(x)
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Commonly dispersive estimates correspond to a pointwise inequality in time

decay, namely (t 6= 0)

‖u(t, ·)‖L∞ .
‖u0‖L1

|t|r

where (in general) the rate of decay r > 0 depends on the equation, the

dimension and the setting

Very often, interpolating such type of estimate with some conservation law,

we deduce a family of dispersive inequalities

In the particular case of the free linear Schrödinger equation on Rd, taking

advantage of the representation of the solution under convolution form, we

deduce thanks to Young inequality

‖u(t, ·)‖L∞ ≤
‖u0‖L1

(4π|t|)
d
2
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Since we have the conservation of the mass for the solutions of (S) :

‖u(t, ·)‖2
L2 = ‖u0‖2L2

a complex interpolation argument (Riesz-Thorin’s theorem) leads to the

following family of dispersive inequalities, for all 1 ≤ p ≤ 2

‖u(t, ·)‖Lp ≤
‖u0‖Lp′

(4π|t|)
d
p−

d
2

where p′ denotes the conjugate exponent of p, namely

1

p
+

1

p′
= 1

This family of estimates is a key tool in the study of nonlinear Schrödinger

equations
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Actually a functional analysis argument known as the TT ∗-argument initiated

by Ginibre-Velo and refined by Keel-Tao enables to deduce from the family of

dispersive estimates a bound for the space-time norm of the solution u by

the norm of the initial datum u0 :

‖u‖Lpt (L
q
x) . ‖u0‖L2

for some suitable (p, q) called admissible pairs.

These pairs which depend on the equation and the dimension can be

computed using the scale invariance of the equation
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Now in the case of the Schrödinger equation on Rd (where the rate of

decay r = d/2), these estimates known as Strichartz estimates are the

following

‖u‖
Lp(R,Lq(Rd)) ≤ C‖u0‖L2(Rd)

where (p, q) are given by the scaling admissibility condition

2

p
+
d

q
=
d

2

and satisfy moreover p ≥ 2 and (d, p, q) 6= (2,2,∞).

For instance when d = 2, L3(L6) is a Strichartz norm.

Note that the Strichartz estimates admit more general forms, whether in the

inhomogeneous setting (with a source term f) or in more general functional

spaces such as Sobolev or Besov spaces.
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Strichartz estimates (which express both a decrease effect and a regularity

effect) constitute a central tool in the study of nonlinear equations, whether

in semilinear frameworks or in quasilinear settings.

- For instance, if consider the cubic semilinear Schrödinger equation on R2

(which involves in quantum mechanics) :

(NLS3)

{
i∂tu−∆u = P3(u, u)

u|t=0 = u0 ∈ L2(R2) ,

where P3 is an homogeneous polynomial of degree 3 with respect to u and u

(for instance, one can take P3(u, u) = |u|2u), then using that L3
t (L6

x) is a

Strichartz norm (and then ‖P3(u, u)‖L1
t (L2

x) ∼ ‖u‖
3
L3
t (L6

x)
), one can show thanks

to the fixed point theorem that (NLS3) is locally (in time) wellposed for any

Cauchy data in L2 and even globally (in time) wellposed for small Cauchy

data.
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More precisely, combining the fixed point theorem together with Strichartz

estimates, one can by classical arguments establish the following theorem :

Let u0 ∈ L2(R2). Then there exists a positive time T = T (‖u0‖L2) such that

there exists a unique solution u of (NLS3) in the functional

space C([0, T ];L2(R2)) ∩ L3([0, T ];L6(R2)). Moreover, there is a positive

constant c > 0 such that if ‖u0‖L2 ≤ c, then the solution belongs

to L3(R+;L6(R2)) ∩ Cb(R+;L2(R2)).

The defocusing (NLS3) with P3(u, u) = |u|2u is globally wellposed for any

Cauchy data in L2(R2), but the proof is much more involved Benjamin

Dodson,...

In the focusing case P3(u, u) = −|u|2u, blow up can occur for large data :

wide literature Book of Cazenave.
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There is plethora of results in the same vein based on Strichartz estimates

for nonlinear Schrödinger equations as well as for nonlinear wave equations

on Rd but also in more general settings, such as on curved manifolds, in the

presence of potentials, obstacles, boundary conditions, or in regular variable

coefficient situations,...

It would take too long to go through all these results. In my lectures, I will

mainly focus on the use of Strichartz estimates to investigate semilinear

evolution equations on Rd, but the case of quasilinear evolution equations

have been also extensively studied by many authors as well as the case of

bilinear estimates
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- The use of Strichartz estimates in quasilinear framework such as for the
following wave equation in connection with the general relativity

(E)

{
∂2
t u−∆u− ∂(g(u)∂u) = Q(∇u,∇u)

(u, ∂tu)|t=0 = (u0, u1)

for some suitable metric g, is much more involved than in semilinear
framework and requires the use of microlocal analysis and in particular the
Littlewood-Paley theory and the Paradifferential calculus of J.-M. Bony

The basic tool to prove local solvability for such equation relies on the
following energy estimate

‖∂u(t, ·)‖Hs−1 ≤ ‖∂u(0, ·)‖Hs−1e
∫ t

0 ‖∂g(t′,·)‖L∞dt′

So the key quantity to control is
∫ t
0 ‖∂g(t′, ·)‖L∞dt′

If (∂u0, u1) ∈ Hs−1 with s > d/2 + 1, then this quantity can be controlled
thanks to Sobolev embedding

But the scale invariant space for (E) is Hd/2 : to go below this regularity for
the initial data, we have to use the dispersive properties of the wave equation
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There are many works devoted to this equation Bahouri-Chemin,

Klainerman-Rodnianski-Szeftel, Smith-Tataru, Tataru,.... it is the

combination of geometrical optics and harmonic analysis that allows to get

closer to the critical space.

Roughly speaking, using the paradifferential calculus of J.-M. Bony, we

reduce the issue to the study of uq the part of the solution relating to

frequencies of size 2q which satisfies a wave equation with regular

coefficients, and for which we establish a microlocal Strichartz estimates,

namely Strichartz estimates on time intervals whose size depend on the

frequency. This is due to the fact that the regular coefficients of the wave

equation satisfied by uq take in mind the starting regularity and cannot be

uniformly bounded with respect to 2q.

To conclude, we glue the microlocal estimates to obtain a local Strichartz

estimate and improve the threshold regularity given by the energy estimate
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Nowadays, it is well known that the geometry of the setting has a big

influence on the dispersion effect, and many authors have focused on these

matters. Among others, one can mention the results of

- Anker-Pierfelice, Banica, Pierfelice,... on the real hyperbolic space

- Bourgain on the Torus

- Burq-Gérard-Tzvetkov and Staffilani-Tataru on compact manifolds

- Ivanovici-Lebeau-Planchon,... on some domains

- Banica-Duyckaerts,... on noncompact manifolds

- Bahouri-Gérard, Bahouri-Fermanian-Gallagher, Del Hierro,

Furioli-Melzi-Veneruso, Müller-Seeger,... on stratified Lie groups such as the

Heisenberg group Hd which is a step 2 stratified Lie group
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In particular there are many situations where dispersion phenomena fail ! (for

instance in compact manifolds, on some domains, on the Heisenberg

group,...)

However in some cases, Strichartz estimates (in weak forms) or smoothing

properties can be established using other approches, which are not based on

dispersive inequalities

Among these approches, one can mention the methods based on

- Fourier restriction theorems

- Kato smoothing effect
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Fourier restriction theorems

The subject is wide and there are several references and monographs

Tao : Some recent progress on the restriction conjecture, Fourier Analysis

and Convexity

Stein : Harmonic Analysis : Real-Variable Methods, Orthogonality,

Oscillatory integrals
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On Rd, the basic Fourier restriction theorem which is due to Tomas-Stein
states as follows :

Let d ≥ 2 and p0 = 2(d+1)
d+3 · Let S be a smooth and compact hypersurface in

Rd endowed with a smooth measure dσ. Assume that S has non vanishing
Gaussian curvature at every point. Then for all p ∈ [1, p0], there exists a
positive constant C = Cp such that for any f ∈ S(Rd) :

‖(Ff)|S‖L2(S,dσ) ≤ C‖f‖Lp(Rd)
The canonical example of S in this theorem is the sphere Sd−1

If we denote by RS the restriction operator RSf = F(f)|S, then by
Tomas-Stein’s theorem it is continuous from Lp(Rd) to L2(S, dσ). By duality
arguments, Tomas-Stein’s theorem is equivalent to say that the adjoint
operator R∗S

R∗Sg = F−1(gdσ)

is continuous from L2(S, dσ) to Lp
′
(Rd), namely

‖F−1(gdσ)‖
Lp
′(Rd) ≤ C‖g‖L2(S,dσ)
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Tomas-Stein’s theorem gives an answer to the following problem : can we

restrict the Fourier transform of an Lp function to a subset ?

- When p = 1, the answer is obvious since by Riemann-Lebesgue theorem,

F : L1(Rd)→ C0(Rd)

- When p = 2, Ff is in L2(Rd) so it is arbitrary on any zero measure subset

- The Fourier transform of a Lp function, p > 1 cannot be always restricted

to hyperplanes as shown by the following example

f(x) =
e−|x

′|

1 + |x1|
whose Fourier transform cannot be restricted to

{ξ ∈ Rd : ξ1 = 0}
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- The index p0 = 2(d+1)
d+3 = 2− 4

d+3 in Tomas-Stein’s theorem is optimal

according to Knapp’s counter-example which is given by gδ (δ > 0) the

characteristic function of the spherical cap

Ĉδ = {x ∈ S : |x · ed| < δ}

The Euclidean case The Fourier restriction problem Main result and few ideas from the proof About the wave equation

Geometric interpretation
let Tδ be the tube in the x space oriented orthogonally to the sphere

[−δ−1, δ−1]× . . .× [−δ−1, δ−1]× [−δ−2, δ−2]
|Tδ| ∼ δ−n−1.

Ĉδ

Tδ
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Obviously |Ĉδ| ∼ δd−1 ⇒ ‖gδ‖L2(Sd−1) ∼ δ
(d−1)/2

Second consider Tδ the tube in the x space oriented orthogonally to the

sphere so that

|x′| ≤ δ−1, |xd| ≤ δ−2

Then for x in Tδ, the quantity x · ξ is almost zero for ξ ∈ Ĉδ which implies that

|ĝδσ(x)| =
∣∣∣∣∣
∫
Ĉδ
eix·ξdσ(ξ)

∣∣∣∣∣ ∼ |Ĉδ| ∼ δd−1

Therefore (since |Tδ| ∼ δ−d−1)

‖ĝδσ‖Lp′(Rd) ≥
(∫

Tδ
|ĝσ(x)|p

′
dx

)1/p′

∼
(∫

Tδ
δ(d−1)p′dx

)1/p′

∼ δ(d−1)δ−(d+1)/p′
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Recalling that the (dual) restriction estimate is

‖F−1(gdσ)‖
Lp
′(Rd) ≤ C‖g‖L2(S,dσ)

It gives for gδ

δ(d−1)δ−(d+1)/p′ . δ(d−1)/2

which is valid only if

d− 1−
d+ 1

p′
≥
d− 1

2
⇒ p ≤ p0

This shows that the sharpness of the index

p0 =
2(d+ 1)

d+ 3
= 2−

4

d+ 3

in Tomas-Stein’s theorem

Note that Knapp’s counter-example involves in the study of maximizers for

Tomas-Stein’s inequality : Christ-Shao, Frank-Lieb-Sabin, Shao,...
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- There are also some restriction results (with smaller range of possible

exponents) when the hypothesis of curvature is weaker

Buschenhenke-Müller-Vargas, Hickman-Rogers, Ikromov-Müller,

Müller-Ricci-Wright, Tao, Wang,...

- For the Heisenberg group Hd (which is a step 2 stratified Lie group) that

can be identified to R2d×R, we have the following Fourier restriction theorem

due to Müller (where (Y, s) ∈ R2d×R is a generic element of Hd), 1 ≤ p ≤ 2

‖FH(f)| S
Ĥd
‖L2(S

Ĥd
) ≤ C‖f‖LpY L1

s

To be aware : contrary to Rd the Fourier dual of Hd is not Hd !

No gain in s direction, but the gain is better than in R2d for Y
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Restriction theory has many applications to other topics, from number
theory to PDEs :

Let us see how it provides Strichartz estimates for instance for the
Schrödinger equation. We have seen that :

u(t, x) = (2π)−d
∫
ei(x·ξ+t|ξ|2)F(u0)(ξ)dξ.

This formula can be interpreted as the restriction of the Fourier transform
on the paraboloid S in the space of frequencies of R1+d, defined as

S =
{

(α, ξ) ∈ R1+d | α = |ξ|2
}
.

Then (with y = (t, x) and z = (α, ξ))

u(t, x) = (2π)−d
∫
S
eiy·zg(z)dσ(z),

where g(|ξ|2, ξ) = F(u0)(ξ)

Invoking the dual form of Tomas-Stein theorem, we deduce that

‖u‖
L

2+4
d(R,L2+4

d(Rd))
≤ C‖u0‖L2(Rd)

Karlsruher Institut für Technologie, March 2023 24



since ‖g‖L2(S,dσ) = ‖u0‖L2(Rd)

The Euclidean case The Fourier restriction problem Main result and few ideas from the proof About the wave equation

Geometric interpretation

R̂n

Ŝ

ξ

(ξ, |ξ|2)

û0
C
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This proof is due to Strichartz
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Kato smoothing effect

- This property was first established by Kato for KdV based on Fourier

restriction type results, then by Constantin-Saut for systems including the

Schrödinger equation (see also Ben Artzi-Devinatz, Ben Artzi-Klainerman,

Sjölin, Vega, Yajima,...)

- In the case of the Schrödinger equation, even though ‖u(t, ·)‖L2 = ‖u0‖L2

(Fu(t, ξ) = eit|ξ|
2F(u0)(ξ)) one can locally gain one half derivative in the

following sense (book of Robbiano : Smoothing effects for the Schrödinger

equation)

There exists a positive constant C such that, for all u0 ∈ L2(Rd), the solution

u of the Schrödinger equation satisfies :

‖〈x〉−1〈Dx〉
1
2u‖

L2(R×Rd) ≤ C‖u0‖L2(Rd) .

The gain of 1/2-derivative is optimal Sun-Trélat-Zhang-Zhong
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Framework

In these lectures, I will limit myself to the study of dispersion phenomena on

Rd and on stratified Lie groups, mainly on the Heisenberg group Hd which is

the most renowned example of step 2 stratified Lie groups and on the Engel

group which is a step 3 stratified Lie group

- Recall that one can recover the group from its Lie algebra and vice versa, by

means of the formula of Baker-Campbell-Hausdorff and the exponential map

- The Lie algebra g of a step-r stratified Lie group admits the following

stratification

g = ⊕ri=1gi with gi+1 = [g1, gi]

where g1 is Lie bracket generating. The most famous examples are

Heisenberg group (step-2) (g = g1 ⊕ g2,

g1︷ ︸︸ ︷
X1, X2,

g2︷ ︸︸ ︷
[X1, X2])

Engel group G (step-3) (g = g1 ⊕ g2 ⊕ g3,

g1︷ ︸︸ ︷
X1, X2,

g2︷ ︸︸ ︷
X3 = [X1, X2],

g3︷ ︸︸ ︷
[X1, X3])
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As we shall see, the study of dispersive phenomena on stratified Lie groups is

a challenging task : contrary to Rd, the solution is not one oscillating

integral, but rather a series of oscillating integrals

- As mentioned above, for the free linear Schrödinger equation on Rd,

u(t, ·) =
ei
|·|2
4t

(4πit)
d
2

? u0

and then we have dispersive estimates with an optimal rate of decay r = d/2

(the optimality follows from the stationary phase theorem)

- However on Hd, the Schrödinger equation is a totally non dispersive

equation : it behaves as a transport equation along the center which is

generated by the variable s Bahouri-Gérard-Xu

Karlsruher Institut für Technologie, March 2023 28



The behavior of the Schrödinger equation is one of the remarkable

differences between Rd and Hd, but as we shall see there are many

similarities : Haar measure, distance, derivations,...

Below the unit sphere on the Heisenberg group
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u =
∑

∆ju︸ ︷︷ ︸
support(F∆ju)⊂2jC
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SuppFu ⊂ λC ⇒ ‖Dαu‖
Lp(Rd) ∼ λ

|α| ‖u‖
Lp(Rd)

SuppFu ⊂ λB and q ≥ p⇒ ‖u‖
Lq(Rd) ≤ Cλ

d(1/p−1/q) ‖u‖
Lp(Rd)
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