Faculty of Mathematics
Institute for Analysis
JProf. Dr. Xian Liao

Karlsruhe Institute of Technology

Office: 3.027
Englerstrasse 2, Geb. 20.30
76131 Karlsruhe

E-Mail:  xian.liao@kit.edu
Website:  www.math.kit.edu/iana2/"liao

Date: July 24, 2023

)

Lecture notes for “Introduction to Fluid Mechanics’

(Lecture 0165900, Summer Semester 2023) [[

Instructor:
JProf. Xian Liao (xian.liao@kit.edu)

Teaching assistant:
Ms. Rebekka Zimmermann (rebekka.zimmermann@kit.edu)

Time & Place (weekly hours 3+1):
e Monday 09:45-11:15, SR 3.061 (lecture, weekly)

e Friday 14:00-15:30, SR 2.066 (lecture/problem class, each biweekly)

Exam:
Oral exam (02.08.2023-03.08.2023)

!Comments are welcome to be sent to me by email.

1 [JuLy 24, 2023]


https://www.math.kit.edu/iana2/~liao/en

Contents

(1__Introductionl 3
(L.1 _Derivation of mathematical models . . . . ... ... ... .. 3
(L.1.1 Conservation of mass and momentum| . . . . . . . . .. 3

(1.1.2  Energy equations| . . . . . .. ... ... ... ..... )

(1.2 Simpliied models| . . . . . ... ... o000 7
(1.2.1 Barotropic models.| . . . . . .. ... ... .. ..... 7

[1.2.2  Incompressible models| . . . . . . ... ... ... ... 9

[2 Euler equations| 13
2.1 Vorticity| . . . . . ..o 13
[2.1.1 Vorticity-Transport formulal . . . . . ... ... . ... 13

[2.1.2  Special solutions| . . . . ... ... ... 15

[2.2 A dip on analysis and Biot-Savart’s law|. . . . . . . . .. ... 18
2.2.1 Motivationsl . . . . . . .. ..o 18

2.2.2 Fundamental solution|. . . . . . . . ... ... ... .. 19

[2.2.3  Functional spaces & Difterentiation| . . . . . . . . . .. 20

224 Derivativesof I1. . . . .. ... ... ... 21

[2.2.5 Newtonian potentiall . . . . . .. ... ... ... ... 23

2.2.6  Biot-Savart’s lawin 3Df. . . . . .. ... ... ... .. 26

[2.3  Local-in-time well-posedness| . . . . . .. ... ... ... ... 29
[2.3.1 Holder continuous spaces| . . . . .. .. ... ... ... 29

[2.3.2  Some typical examples of ODEs| . . . . . . ... .. .. 32

[2.3.3  Local-in-time wellposedness| . . . . .. ... ... ... 33

2.4 Two-dimensional casel. . . . . . . . . ... .. ... ... ... 36
[2.4.1 Vorticity revisited| . . . . . . . .. ... 36

[2.4.2  Global-in-time well-posedness in 2D|. . . . . .. .. .. 38

[2.5 One dimensional isentropic compressible Euler equations| . . . 40
[2.5.1 Burgers' equation| . . . . . . ... ... 41

[2.5.2  One dimensional isentropic compressible Euler equations| 44

[2.5.3  Appendix: General first-order system with one space |

[ variablel . . . .. ... 51
[3 Navier-Stokes equations| 55
[3.1 Leray-Hopf’s weak solutions| . . . . . . . .. ... ... .... 59
13.1.1 A dip on Fourier analysis and Sobolev spaces H"| . . . 60

1 -1n-ti 1 ions . ... ... 62

3.1.3 Two-dimensional casel. . . . . . . .. ... ... .... 66

[3.2  Kato’s strong solutions in space dimension threel . . . . . . . . 67

2 [JuLy 24, 2023]



[17.04.2023]

1 Introduction

In this chapter we will introduce the mathematical models which describe the
motion of the fluids. In the derivation we will always assume the smoothness
of the quantities and domains, unless otherwise clarified. The main reference
of this chapter is [4].

1.1 Derivation of mathematical models

The description of an evolutionary fluid (liquid or gas) involves (N + 2)
evolution equations for (N + 2) fields, namely

the mass density p = 0, the velocity field v € RY and the energy e > 0.

We recall the standard derivation of the evolution equations in eulerian form
in the case of a fluid filling the whole space RY. They follow from the
principles of conservation of mass, momentum and energy.

1.1.1 Conservation of mass and momentum

Let t > 0, z € RY denote the time and space variables. Let Q < RY be
arbitrary smooth volume.

Conservation of mass. By conservation of mass, the variation of mass
inside €2

d
— p(t,w)dxz/ﬁtp(t,x)da:

is equal to the flux of mass on 042

—/ p(t,x)u(t,z) - ndo
o0

where n denotes the unit outer normal to 0€2. By Gauss’ Theorem (or Stokes’
Formular),

- /(m p(t,z)u(t,z) -ndo = — / div (p(t, z) u(t, x))dx

Q
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where div F' := Zjvzl Og, F7 for F(z) = : , we deduce that
FN(z)

/Q<(3tp(t, x) + div (p(t, z)u(t, SL’)))dx —0.

Since (2 is arbitrary, we have derived the continuity equation for the density
function:

o + div (pu) = 0. (1.1)
Conservation of momentum. Similarly as above, the conservation of
1
u
momentum pu, v = | : | implies
uN
d , . : , '
— [ (p!)de = — | (pv!)(uw-n)do+ | pflde+ | (¥-n)do, j=1,---,N.
dt Jo o9 Q o0

Here f € RY denotes the possible external forces acting on the fluid, e.g.
gravity, Coriolis, electromagnetic forces, surface forces E| The tensor ¥ €
R¥*N is called Cauchy stress tensor, and two common stresses in a fluid are
caused by compression and viscous effects respectively (Stokes law):

ZZ—pIdNXN-i-T,

where p € R is the pressure and 7 € RY*Y is the symmetric viscous stress
tensor:

7 = 7(Du, p,0),

where 6 denotes the temperature. If we assume that 7 is a linear function of
Du, invariant under translation/rotation and that the fluid is isotropic (i.e.
we consider newtonian fluids E[), then

1
7= Mdivu)ld + 2ud = M(dive)ld + p(Vu + (Vu)), d:= §(Vu + (Vu)™),

where A, u denote the Lamé viscosity coefficients:

A=Ap,0), p=plp0),

2They may occur due to the fluid particles lying outside .
3There exist non-newtonian fluids in our life, and common examples could be ketchup,
toothpaste, blood, etc.
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and satisfy
>0, A+ 2 >0 (1.2)
=, vH=Y :
One can rewrite

7= K(divu)ld + 2,u<1(Vu + (Vu)T) — ldiv uId), K =X+ E,u,

2 N N
where the first summand corresponds to the compression effect and the sec-
ond trace-free tensor corresponds to deformation/shear effect. The parame-
ter p is referred to as the dynamic/kinetic viscosity (coefficient) or the first
viscosity or simply the viscosity, while K is referred to as the bulk/volume
viscosity or the second viscosity.

If A = p = 0 such that 7 = 0, we are in the inviscid case, while if ;4 > 0 and
A+ p > 0, the fluid is viscous.
Hence we arrive at the evolution equation for the momentum pu:

N

(9t(puj) + Z axk (pUjUk - Tjk) + amjp = pfju Jg=1-- N, (13)
k=1

or in a compact form
Or(pu) + div (pu®u) —divt + Vp = pf. (1.4)

By use of the continuity equation (1.1]), we can rewrite the above equation
in the following form

pou + pu - Vu +divrt + Vp = pf. (1.5)

1.1.2 Energy equations

We assume that the fluctuations around thermodynamic equilibria are suf-
ficiently weak so that the thermodynamical state of the fluid is determined
by the state variables as in classical thermodynamics:

thermodynamic pressure p, internal energy per unit mass e, thermodynamic
temperature 0, mass density p

Conservation of energy: First law of thermodynamics. As the total
energy E consists of the kinetic energy p|u|?/2 and the internal energy pe:

1
E = Splul” + pe,
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the conservation of energy (i.e. first law of thermodynamics) yields

d

1 1
G oGl + eaa = - / PGl + o)y

+/,0f-udx+/ u-(E-n)do—/ q - ndo,
Q oQ 29

where the second and third integrals on the righthand side denote the work
done by the forces, and the last integral denotes the heat transferred by
the heat flux q. By Gauss’ Theorem one arrives at the evolution equation
(Exercise)

&QK%MF+6»+dN(ubﬁ%hf+e%ﬂﬂ):wﬁvhﬂﬂ—dw(@+pfu,(L&

and furthermore, by view of the continuity equation (1.1]) and the momentum
equation ([1.4)), we derive

Oi(pe) + div (pue) + pdivu = —div (q) + 7 : d (1.7)

or
pose + pu - Ve + pdivu = —div (¢) + 7 : d. (1.8)

where A : B = Zﬁfk:l A Bjj, for two matrices A = (Aji)1<jk<ny and B =
(Bjk)1<jk<n-

State equations & Navier-Stokes-Fourier equations. To close the sys-
tem, we have to postulate the relations among p,0,p,e,q. Let p,0 be two

independent thermodynamic state variables.
Let

p= p(pv 9), €= e(ﬂﬂ 9) (19)

be given by general constitutive laws. Let
4 = —(p, 0, VOV (1.10)

be the heat flux given by Fourier law. The heat conduction coefficient £ may
depend on p, 0, |V0|, and in most cases depends only on p, 8, or even is taken
to be constant.

To conclude, we have the following (N + 2)-evolution equations ([1.1])-(|1.4])-
(1.7) for (N + 2)-variables (p, u, e):

Orp + div (pu) = 0,

Or(pud) + div (puiu) — St On (N(a:vk“j + 0g,u’)) (1.11)
—0,,(Adivu) + 0pp = pf?, j=1,-,N, '
Oi(pe) + div (pue) + pdivu = div (V) + 2ud : d + \(divu)?,
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where p,e are given in terms of p,f in the state equations ((1.9), and the
viscosity and heat conduction coefficients u, A\, x may depend on p, 0. It is

called (compressible) Navier-Stokes(-Fourier) equations.
[17.04.2023]

[21.04.2023]

Second law of Thermodynamics. We postulate the existence of a new
state variable: the specific entropy

s = s(p,0), (1.12)

which satisfies
ds 1de é’s_l(&e_p)
o0 000 op O\dp p?)
Then we have the entropy equation from (1.1)) and (1.7) (Exercise):

1 1
Or(ps) + div (pus + %) =47 d— 2q V. (1.13)

By virtue of the second law of thermodynamics, the righthand side should be
nonnegative. Notice that by the decomposition of a matrix into a multiple
identity matrix and a trace-free matrix

2 . 1. 1 L.
T:d= (()\ + N,u)dlvuld + 2u(d — Ndlv uId)) ; <Ndlv uld + (d Ndwuld))
2 1 . 1 1
— Ot =)= 2u(d — —divuld) : (d — —divuld).
(A + N,u)N(dlvu) + 2u(d Ndlvu d):(d Ndlvu d)
This gives the restriction:

p
p=0. K=\t >0, ¢-V0<0,

that is, and £ > 0 in (L1.10). For common fluids (which e.g. do not
move too fast), experiments show that K = A + %u is very small and could
be taken as zero in the simulation. Nevertheless in the study of sound waves
or shock waves which transport in fast-moving compressible fluids it plays
an important role.

1.2 Simplified models
1.2.1 Barotropic models.

In the case of ideal gas, the constitutive equations ((1.9) read
p=(y—1)pe, e=C,0, (1.14)
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where v > 1 is the adiabatic constant, and C, > 0 is the thermo capacity at
constant volume. Often one denotes by R = C,(y—1) the ideal gas constant,
and by C), = 7C, the thermo capacity at constant pressure.

Example 1.1. o [sentropic compressible fluids. In the case of ideal gas,
the entropy (1.12)) takes the form (up to a constant)

s = Cy(log(e) + (1 —v)log(p)).

If s = sg = const. all the time and consequently,
plp) = ap’, a=(y—1)exp(so/Cy) >0,
then (1.1))-(1.4) represent a closed system for (N + 1)—variables (p,u)

describing the motion of an isentropic compressible viscous fluid:

Orp + div (pu) = 0,
O(pu?) + div (puiu) — Y| Oy (1(Opt? + 0, uF)) (1.15)
—0Oq, (Adivu) + 0, (ap”) = pf?, j=1,---,N.

The total energy of the flow reads
1
where
P'(2)z — P(z) = p(2).

The energy equation (1.6 is then a consequence of (1.1)-(1.4) if A =
u=r =0 (Exercise). Thus it suffices to solve the system (1.15)). The

system (1.15)) is sometimes simply called compressible Navier-Stokes

equations.

It is possible to deduce from the kinetic theory of gases that v = =3,
e.g. v = % if N =3, for a monatomic gas. The physical relevant case
is v € (1,3].

o [sothermal compressible fluids. Similarly, if we suppose 0(t) = 0y =

const., then (1.14)) implies
p = Rpby.

Then (1.15) with apY replaced by RpBy describes the motion of isen-
thermal compressible fluids.

e Barotropic flows: the pressure p depends solely on the density p:

p=0p(p),

and the fluid motion is described by (1.15)) with ap” replaced by p(p).
The isentropic/isothermal ideal gases are special examples.
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1.2.2 Incompressible models

Lagrangian viewpoint We have derived the evolution equations for the
fluid motion in eulerian form, where one fixes a point € R and observe
the fluid flows as time evolves (Eulerian viewpoint). Nevertheless one can
follow directly a specific fluid parcel y € RY (Lagrangian viewpoint).

Let X (t,y) be the integral curved]

X (t,y) =u(t,X(t,y)),
{ X(&,y)le=o = v, (1.16)

and we call X; = X(¢,-) the Lagrangian trajectory. Let J(t,y) = det(V,X})
be the jacobian of the transformation (y — X,(y) = X(¢,y)), such that
(Exercise)

o (t,y) = divu(t, X (t,v))J(t,y),
{ It y)|e=0 = 1, (1.17)

and hence
J(t,y) =1+ tdivu(0,y) + o(|t]), as|[t| — 0.
Let the initial time be any fixed time ¢, X (¢ + h,y) be the integral curve

{ On X (t + h,y) = u(t + h, X(t + h,y)), (1.18)

X(t,y) =y,

and J(t+h,y) be the jacobian of the transformation (y — X (t+h,y)). Then
the conservation of mass at time ¢ and ¢ + h:

/ ot y)dy — / p(t+ h)de, Qt+h) = {X(t+hy) |y e Qb))
Q@) Qt+h)

_ / ot + by X(t+ hyy))J(E + By y)dy
Q(t)

41f the velocity vector field u : R x RY — RY is smooth enough, e.g.

u € L, (R; Lip (RY,RY)),

Le. [|Voulpe @y myxmylLiy <oo, Vfinite interval I < R,
then the Cauchy-Lipschitz theorem implies the unique flow
Xi() = X(t,) : RN - RY,

which is defined as the solution of initial value problem of the ordinary differential equation
[T.16) (with y € RY viewed as a parameter)
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implies (noticing €2(¢) is arbitrary)
p(t;y) = p(t +h, Xt + h,y))J(t + h,y).

Therefore as h — 0, we obtain

p(ty) = p(ty) + b (Gt y) + ult,y) - Volty) + plt y)divu(t,y)) + ofh),
and hence the coefficient of A should vanish:
op+u-Vp+ pdivu = 0,

which is exactly the continuity equation (|1.1J).

Incompressibility condition and incompressible models. Many com-
mon liquids are incompressible (or only very slightly compressible), that is,
the volume of an open set €)(¢) at some fixed time ¢ should be the same as
the volume of the transported set

Qt + h) == {X(t+h,y)|yeQt)},

which reads more precisely as

/ dy =/ dx =/ J(t+ h,y)dy, Vt, h. (1.19)
Q(t) Q(t+h) Q)

That is,
1 =det(V,X(t,y)) = J(t.y), Vty. (1.20)
or equivalently,
divu(t,z) =0, Vt, x. (1.21)
[21.04.2023]
124.04.2023]

Ifdivu = 0, then the pressure H|E|is in fact a Lagrangian multiplier associated

to (L.21)F] The equations (T.I)-(T.4) together with the (T.21]) represent a

5The pressure II here is not necessarily the thermodynamic pressure. Notice that only
VII (instead of II itself) appears in the momentum equation, and the system does not
change if one modifies the pressure by a constant. In particular, it can not be recovered
simply by applying the constitutive laws for fluids.

In the zero Mach number limit ¢ — 0, one can expand the thermodynamic pressure
p = po + €211 + o(e?) where pg is a constant. Then one recovers the incompressible model

(1.22) from the compressible model (|1.11]).

®Notice that ;;0;u; = 0 for all u such that divu = 0 if and only if o;; = I16;; for some

IT.
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closed system for (N + 2)—variables (p,u,Il) describing the motion of an
incompressible viscous fluid:

O + div (pu) = 0
Oi(pu?) + d1 ( — N 0, (O’ + Oz, u)) + 0, 1T = pf,
=1, N
divu = 0.
(1.22)
Observe that for incompressible fluids, if the solutions are smooth enough,
e.g. u(t,r) e L (Ry;Lip (RY)), the continuity equation reduces to

op+u-Vp=0,
which admits a unique solutionm (Exercise)

p(t, X (t,y)) = po(y), e pt,z) = po(X; (2)).

If initially po = 1 is a constant, then p(¢,z) = 1 for all the times, and we call
it a homogeneous fluid. If the density p is not a constant, then are
called inhomogeneous (or density-dependent) incompressible Navier-Stokes
equations.

Incompressible homogeneous models. In the homogeneous case p = 1,
the mass conservation law d;p + div (pu) = 0 is equivalent to the incompress-
ibility condition divu = 0.

The viscosity coefficient p is then a constant. If g > 0, then becomes
the (classical) incompressible Navier-Stokes equations:

{@tu—i—u-Vu—uAu—FVH:f, (1.23)

divu = 0,

which describes the motion of the homogeneous incompressible viscous fluids.
If = 0, then (1.22) becomes the (classical) incompressible Euler equations:

{é’tquu‘Vu%—VH:f, (1.24)

divu = 0,

which describes the motion of the homogeneous incompressible inviscid fluids.
If (p,u) are known, then the energy equation (|1.7)) becomes

or(pe) + div (pue) — div (kV0) = %,u(aiuj + 0;u’)?,

"Indeed it is just the Lagrangian formulation of the above transport equation with
divergence-free velocity field.

11 [JuLy 24, 2023]



and in particular in the homogeneous case p = 1, e = ¢(1,6) = C,0, the above
equation becomes the transport-diffusion equation for the temperature 6.
Incompressible (inhomogeneous) perfect fluids. The evolution of in-
compressible perfect fluids is described by the following equations (i.e.
with 1 = 0 and f7 = —0,, F)

op+u-Vp=0,
p(Cu+u-Vu+ VF) + VII =0, (1.25)
divu = 0.

If we consider the perfect fluids in some bounded smooth domain {2 and
assume the impermeability condition on the boundary:

(u : n)’ag = 0, (1.26)

where n denotes the outer normal vector on 02, then the incompressibility
condition means that, for each time ¢, X(¢,-) is a smooth diffeomorphism
from Q to itself that preserves the orientation and volume (recalling (1.20))).
By use of Lagrangian coordinates, the system reduces to (recalling

p(t, X(t,9))) = po(y))

poly) (X (t.y) + VoF (£, X (1)) + VLIt X (1)) = 0.

X(t,-) € {v:Q— Q diffeomorphism s.t. det(V~y) = 1},

where (po, up) are the initial data at time 0. This is related to Least Ac-
tion Principle (a variational problem, formulated by V.I.Arnold 1960s): The
Action is the sum of the kinetic energy and the potential energy

AwX) = [ i) (310X = Pt X (e

and the Least Action Principle says that if t; — ¢ty > 0 is not too large, then

t1 t1
/A(t,X)dt</ A(t,~)dt

to to

holds for all flow map (¢, ), which is an orientation and volume-preserving
diffeomorphism such that y(tg) = X(to), v(t1) = X(t1), i.e. the Action
integrand from ¢y to t; is minimal for X. The resolution of is related
to the shortest patch problem.
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2 Euler equations

In this chapter we discuss the (classical) incompressible Euler equations for
the motion of perfect incompressible fluid flows (without external forces)
given in ({1.24)) mainly in dimension N = 2 or 3

(2.1)

o+ u-Vu+ VII =0,
divu = 0.

2.1 Vorticity

In this section we will discuss the vorticity and we restrict ourselves in three-
dimensional case N = 3. The main reference is [5].

2.1.1 Vorticity-Transport formula

Notice that the 3 x 3-matrix U := Vu = (,,u’) can be decomposed into a
symmetric part d (deformation tensor) and an antisymmetric part a (rotation
matrix):

Vu=d+a:= %(Vu + (Vu)h) + %(Vu — (Vu)?)

O, ut %(é}ﬂf + Og,ul) %(é’mug + Opyul)
= %(85,;111? + Og,ul) Oy U? %(8x2u3 + Opyu?)
%(dclug + Opyul) %(&CQU?’ + Opyu?) O3
0 %(6I2u1 — O, u?) %(é’%ul — Op,u?)
+ %(&CluQ — Op,ut) 0 %(6I3u2 — Opyu?)
%(&mu?’ — Ogyut) %(0x2u3 — Opyu?) 0
124.04.2023]
[05.05.2023]

We apply V to the u-equation in ({2.1)) to arrive at the following equation for
the matrix U = Vu = (0,u")

U +u-VU + U? + V21 = 0.

We have decomposed U into symmetric part d = %(U + UT) and antisym-
metric part a = %(U —UT), such that U? can be decomposed into symmetric
and antisymmetric parts:

U? = (d* + a®) + (da + ad).
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The symmetric part for U-equation reads as
Ord +u - Vd + d* + a® + VI = 0, (2.2)
while the antisymmetric part reads as
oia+u-Va+da+ad=0. (2.3)

The vorticity w of the velocity field u is given by

3 2
Oy > — Oy

w = curl (u) = | dpu' — 0y u?
2 1

Oz U™ — Oyl

and satisfies
1
ah = §w>< h, VYheR®.

If divu = 0, then tr(d) = 0, and the equation ({2.3)) is equivalent to the
following equation for the vorticity w € R® (Exercise.)

Ow +u - Vw = dw, (2.4)
or equivalently,

Lemma 2.1. Let N = 3. If the velocity field u satisfies (2.1) together with
some pressure term, then its curl w = curl (u) satisfies

ow+u-Vw=w-Vu. (2.5)

The righthand side of (2.5) is called the vortex stretching term, which am-
plifies the vorticity when the velocity is diverging in the direction of w.
Recall the definition of the trajectory X (¢,y) in (|1.16)

atX<t’ y) = U(t7 X(tv y))a
2.6
{ Sl 20
Then the solution to is given by (Exercise)
w(t, X(t,y)) = Vy X (&, y)wo(y) = (woly) - Vo) X(t,y), (2.7)

where wy denotes the initial vorticity. It is however in general open to solve
([2-5), and one notices that the definition of the trajectory X(¢,y) depends
on the velocity u(t,x), which in turn depends on w(t,x) (by Biot-Savart’s
law, see later). We have nevertheless some special solutions of below.
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2.1.2 Special solutions

Any real, symmetric and trace-free 3 x 3 matrix will determine a solution to

the Euler equations (2.1).

Lemma 2.2. Let N = 3. Let d = d(t) be a real, symmetric and trace-free
3 x 3 matriv. Let w = w(t) be determined by the ODE equation on R®:

d
W= dw, wlimo = wpeR®. (2.8)

Then ] ]
(u, TT)(t, z) = (iw xa+da, —(d + & +a2)x-:1:> (2.9)

is a solution to (2.1)). Here the antisymmetric matriz a is defined by ah =

1
wah.

Proof. For d = d(t) and w = w(t) given by ([2.8]), we define the velocity as in
29):

1
u(t,z) = QW X r+dx,

such that (Exercise)

1 1 1
divu =0, curlu=w, E(Vu + Vi) =d, ah:= §(Vu — VTu)h = Piae h,

and (2.4) (and hence (22.3))) holds. With the choice of IT in (2.9)

1
=——(0d+d*+a*)x -,
2( A a’)z -z
the equation ([2.2) holds correspondingly. Thus the pair (2.9)) satisfies (2.1)).
O

Example 2.3. We give some examples of the exact solutions of (2.1)) that
illustrate the interactions between a rotation and a deformation.

1. Jet flows. Let 1,7, > 0 and

—M 0 0
wo=0eR} d= 0 - 0
0 0 (1 +172)
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Then by Lemma[2.3, w(t) = 0, and the pair

—71d 1
(u, IN)(t, ) = —72T2 7—5(%%% + 5wy + (n + 72)%3)
(71 +72)3
is a solution to (2.1)).

The flow forms two jets along the positive and negative directions of
x3-axis, along the particle trajectories X (t,y) (recalling (|1.16)))

et 0 0 e My
X(t,y) = 0 et 0 y=| e "y
0 0 e+t e(n+2)ty,

A jet flow is axisymmetric flow without swirl.

. Strain flows. Let v > 0, and

—y 0 0
wo=0eR3 d=|0 ~ 0
0 00
Then by Lemma[2.9, w(t) = 0, and the pair
ES! 1
(uv H) (tv $) = VT2 ) _5 (’721? + ,YZI%)
0

is a solution to (2.1)). The particle trajectories read
e 'y
X(t7 y) = evtyZ
Ys
The strain flow is independent of x3.

. Vortex flows. Let a € R and

0
Wy = 0 , dZOEIdgxg.

Then by Lemma[2.9, w(t) = wo, and the pair

—%OAUQ 1
(ko) = | | ooy |, ca?(ed +a3)
0
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is a solution to (2.1). The particle trajectories read

cos(pr) —sin(pr) 0 cos(ipr)yr — sin(pr)ys 1
X(t,y) = [ sin(p) cos(p) 0]y =|sin(p)ys +cos(w)yz |, ¢ = Fat
0 0 1 Y3

This vortex flow is independent of xs-variable, and rotates on the (x1,x2)-
plane.

[05.05.2023]

[08.05.2023]

. Rotation jets. We take the superposition of a jet and a vortex:

0 -vn 0 0
wp=10], d= 0 — 0
a 0 0 (m+7)
0
Then by Lemma|2.3, w(t) = 0 , and the pair
e(m+12)t,,

—V1T1 — %e(’yl"r’ﬁ)to[lé
(u, II)(t,x) = —Yoxy + 1e T2z, || Erercise
(71 +72)23

is a solution to (2.1)). The particle trajectories read
Xl (t7 y)
X<tay) = XQ(t7y) )

6(71 +72)ty3

where the first two components satisfy the following ODE:

A Xl _ _f)/l _ %6(71 +72)ta Xl
O X2 - %6(71 +’yg)ta —s X2 )

and in particular 0y(X? + X3) = —2m1 X}? — 279 X2, such that
ety 4 y3) < (X7 + X3)(ty) < e + ).

A rotating jet is axisymmetric flow with swirl.
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Example 2.4 (Beltrami flows). Any steady, divergence-free velocity field
u(z) € R® that satisfies the Beltrami condition

w(x) = AMz)u(x) for some A\(z) # 0 (2.10)

is a (steady) solution to (2.1)). Indeed, if some divergence-free velocity u(z)
and its vorticity w(z) = curl (u(zx)) satisfy (2.10), then

O=divw=u-VA+Xdivu =u-VA.
Hence the (steady) vorticity equation (2.5 is satisfied:
u-Vw=u-V(Au) = (u-VNu+ - -Vu=0+w- Vu.

Therefore, by Corollary u(z) and the associated VII solves (2.1)).
One typical example is the celebrated Arnold-Beltrami-Childress periodic flow

Asin(zz) + C cos(z2)
u(z) = | Bsin(x) + Acos(xs)
C'sin(xzy) + B cos(xy)
2.2 A dip on analysis and Biot-Savart’s law

In this section we recall some definitions and facts from analysis lectures®]
which will help to understand Biot-Savart’s law: A formula for the divergence-
free velocity field in terms of its vorticity.

2.2.1 Motivations

We first claim that in R?, the following identity (when applied on a vector
field) holds

A=Vdiv -V xV x. (2.11)

Indeed, for any vector field u : R* — R3, for any 7,

3 3 3
k=1 k=1

k=1

3
= > 00, (Cay? — 0pyuF) + 0, (div ).
k=1

8The students are required to understand the ideas, but not the analysis detail, which
is not the focus of the lecture.
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In terms of w = V x u € R?,

Au' = 0py (—w?) + Opy (W?) + 0y, (divu),
Au? = 0y (W?) + gy (—w") + Oy, (divu),
Au® = 0y, (—w?) + Opy (W) + Oy (div ),

and hence ([2.11]) follows. Notice that if the velocity field is divergence-free
divu = 0, then wu is related to its vorticity w = V x u as follows:

—Au =V xw. (2.12)
If we could solve the Poisson equation
_AU = fa

with the solution denoted by v = (—A)~!f, then one can recover u from w
as

u=(—A)"V xw.

2.2.2 Fundamental solution

Recall the fundamental solution to the Laplace-equation Av = 0:

—st In |z N =2
I'(z) = 2m _(N— ’ 2.13
) { el N =3, (2.13)

where cy = |0B;(0)| denotes the volume of the unit sphere in RY. We will
show that the Newton potential I" = f solves the Poisson equation —Av = f.
One can simply calculate (Exercise)

Oz, I = g; for x # 0,

Oz, I = gij for x # 0, (2.14)
Al'(x) = 0 for z # 0.

Here
]_ l’j
1 1 T ( ) 5)
PR N A
ij () CN<’1,|N J || N+2
and hence

F’ 9;j € Llloc (RN)7 while Gij ¢ Llloc (RN)’ 9ij € Llloc (RN \{0})
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Here L1 (€) with Q = R" an open set consists of all (Lebesgue-)measurable
function g : Q — R such that g € L'(K) for all compact subset K < Q.
The question we keep in mind is: Is it true that for all z € RY,

2.2.3 Functional spaces & Differentiation

We summerize what we have learned from analysis lectures concerning the
differentiation.

1. If f e CYRY), then 0,,f € C(RY) is well-defined as the limit of

f(zj+h)—f(z;

limy, o . ) eg. f(z) = sin(x) has derivative f’(z) = cos(z).

2. If fe W'P(RY), then d,,f € LP(RY) is the weak derivative of f (see
L. 142, ze(-1,0]
Definition below), e.g. f(x) = { =2 zel0.1) has weak
1, xe(-1,0]

derivative f'(z) = { —1, z€(0,1)

3. If f e D'(RY) is a distribution, then 0, f € D'(RY) is the distribution
derivative (see Definition [2.6]), e.g. the Heaviside function H(z) =

0, we (=,0] has the distribution derivative H'(z) = ¢, where
1, ze(0,1)

O, )00 = #(0).

Definition 2.5 (Lebesgue spaces and Sobolev spaces). Let (€2,.A,m) be
a Lebesque measure space, where Q@ < RY is an open set, A consists of
Lebesgue-measurable sets restricted in 2, and m is the Lebesgue measure re-
stricted on €.

Let 1 < p <oo. We call a real-valued Lebesgue-measurable function f : Q —
R (ie. f7Y((t,]) € A for all t € R) p integrable if |f|P is integrable and
denote (we denote dm simply by dx from now on)

1o = [ 1ypa) " ([ misy (e "

We call a Lebesque-measurable function oo integrable or essentially bounded
if there is a constant C' so that

m{z - |f(z)] > C}) = 0.

The best constant is denoted by | f| .
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We call two measurable functions equivalent (denoted by f ~ g), if they are
the same almost everywhere (i.e. m({x € Q|f(x) # g(x)}) =0).

We define LP(2) as the set of equivalence classes of p integrable functions.
We define LY (2) as the set of equivalence classes of p locally integrable
functions, which are p integrable on any compact subset of Q.

Let f € LP(Q), and we say f € WYP(Q) if for any 1 < j < N, there exists
h; € LP(QQ) such that

/hjgodx = —/f@mjgodx, Vo e CF(9).
Q Q
We call h; the weak derivative of f, and we write simply h; = 0y, f .

Definition 2.6 (Distributional derivative). Let D(RY) = C*(R") be the
test function space. The distribution space D'(RY) consists of all continuous
linear map on D(RN)H. Let T € D'(RY), then its (distributional) derivative
O, T is well-defined as a distribution as follows

(0, T, 0y p = (T, =00, 0)p 0, VY € DRY).

2.2.4 Derivatives of I'
Any locally integrable function K € L (RY) is identified as a distribution
TK eD
(K, o)pp = Tk, p)pp = /N Kpdz, ¥peDRY),
R

and with an abuse of notation we do not distinguish between K and Tk.
If furthermore 0; K € C*(RV\{0}) (not necessarily in L. (R")), then by

Gauss’ integration formula

(O, K, 0)prp = — K0, pdr = —lim K0, pdx
RV =20 Jjalze}
= —lim (0n; (K@) — 05, Kp)da (2.16)

e20 J{|z|2e}

= hm(/ Or; Kpda +/ Ko ﬁda)
=0\ {ja]>e) {al=cy 7|

zlim</ 8ijg0dx> + lim Kgoﬁda.

=0\ (lafze) =0 Jjaj=ey |7
[08.05.2023)]
[15.05.2023]

9See e.g. Section 4.2, my notes on Functional Analysis for more details.
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Lemma 2.7. Let I' be given in (2.13)), and let g;, g;; be given in (2.15)). Then

in the distribution sense,

O, I = g5, (2.17)
1
and in particular,
~AL = 6, (2.19)

where § € D'(RY) denotes the Dirac function: {5, p)pp = (0).
Here p.v.g;; € D' in (2.18)) is understood in the sense of Cauchy principle-
value integral

gijpdzr = lim gijpda (2.20)
N

e20 J{|z|>e}

{p.v. gij, 0)pr.D = P-V. /

R

= i\ L xTr) — 0)) dx ij dz .
[, oo o) de+ [ g

(B1(0))¢

We notice that (2.20)) is well-defined: The first integral on the right-hand

side makes sense since the integrand is bounded by the following L{ . (RY)-

function

1 —
C|x|NH‘pHLip|x‘ = Cle|uip z|* N

and the second integral on the right-hand side is also finite since ¢ has
compact support.

Proof. We first check (2.17)): By ([2.16]),

(0,1, p)p p = lim </ g;p dac) + lim Ly Yi do
20N (ol ze} =0 o=y 17|
— In |ey]| N =2
= gipdr + lim ({ 2m N ) o(ey)
/RN ’ =0 Jyyeny \| vgerleyl M N =3

= {9j: $)p',D-
We now calculate the distribution 0,,0,,I" = 0,,9;: We apply (2.16) to K =

gi = _i\%\” where g; € Ll . (RY) and d;g; € CY(RV\{0}) = L, (RV\{0}):
1 Ti X
Oz, Ui, / =lim(/ i dx)——lim “pdo
(On;9ir £)p 0 = lim oo 197 Ll P s
where
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e the second term on the right-hand side reads
1
——( fﬁﬂjda)@(o)y
CN |z|=1
which

— vanishes, if ¢ # j, since z;2; is odd under a reflection —x;x;

— is, if 1 = j,
! 2 _ 1/ly oo L
o, )0 == (F R #ie)o(0) = —e0)

e the first term on the right-hand side is denoted as Cauchy principle-
value integral

1 i T;Tj
vo | ggede = ——pv. | (S - N pde.
oo [ awede = o || (ol = Nl

It is understood as in (2.20)), since (by the above argument)

/{:v|—7’>0} ’ CN J{|z|=r>0} |z [N || N+

Hence ([2.20]) follows, and in particular,

N
(AT, ©)prp = Y {0u, 95, )0 = —p(0) = =(8,9)pp, ie. —AL=4.

j=1

]

2.2.5 Newtonian potential

We have the following fact from elliptic theory (this is covered in the lectures
“Classical Methods to PDEs” and “Harmonic Analysis”), which we sketch
also here by use of Lemma[2.7] The assumptions on f below can be relaxed.

Convolution We recall first the definitions of convolution. For any two test
functions ¢, ¢ € D(RY), we can easily define their convolution ¢ 1) € D(R")
by

(pr0)o) = [ olo =00 dy.

23 [JuLy 24, 2023]



We can generalize the definition to the convolution between one distribution
T € D'(RY) and one test function ¢ € D(RY)

(¢ T)(x) = (T, p(x = ))prp € C*(RY),

or even between one distribution 7 e D'(RY) and one distribution with
compact support S € &'(RY):

(T *S,¢)pp ={T,S *¢)p p,

where S € & < D' is defined as (S, ) p = (S, o(—))pr.p, such that S+ €
D. For example, the Dirac function § € D’ has compact support {0} and
hence belongs to £'. In particular

T+§=T, VTeD. (2.21)

It is also well known that the convolution can be defined between f e LP(RY)
and g € LY(RY), with % + % > 1 such that (by Young’s inequality)

f*g=/RNf(:v—y)g(y)dy e L"(RY), 1+%=%+%- (2.22)
[15.05.2023]
[19.05.2023]

Now we can state that the Newtonian potential, as the convolution of the
fundamental solution and the source term, is a solution of the Poisson equa-
tion.

Lemma 2.8. Let f € LY(RY)nC*(RY) and if N = 2, Sippony 1f (@) In [z|dz <
0. Then the Newtonian potential

oa) = (O Pa) = [ Tla=s)siye (2.23)
and satisfies

1 T =y

(Vo)(z) = (VI'= f)(x) = - fy)dy, (2.24)

E RN |95—ny

1
8ijv = (pV g”) * f — Nféij, (225)
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e the Poisson equation

—Av = f.

The convolution above is understood in the sense of Cauchy principle value
integral

(p-v.gij) = f(z) = p.v. /N gi5(x —y) f(y) dy

R
= lim gii(x —y)f(y) dy.
TV {la—ylze}
Proof. 1f f € D, the Newtonian potential defined in ([2.23))
v="I>=f

has a distributional derivative

Oz;0 = 0y <L, f(x — D)oo = L), O, [ — y))py 1,
= (T(y), =0y, f(x —y))py D, = {0y, T (Y), f(x —y))py D, = T * f

which can be represented by (2.24) since 0;,I" = g; € L\ (R"). Similarly, one
can write J;;v as in ([2.25):

(0T, f(x = ))p D = D.V. /N gii(x —y) f(y)dy — %&jf(:r),

R

and hence —Av = f.
If f is smooth and sufficiently decaying at infinity as in the assumption, then

the integrals (2.23)), (2.24) and (2.25) make sense, and hold true (e.g. by

density argument). In particular, the Cauchy principle value integral makes
sense if fe L' nC! E since

(0.0 + @] = o [ e = 0)(F0) = S(@)
1
< () _ — f(x)|d Ch
/ #0) = Flaldy + C [

z—y|<1} |z —y|¥ {lz—y|=1} lz —yV

<Gt / L -
H HCb y|N|

{lo—yl<1y [T —

|f(y)|dy
yldy + Co| f]rr < o0,

and hence we can write

pv. [ oute =i = [ e ) ()~ f)dy

YOTndeed C*, a € (0,1) is enough.
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[ 0ae =)

One can derive from (2.23))-(2.25)) that v € C? (indeed v € C?%). (Exercises)
Thus —Av = f holds in the classical sense. O

2.2.6 Biot-Savart’s law in 3D
By virtue of (2.12)) and Lemma 2.8 we have the celebrated Biot-Savart’s law.

The assumption on w can be relaxed.

Theorem 2.9 (Biot-Savart’s law in 3D). If the divergence-free velocity field
u(z) € L*(R*) and its vorticity w(x) = curl (u(z)) € R*® are regular and
decaying sufficiently fast (e.g. w e Ct n L'), then u(x) can be represented by

w(z) by '
u(z) = i /]RB (= —|xy)_>;’f;(y) dy. (2.26)

Furthermore, Vu is

Vu(x)h = p.v. /

RS

Twly) xh 3 [(z—y) xwy)®@—y)lh
(47r |z —y|3 s |z — y|° )dy

1
+ -w(r) x h, VYheR>.

3

(2.27)
Proof. 1t is straightforward to show that the vector field given by ,
denoted from now on by u, solves the equation E[) —Au = V x w.
Indeed, we apply Lemma to (noticing j—ﬂﬁ = —VTI) to derive
that (Exercise)

laxh
CA4m |x3

@ := —K3*w, where the matrix (K3) is given by Kj(z)h Yh e R?

is a C''-solution of (2.12)), and satisfies (2.27)).

One still has to show the uniqueness of the solution to the equation (2.12]):
~Au = V x w in L*(R?). It is straightforward to derive from Young’s
inequality that (Exercise) if w € L' n L™, then (by dividing the
integrals near 0 and near oo separately)

e L"(RY), re (i,oo]. (2.28)
Since u € L?*(R®) satisfies (2.12) in the distribution sense, the difference
i :=u — U € L*(R®) satisfies the Laplace equation

Au =10
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in the distribution sense. Since any harmonic tempered distribution is poly-
nomial [ we have @ = 0.

Thus ([2.26) holds for u € L? and indeed u e C* n L", r > %, such that its
derivatives read as in ([2.27]). ]

The operator from w to Vu given by (12.27)) is indeed a Calderon-Zygmund
operator, which is singular integral operator. We recall the LP-estimates
without proof here.

Lemma 2.10 (LP-Estimates). If w € LP with p € (1,00), then Vu € LP:
There exists a constant C > 0 such that

2

IVl < -2
p—1

jwllze-

Remark 2.11. By Lemma|2.1(}, [2.26) and (2.27) hold for e.q. w e L*n L™,
Recall in Example the wvelocity/vorticity field is smooth, but does not
decay at infinity, and the Biot-Savart’s law does not hold in these cases.

We take the trace of (2.2)) to arrive at another Poisson equation for II (Easy
exercise.):

—AIl = tr(Vu)?,

since divu = 0. Hence one can recover the solution to (2.1) by the solution

to (€3)-220):

Corollary 2.12 (Pressure formula). If w(t,z) € R? is smooth and decaying
sufficiently at infinity (e.g. w € C([0,0); L'nL®)), and satisfies the equation
@5): dw +u-Vw = w- Vu (in the distribution sense) with u(t,z) € R®
given by ([2.20), then u(t,z) together with

1 T —y

(VII)(z) = tr(Vu)?(t,y)dy = VI = tr(Vu)?. (2.29)

dr R3 |-’B - ?/|3

solves (2.1)).

Proof. Firstly u = —K3 = w given by (2.26) is divergence-free. Indeed, the
identity

Au=Vdivu -V xV xu

1Since the Fourier transform of a harmonic tempered distribution is supported on the
origin, and hence is a linear combination of Dirac function and its derivatives, whose
(inverse) Fourier transform is polynomial.
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and (2:26)
—Au=Vxw=VxVxu

imply
Vdivu = 0,

and hence div u is a constant, which is 0 if w € L' n L®, since then by Lemma
R.I0)Vue LP, pe (1,%).
[19.05.2023]
[22.05.2023]

Since by divu = 0 and the equation (2.5 (with ¢; understood as the distri-
butional derivative)

V x (Gu+u-Vu) =0w +u-Vw—w-Vu =0,
we have
A(Opu + u - Vu) = Vdiv (du + u - Vu) = V tr(Vu)?.
Thus by
A(Ou +u - Vu+ VII) =0,

and hence the tempered distribution
o+ u - Vu + VII

vanishes since it decays at infinity by virtue of the following estimates in
x-variable:

3
welLP Vpe(l,0)=uelL" Vre (5,00]&:Vu e LP Vpe (1,0:0)
3

= U - Vu,tr(Vu)2 € L”,Vp € (1, OO) = VII = VI = tr(Vu)2 IS LT,V’/‘ c (57 OO]

]

Remark 2.13. Recall the solution (2.7): w(t, X(t,y)) = (wo - V)X(t,y) of
(2.5). One can rewrite (2.1) as a single equation for X(t,y):

1 X(t,y) — X(t,y)

T i V)X (t,y) dy’
i Jeo X ()~ x(eapp <0 VOIS

X (1, y)(= ult, X(1,y)))

where X (0,y) = y.
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2.3 Local-in-time well-posedness

Given ([2.29) (for the case N = 3), we are motivated to study the modified
Euler equations for u(t,z) : RN — RY:

o+ u-Vu+ A(u,u) =0, (2.30)

where the operator A reads as

A(v,w) = VI = tr(VoVw) = N * (Z o? d;w").

We remark that since divu = 0, one can rewrite tr(Vu)? = 33, - du/d;u’ in

the form o
tr(Vu)? = 2 Oij(u'u?),
.3

and hence A in (2.30) can also be rewritten (at formally) as [
A(v,w) = Z VT # 0y (v'w) = Z Vol * (v'w') = Z [+ Vo (v'w).

i i i

(2.31)

We will benefit from these identities to define the term A(v,w) as a sum
A; + -+ + As in the functional framework C1* (see below). Formally
one can check that and are equivalent (for e.g. smooth and fast
decaying solutions and divergence-free initial data).

In the following we will take arbitrary N > 2, and the data/solutions will be
defined on the whole space R". The main reference is [1].

2.3.1 Holder continuous spaces

We introduce the Holder continuous functional spaces C*< « € (0,1), where
our solutions will stay i. Roughly speaking, f € C*® means that f is
(k + a)-“times” continuously differentiable. We remark that Holder contin-
uous spaces C* o € (0,1) are more “friendly” than the usual continuously
differentiable spaces C* for some typical PDEs, e.g. one can derive that the
Newtonian potential v = I' = f € C** (locally) if f € C®, but not v € C? if
f e C (as we can see from (2.25))).

12By the cancellation property of g;; on the sphere, if u € C* (RM), a € (0,1), one can
write A(u,u) (rigorously) as

Alww) = Y. [ asle = p)(ule) = ') (w1 (2) - w'(0)) dy.
ij R
I3The Sobolev functional framework WP, s > 1 + % is also suitable.
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Definition 2.14. Let o € (0,1). Let Q = RY be an open set. We call a
function f (uniformly) Hélder continuous with exponent o in € if

[f]a;ﬂ ‘= sup I,yEQ,x;éyM < o0,
e

and f is called locally Holder continuous in S if [ flar < 0 for all compact
subsets QU < Q.

The Hélder space C*(Q) resp. C%(Q) consists of Hélder continuous func-
tions:

C(Q) = {f € C(Y | [flus < 0},
CQ) ={feCO)|[flag <o, YU < Q compact subsets}.

Similarly, for any k € N, the Hélder spaces C**(Q)), C**(Q) are defined by

Ch(Q) = {f € C*(Q) | [D* flase == sup |gj-s[ D" fluser < 0},
CH(Q) = {f € C*(Q) | [D* flasy < 00, Y = Q compact subsets}.

Ifk =0, then C* = C%. If Q = RY, with an abuse of notation, we denote
Cte = CMRY) = {f € CGRY) [ flome = | flep + [D* flamy < o0}

Lemma 2.15. Let a € (0,1). Then C** with k € N U{0} is a Banach space.
Furthermore, there exists a constant C such that

1fglcre < CO|f|ckalglcra, k=01,
If ogllere < C(|f|cre, lglcra),
[ flore < Cf1%alfllEn%, o €(0,0),0 =a—a

Proof. Exercise. O]

[22.05.2023]
[05.06.2023]

We have shown that the operator A introduced in (2.30) is well-defined on
sufficiently smooth and fast decaying functions v,w (see e.g. Lemma
or by sharp Young’s inequality Vv € LP, Vw € L? implies A(v,w) € L" if
r=ote—welo1]).

The following lemma shows that A is also well-defined on divergence-free
Clevectors.
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Lemma 2.16. Let o€ (0,1). Then the operator

A CrRY;RY) x C*(RY;RY) — CH*(RY;RY),
1 =
en [l

via A(v,w) = VI = tr(VoVw), VI =-—

1$ a bounded bilinear map, where
CL®YNRY) = {ue CH*(RY;RY) | divu = 0}.

Proof. The proof is not trivial, and it will not be included in the exam.

We sketch the ideas by delicate Fourier analysis. We can rewrite the op-
erator A as (simply by noticing formally I'+ = (—A)~! and using Einstein
summation convention)

A(v,w) = V(=A)"H (v 0;u'"),
which reads if dive = divw = 0 as
A(v,w) = V(=A)"d;;(v/w").

By use of Bony’s decomposition for productﬂ, it can be decomposed into
the following five parts

(v,w) = V(=A) " Tp,0 050",

(v,w) = V(=A) " T 00,

Az(v,w) = V(=A)TH (1 = x(D)) 0y R(v’, w'), (2.32)
(v,w) = (XT) * Voyx(D)di; R, w'),

(v,w) = V(1 = X)T) = x(D)R(v’, w'),

where x(€), x(x) are smooth cut-off functions near the origin, in the frequency
and space respectively.

Roughly speaking, A; cares about the low-frequency part of d;uv7 while high-
frequency part of d;w’, such that

[As(v, w)ere < C[V| | Vwlea < Cloferefw]cre.

Similarly it holds for As. The operator As involves the disjoint comparable
high-frequency parts of v/, w?, such that e.g.

[As(v, w)]cr2e < Clv]orefw]cre.

14Gee e.g. Chapter 2, my notes on Fourier Analysis.
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The operators Ay, As take care of the comparable frequency parts of v/, w?,

and we come back to the convolution formulation for (—A)~!. To remove
the singularities of I', which is not integrable at infinity, we locate I" near the
origin in Ay, such that (noticing Ay is also located in the frequency)

|Aslcre < ClA]e < CIRT X (D) R, w2 < Clvferaw]era.

In Aj the singularity of I' at infinity is removed by applying all the derivatives
on (1 —x)T', which is then integrable, and the same estimate as for A4 holds
for As. To conclude, A is a bounded bilinear map. O

2.3.2 Some typical examples of ODEs

We give here some typical examples of ODEs:
e We consider the ODE

y(t) = a(t)y(t) + B(t)
with initial data yo, and «, § are given functions. It is straightforward
to calculate from the equation that
d
i
and hence by the initial data yo the ODE is uniquely solvable (globally
in time) as follows

~leOy () = e (o)

y(t) = eh @y, + / A ) g
0
Moreover, if 4o, a, 5 = 0, then we can easily derive Gronwall’s inequality
y(t) < elo o)y /t eftt,ot(t”)dt”ﬁ(t/)dt/,
0
for y(t) which satisfies

y(t) < alt)y(t) + B().

e If the righthand side is nonlinear in y, e.g.

y=1y (2.33)
with initial data yo > 0, then the unique solution reads as
Yo
t) = , 2.34
) - T (2.34)

which blows up (tends to o0) as ¢ tends to yio € (0,00).
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2.3.3 Local-in-time wellposedness

We are going to see that after taking the C®-norm with respect to z-
variables, the quadratic ODE (2.33) (more precisely, the estimates of type
(2.34), see (2.38) below) will appear, and hence the local-in-time results will
follow. In order to “see the ODEs” with respect to t-variable, the estimates
in C% C%*-spaces (w.r.t. z-variable) in Lemma @ and will play an
essential role. In the following, the operator A in (]2__3—0[) will be understood
as A+ -+ A5 in .

Theorem 2.17. Let a € (0,1). Then there exists ¢ > 0 such that for any
matial data ug € C’L“(RN;RN), the modified Euler equations | ) has a
unique solution w € L*([=T,T1];C*) nae.a) C([-T,T); C’lo‘) for some
T = clug| gt > 0.

Proof of Theorem[2.17. Step 1. Construction of a sequence of global-
in-time divergence-free approximate solutions.
Given u, = u,(t,z) € L, (R; CY*(R?)), n = 0, we define iteratively u,,; as
the solution of the following linear transport equation

{ atun+1 + Uy - vun+1 + A(“na un) = O,

Un+1|t:0 = Uy,

(2.35)

where A = A; + -+ 4+ A5 as in (2.32). By Lemma the vector-valued
function A, := A(un, u,) belongs to L. (R; Ch).
Let X, (t,y) be the Lagrangian trajectory associated to the velocity field w,,

(recalling (L.16))
{ atXn(tay) = un(t7Xn(t>y))a
Xu(t,y)le—0 = v.
If u, € LY, (R;CH*), then X;—rtl —1Id € C(R;C") such that for all ¢ > 0
(Exercise)|

HVXS; HL:;O g efg HvunHLOO dt’ ’
HXitl —1d HCl,a < ecfg [un 1,0 dt’ . (236)
The transport equations ([2.35)) read as

{ Ot(uns1(t, Xn(t,y))) = —An(t, Xa(t, ),
tn1(t, Xn(t, y))|e=0 = uo(y).

15Hint: We define more generally the trajectory X (¢,t',y) of a velocity field u as

t

X(t,ty) =yt / W, X (1 y))dt.

t

Then X;(y) = X (t,0,y) and X; *(y) = X(0,t,7).
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Integration in time gives us
Uny1(t, Xn(t,y)) = uo(y) — /t A, (U, X, (', y))dt', VteR, yeR"Y,
0
and equivalently, the solution of reads
i (£, 7) = uo( X)) — / At Xos (X (@), WEER, zeRY.
0

[05.06.2023]
[09.06.2023]

Hence by Lemma Lemma [2.16, (2.36) and Gronwall’s inequality we

have for t > 0 (Exercise)

|tnt1] 2o fo.,010)

t
< €@ o lun®lcra |y ora + / | An (', 2)|creeCdlunlcre q¢ - (2.37)
0
t
< €€ o ln@lote |y one + / C i (8) |2, S Fnlct q” |
0

Similar estimate holds for ¢ < 0. Thus u,; € C(R;C**) n L.
given above is the unique solution of ([2.35)).

Let t € R such that 2C|t||ug|cre < 1. By iteration, we have the following
uniform estimates for u,, (Exercise):

(R; CH)

| uoll e
un t Cl,a < . 238
e < T o 2:5%)
Step 2. Convergence of the sequence in the weaker topology.
Since the equations ([2.30)) are invariant under the symmetry (¢, u) — (—t, —u),
it suffices to consider positive times.

Let us fix T > 0 such that 2CT||ug|c1« < 1, and the approximate solutions
u, satisfy uniformly the estimate (2.38)):

|uo e
N o < = . 2.39
[tn ]l qo,ryicney 1-2CTJug|cra " (239

The iterative equations for the differences U, , := (Un4m—1uy,) read as follows

(at + Un4+m V)Un+1,m
= _Un,m . vUn-‘,—l - A(Un,ma Un+m + un)a
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which is a linear equation for Uy, 41, if U, and (u,) are given. Since there
is a spacial derivative in U, ,,, - Vy,41:

1Unm - vun+1||C$ < C”Un,mn()ﬁ”vun+1“0$ < CHUn,mHCS Hun+1Hc;v°‘7

it is convenient to work in a (spatially) weaker topology C®. Similarly as in
Lemma [2.16] (nontrivial),

‘|A<Un,m7 Unp+m + un)HCg < CHUn,mHCgHun+m + un“cé"’ﬁ
and we have a similar estimate as in (2.37)) for U, 41 m:
| Unt1,m | o= 0,350

t
t
< eCfO [un+mllot,a / C”Un,m(t/)HCa H(un+17 Untms Un)(t,)”cl,a dt .
0

By induction it follows (Exercise)
1 -n
(1= 20T Juollore) ™ Vol o (o702 -

By use of the uniform estimates (2.39)) for Up,, u, is a Cauchy sequence in
C([0,T]; C*), and hence converges to a limit u € C([0,T]; C?).

1 Unml 2o ([0,17;00) <

Step 3. Passing to the limit in the equations and final check.

By the uniform bound (2.39)), the limit u indeed stays in L*([0,T]; C*).
By the interpolation inequality in Lemma the sequence u,, converges in
a stronger topology:

lun — UHLOO([O,T];CLa’) — 0, Va'e(0,a).

This suffices to pass the limit in the equations (Exercise), and hence
u e L*([0,T];C**) is a solution of (2.30)), in the distribution sense. Here
we recall in the distribution theory that as the time differentiation operator
is linear, u,, — u in D’ implies dyu,, — dyu in D’. Since u, € C(R; CH?), the
limit w e C([0,T]; C**") and take the value ug at the initial time.

[09.06.2023]
[12.06.2023)]

It is the unique solution in L*([0, T]; C**). Indeed, if there are two solutions
uy, up in L®([0, T]; C**), then we can proceed as in Step 2 to consider their
difference du := u; — uq, which satisfies

t t
oul o < explC [ furlove dt) [ 1ou(e)lewlun, )t cre '
0 0

Gronwall’s inequality implies u = 0. The uniqueness follows. ]
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We hence have the following results for the Euler equations ({2.1)).

Corollary 2.18. Let a € (0,1). Then there exists ¢ > 0 such that for any
initial data ug € CH(RY; RY) with divug = 0, the Euler equations (2.1]) has
a unique solution (u, VII) € L®([=T,T]; C**) nwe@.0) C(|-T,T]; C+*) for
some T = c|ug| 1. > 0.

Proof. Let u be the unique solution constructed in Theorem [2.17] We claim
that divu = 0. Indeed, we apply div to the modified Euler equations ([2.30)

to arrive at

O(divu) + u - V(divu) + tr(Vu)? + div A(u,u) = 0,
div Uy = 0,

where, by use of AT' = —4 or formally A(—=A)~! = —1,

tr(Vu)? + div A(u, u)

= Tyuwdjut + Ty, sditd + R(0ud, Oju') — (Taiuj O’ + Ty du? + 03 R(u', 0 ))
= —R(0;divu,v’) — R(u', 0;divu) — R(div u, div u).

This is essentially transport equation for divw with null initial data, and
hence divu = 0 for all the timed™]

We define VII = Vtr(Vu)? such that A(u,u) = VII and hence (u, VII)
satisfy . The uniqueness follows from the uniqueness result in Theorem
217 O

2.4 Two-dimensional case

In this section we restrict ourselves in two-dimensional case N = 2. The
main reference is [1].

2.4.1 Vorticity revisited

1
T u'(xy, z2)

If we are in two-dimensional case: # = [y | and u = | u*(z1,72) |, then
T3 0

as before we decompose Vu into its symmetric and antisymmetric parts re-

16Similarly as in the proof of Theorem the following estimate for divu comes from
the estimates for the remainder operator R(v, w)

Idiva] e < efs 1eleta |divug|| co.
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spectively:

0 0
O, ut (00U + Ogyut) O
= | $(0p,u* + Op,ut) Oy > 0
0 0 0
0 2(Oput — 0pu?) 0
+ | 1(0pu? — Opyut) 0 0
0 0 0

We define the vorticity w as a scalar function

W = dpu* — Opyu’, (2.40)

0
such that ah = % 0 | xh, Vh € R3. In the following for notational simplicity
w

1

we will simply take z = il eR? u= Z2> eR? w=0,u? — dy,ut e R,
2

It is straightforward to verify that (Exercise)

Lemma 2.19. Let N = 2.

1. If the velocity field u satisfies (2.1)) together with some pressure term,
then the vorticity w = 0y, u? — 0y,u' satisfies the free-transport equation

ow +u-Vw = 0. (2.41)

2. If the divergence-free velocity field u(z) € R?* and the vorticity w(x) =
Op,u? — Op,ut € R are smooth and decaying sufficiently fast at infinity,
then u(zx) can be represented by (Biot-Savart’s law)

u(z) = — / Mw(y)dy, (2.42)

_% R2 |a:—y!2

where T+ = (_;2), and Vu has a simpler form
1
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3. If a smooth and fast decaying function w(t,x) solves (2.41]), then (2.42))
together with VII(z) = —5= [oo ﬁtr(Vu)Qdy solves (12.1)).

Remark 2.20 (Stream function). Let ¢ € R be a stream function such that

u = Vi, that is, (Z;) - <_af'f) (2.44)

is divergence-free. Then 1 satisfies the Poisson equation with w as the source
term

Aw = 01(811/1) + 62(§2w) = 51(u2) + 62(—161) = W. (245)

Conversely, if u is divergence-free velocity field which is smooth and fast

decaying at infinity, then there exists a stream function ¢ = —(—A)" w such
that u = V+.

[12.06.2023]

[16.06.2023]

2.4.2 Global-in-time well-posedness in 2D

The local-in-time wellposedness in any dimension N > 2 has been established
in Corollary EL and the prototypical ODE in the proof is , whose
solution @ blows up in finite time. We are going to see that in dimension
two, a “linear” ODE will appear (see (2.48)-(2.50) below) thanks to the a
priori estimates for the vorticity (see below) which satisfies the free
transport equation . Recall the vorticity equation for N = 3,
where there is an additional nonlinear term on the righthand side, and hence
the following strategy for dimension two does not work for dimension three.

Theorem 2.21. Let N = 2. Let ug € C**(R?), a € (0,1) be a divergence-
free vector field, such that wy = V+tug e L' n L*. Then the Euler equations
(2.21) have a unique global-in-time solution (u, VII) such that

o0
ue Ly,

(R;C*), weCR;L' n L™).

Proof. We sketch the proof ideas here. By symmetry if suffices to consider
positive times. The main strategy here is to “play” with the norms with
respect to the z-variables (which is impossible for ODEs where only the time
variable is present).

Step 1. Continuation criteria. Let uy € C® be a divergence-free
initial data. Let 7™ denote the maximal existence time of the solution
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u, VII) € L® ([0,T%); CY) Aweo.a) C([0,T*);CH) for Euler equations
loc (0,2)

(2.1), or equivalently for (2.30). Obviously 7% > 0 by Theorem [2.17, We

claim that -
T < o0 = / [Vu|pedt = . (2.46)
0
Indeed, by similar arguments implying the estimates (2.37)) in Proof of The-

orem the following more refined a priori estimates [-‘| hold for solutions
of the (modified) Euler equations (2.30): diu + u - Vu + A(u,u) = 0:

¢
lu(®)|cre < Juglcne exp(C / |Vt dt'). (2.47)
0
Thus if the converse of (2.46[) holds
T%
/ ||VUHLocdt =:c < 0,
0

then

HUHLOO([O,T*];CLC“) < QCCHU()Hcl,a .

For any ¢ < min{m,T*}, by Theorem [2.17| there exists a unique

solution
we L®([T* — /2, T* + £/2]; C**) Aweo.a) C([T* — £/2,T* +¢/2]; CH).

We have extended the solution beyond 7%, which is a contradiction to the
maximality of the existence time T%. Thus holds.

Step 2. Refined continuation criteria. We claim that the Lip-norm in
(2.46|) can be replaced by a weaker Besov-norm Biomz

T* T*
/ |ullpy,  dt < o0 = / IVul|pedt < o0.
0 ’ 0

Indeed, this can be achieved by explore the delicate estimate

Julcro )

lulpy,,,

u 1,
< Cmax {Ju(®)] gy, Juol gy, VI (1 + L9,
o ol fuol .,

[Vulss < Clulp,, (e +

~ -

~~
::Ul(t)

"We replace |u]c1.c —norm in (2.37) by [u|Lip —norm, by using e.g. the estimate
|A(, w)[cre < C(|vLip [wlere + [v]erew|Lip) instead of Lemma [2.16]
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We the estimate (2.47)) to it to derive

||VUHLOC < CUl 111(1 H 0H01a 1 +/ HVU/HLOC (248)

HUOHB§03C

which together with Gronwall’s inequality gives

t t
/ [Vu|re < eXp(Cln(l + M)/ Ul) — 1.
0 luollsy, .. Jo

Step 3. A priori estimates for the vorticity. Since w satisfies the free
transport equation (2.41)), all the LP-norm of w is conserved a priori by the
volume-preserving flow X (¢, ) : R? — R%:

w(t, X(t,y)) = woly) = |w(®)r = lwolr, Vpe [l ] (2.49)

Similar as (2.28) in 3D, Young’s inequality implies that for w € L' n L% u
given in ([2.42)) satisfies

uel’, Yrel2 0.
By use of some Fourier analysis we know that

lu®py,,, < CUu@®)|er + [wt)]z=) < Clwolrrare (2.50)

This implies that for any finite time ¢t < oo, fot |lu| g, < oo, and hence
f(f [Vu| e < oo by Step 2, and thus T* = « by Step 1. O

2.5 One dimensional isentropic compressible Euler equa-
tions

We have discussed until now the incompressible Euler equations , for
higher dimensions N > 2. Notice that if N = 1 then divu = 0 reduces to
the fact that u is a constant, which is of no interest.

In this subsection some mathematical theory for the one-dimensional isen-
tropic compressible Euler equations is briefly mentioned, i.e. we consider the
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models (T.I5) in the inviscid case = A = 0 in dimension N = 1[

Owp + 0z (pu) =0,
{ 0(pu) + 0, (pu?) + :(p(p)) = 0, (2.51)

where ¢,z € R, (p,u) is a pair of unknown functions and p = p(p) is a given
function, e.g. p(p) = p?, 7 > 1. We can rewrite (2.51]) in a first-order system
of conservation laws

o + 0. f(v) =0, (2.52)

where

o= () 10 = (100 ) WBRE) = 100,

U+

or equivalently,

0w + a(v)dv = 0, with a(v) := (V,f) = (p/?p) Z) : (2.53)
p

The mathematical theory is rather different from the incompressible case,
and typical wave phenomena such as rarefraction waves and shock waves are
present. The main reference of this section is [2].

[16.06.2023]
[19.06.2023]

2.5.1 Burgers’ equation

As a warmup, we consider n = 1 and the Cauchy problem for the celebrated
Burgers’ (inviscid) equation

O 4+ vov =0, v(t,x)i=o = vo(x). (2.54)

It is also called Hopf’s equation occationally.

18Sometimes it is convenient to work with the specific volume v := + (instead of p):

1
p

0tV + u0zv — v0zu = 0,
Oru + ulu + v0,(p(p)) = 0,

and in some Lagrangian coordinate (¢,y) (nontrivial), (v,u) equations read

Orv — Ogu = 0,
Ogu + Ozp2(v) = 0.
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Classical solutions Ifv e C'is a classical solution, then as usual we define
the Lagrangian coordinate X (¢,y) by

X (t,y) = v(t, X(t,y)) with X(0) =y,
such that
v(t, X(t,y)) = vo(y)-
This implies that the flow X (¢,y) are straight lines:
X (t,y) = vo(y) with X (0) =y, i.e. X(t,y) =1y + vo(y)t.
If X, :R — R is invertible all the times, the solution is given by
v(t,z) = vo(X; N ().

Since the invertibility of X; : R — R is equivalent to the nonzero of the
Jacobian det(ﬁth)H, it depends heavily on the initial data: Observe that if
vo € C}, then

0y Xe(y) = 1+ vy(y)t,
which means that
o If v > 0 everywhere, then X; is globally-in-time invertible and the

solution is given by v(t,z) = vo(X;*(z)).

e If vj(yo) = infroy < 0 at some point yp € R, then X; : R — R is
invertible only up to the time

L1
v(Yo0)’
and there are no C''-solutions beyond the strip [0, 7*): More precisely,
1 1

0, X1 = = ,
C ) = R e~ T (X @)

o(X ' (2))
B0t 1) = dyuo(X (@)X, () = — 0K .
(t, z) yo(Xy () ; (@) 1 +v(’)(Xt_1(x))t
This is typical PDE-type blowup (shock wave) and the derivatives of
the solution cease to be bounded, which does not happen in ODEs

(compare it to (2:33)-(2:3)).

We conclude in particular if the initial data vy € C°(R) has compact support
and is not identically zero, then the solution can not exist globally in time, no
matter how small it is. We then generalize below the definition of solutions.

19We recall that in the incompressible case divu = 0, by virtue of (1.17), the associated
flow X; : RY — RY is invertible and volume-preserving, as long as the solution u is
existing and is Lipschity continuous w.r.t z-variable (in the local-in-time sense).
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Weak solutions It motivates to consider the weak solutions of the Cauchy
problem for the Burgers equation in the form of conservation law

{ O+ .(f(v) =0, with f(v) = 30%, (2.55)

U|t:0 = 1.

If v € C} is a classical solution, then we test the above equation by a function
v € CP([0,0) x R), and integration by parts implies the following equality

@ 1
/ /(v&tgo + §v2(3x<p)dxdt - / vo(z)p(0,z)dx =0, Yepe CF([0,0) x R).
o Jr R
(2.56)

We call a function v € L2, < D' weak solution of (2.55)), if ([2.56) holds,
that is, the equation and the initial condition are satisfied in the distribution
sense.

If v is a weak solution of (2.55) and v € C! on both sides of a C'-curve
{x = x(1),t = t(7) |7 € [a,b]} on the (z,t)-plane which is parametrized by

the parameter 7 in some interval [a, b] € R. Show that the slope ¢(7) := f,/((:))

of this curve satisfies the Rankine-Hugoniot condition (Exercise.)m
floi(r)) = flv-(7))
v () = v-(7)

1
= S0 (7) + v (7))

e(r) = (2.57)

where vy (7) denote the left and right limits of the solution wv(¢,z) at the
curve respectively. It is interesting to consider the Riemann problem for the
Burgers’ equation with piecewise-constant initial data (Exercise. Verify
the following. Draw a picture.):

0 ify<0 : . .
1. If vo(y) = { | ify>0 then there is a continuous solution
0 ifx <0
v(t,x) =< xft f0<z<t (2.58)
1 if v >t.
2ONote that the unit outer normal vector of the curve is n = W < t 7 >
x'(1),t' (7 —x (7-)

and the conservation law reads in divergence-form div , ; (f vv)> = 0. Gaussian Integral

formula implies the jump condition.
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if y <
2. Ifwo(y) = { (1) i‘z ; 8 , then there is a discontinuous weak solution
1 ifz<it
- 2
[19.06.2023)
[26.06.2023)

In the first case the solution is continuous except the singularity (0,0), and
is Lipschitz continuous in (0,0) x R away from the initial time. Notice that

e The weak solution v(¢, x) in (2.58) is self-similar

0 ifs<0, .
v(t,z) = P(s(t,z)), o(s)=< s f0<s<l, s(t,z)= n
1 ifs>1,

e The curve {¢(s)|s € [0,1]} is an integral curve of the constant “vector
field” 1:

¢'(s) = Lo(s)) =1,

which connects the left status s = 0 = wvg|p- and the right status
s=1=vglp+;

o {c=s(t,x)|t,x € R} defines a straight line in (¢, z)-plane with slope c,
and the solution v(¢, x) is constant along this straight line.

Such solution is called rarefaction wave or simple wave.
In the second case the singularity at the origin is propagated along the
straight line {0 =  — 1¢|t,z € R} where the slope 1 is calculated by the

condition (2.57)).
2.5.2 One dimensional isentropic compressible Euler equations

We consider the Riemann problem for the one-dimensional compressible Eu-

ler equations ([2.53)):

O + a(v)dv = 0, with a(v) := (V,f) = <02_T(Lp) p) : (2.60)

u
p

where for notational convenience we have introduced (the sound speed) ¢ =
c(p), defined by

c(p) =P (p) > 0.
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Obviously

_(r)_ (!
= (0)-0)
is a constant solution of (2.60)), and in the following small initial data or

small solutions are always understood as small perturbations of the state
(1,0): This is reasonable since we can introduce g = p— 1 and consider the

equations for v := (Z ) with small initial data.

u
It is straightforward to calculate that the 2 x 2 matrix a(v) = (cz(p) p)

has two distinct eigenvalues

M(v) = u—clp),  Aa(v) = u+clp),

and the corresponding eigenvectors could be

Remark that for small solutions v, A;(v) is close to —¢(1) < 0 while \a(v) is
close to ¢(1) > 0, such that

M) < Aa(v).

L /
We calculate VA = ( Cl<'0 )) and Vg = (C (1’0)) There are two different

types of nonlinearities:

(N1) If d(p) + % # 0, then r; - VA; # 0, j = 1,2, and we can normalize

1 -
ry = —m (_%p)) (similar for r5) such that

- V)\l =T9:" V)\Q = 1. (261)

We call a nonlinear hyperbolic system of first order satisfying (2.61)
genuinely nonlinear.

(N2) If d(p) + % =0, i.e. c(p) = % (up to constants), then
’T’j'v}\jzo, j:1,2.

We call such a nonlinear hyperbolic system of first order totally linearly
degenerate.
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Recall the Burgers equation (2.54)), where the “matrix” a(v) = v has the
eigenvalue A\(v) = v and the associated (renormalized constant) eigenvector
1. By the above definition it is genuinely nonlinear hyperbolic equation.
Heuristically genuine nonlinearity means that the characteristics (associated
to the same eigenvalue \;(v)) may interact each other, as presented in the
solution ([2.59)).

Riemann problem We consider the Riemann problem for (2.60) in the
form of conservation laws

G+ 2.0 =0, f0) = (1, 0 ) withal(2) = 1) (202

%UQ + p1(p

in the case of genuine nonlinearity (see (2.61)) above), equipped with the
initial data

v if z <0,
vo(®) = { vy ifa >0, (2.63)

where v, # v_ are two small different vectors in R®. We call v(t, z) a weak

solution of ([2.62)) with the initial data v if (2.56)) holds.
In analogue to the rarefaction wave solution (2.58)) and the shock wave so-

lution (2.59) for the Riemann problem of Burgers’ equation, we discuss first
j-simple rarefaction wave and j-shock wave below.

1. j-simple rarefaction waves. Let R 3 s — ¢(s) € R? be the orbit of r;
(in the v-space/manifold) starting from v_:

¢'(s) = rj(¢(s), ¢(0) = v_. (2.64)
Then if s : R* — R satisfies (see (2.76)) below for more explanations)
S + Aj(9(5))0ys = 0, (2.65)

then v(t,z) := ¢(s(t,z)) solves dw + a(v)d,v = 0, which is called j-
simple rarefaction wave.

Hence if v, = ¢(s*) for some s* > 0 and vy are small enough, then
¢(s) gives a Lipschitz continuous solution of the Riemann problem.

[26.06.2023)
03.07.2023]
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Furthermore, since (by virtue of (2.61)))

%Aj(cb(S)) = ¢'(s) - Vodj((s)) = (r;- VA;)(6(5)) = 1,

A;j(¢(+)) is strictly increasing from 0 to s*:

= 2;(0(0)) < Aj(¢(s1)) < Aj(9(s2))

(=)
< Nj(0(s)) = Aj(vy), V0 <81 <89 <5™.

(2.66)
. j-shock waves. If the Riemann problem has a discontinuous solution
v(t,x) = vy for + (x —ct) >0, (2.67)
then the (two) Rankine-Hugoniot conditions for weak solutions of (2.52)):
c(vy —vo) = fluy) = fv-)

implies one equation for v, for given v_.

Intuitively, if v, # v_ are both small, then

F(os)—flo-) = / v+ 10y —v))d(vs—v_) = a(vs,v_)(vs —v_),

and we define \;(vy,v_),r;j(vy,v_) as the corresponding eigenvalues
and eigenvectors of a(v,,v_). This implies, for some j and some o € R

c=N(vy,v2), vy —v =orj(vg,v). (2.68)
Hence v, should satisfy
v—uv_—orj(v,v_) =0

for some o, that is, the above two equations should be satisfied by three
unknowns (v, o). Since the Jacobian of the lefthand side w.r.t. v when
o = 0 is the identity, it follows from the implicit function theorem that
v is a smooth function of o such that v'(¢0)|,—0 = 7;(v_). Hence such
a solution exists if and only if v, stays in a curve through v_,
which is tangent to the orbit of r;.

If v_ and v, are both small, then up to higher order terms,

Nj(vp) = Aj(vo) ~ (vp —o2) - VA (v2) ~ orj(v) - VA (vo).
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By virtue of the genuinely nonlinear condition r; - VA; =1 > 0,
0 <0, and hence \;(v;) < ¢ < A\j(v2), (2.69)

where the case 0 > 0 such that \;(v_) < ¢ = A;j(v4,v-) < Aj(vy) does
not hold for shock-solution , since in this case j-characteristics
are pointing away from the shock at both sides, which is rejected in
favor of a rarefaction wave (see also (2.66])). Such as solution
satisfying is called an admissible j-shock wave solution.

A(v-) < Ai(vs4) t Ar(v-) > e > Ai(vy)

(a) Characteristics for a 1-simple rarefaction wave (above) and 2-simple (b) Interaction of characteristics for a 1-shock wave (above) and 2-shock
rarefaction wave (below). wave (below).

Figure 1

To conclude, for v_ € R?* we define ®;(¢) as
¢] (5)1}_ = Uy,

if £ > 0 and v, is the value for s = € of the solution (2.64))-(2.65)), or € < 0
and v, is the solution (2.67))-(2.68|) with 0 = . Thus the Riemann problem
with vy = ®,(e)v_ is solved by a j-simple rarefaction wave if ¢ > 0 (see
Figure or by an admissible j-shock wave if € < 0 (see Figure .
If

Vy = @2(82)@1(81)’0_, (270)

for small €, then we have obtained a solution of the Riemann problem (12.62])-
consisting in order of increasing j from left to right of a j rarefac-
tion wave or an admissible j shock wave of strength €;. More precisely,
from left to right, v_ is connected to some middle state ®,(e;)v_ by a 1-
rarefaction/shock wave of strength e;, and then ®;(e1)v_ is connected to
vy by a 2-rarefaction/shock wave of strength 5 (see Figure , Figure .
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M(v_) < M (®1(e1)0-) U N(®1(e1)0-) < Aa(vy)

,,w’// M) > > M\(Py(e1)v) b /A2(<1>1<51)v,) < Aa(vy)
V/ //
// < /V
M(v_) < M (®y(e1)v-) U a(®r(e)v) > ¢ > Ao(vs)
M(v) > ¢ > M (Py(e1)v-) ¢ Ao (P1(1)v_) > ¢ > Aa(vy)

(a) v— and vy are connected by, from left to right, a 1-simple
rarefaction wave (blue) and a 2-simple rarefaction wave (above), (b) v— and v are connected by, from left to right, a 1-shock wave (blue)
or a 2-shock wave (below). and a 2-simple rarefaction wave (above), or a 2-shock wave (below).

Figure 2

The 1-wave and 2-wave do not interfere with each other since they move
from the origin with quite different speeds, close to A\; ~ —¢(1), Ay ~ ¢(1),
respectively. For small vy, the equation (2.70)) determines (g;) uniquely:

Theorem 2.22 (Unique solvability of the Riemann problem for one-dimen-
sional isentropic compressible Euler equations in the case of genuinely non-
linearity). If v_, vy are sufficiently small, then the Riemann problem (2.62))-
has a unique solution consisting from left to right for increasing j of
a small § simple rarefaction wave or a small 7 admissible shock, 7 =1, 2.

We don’t give the proof here, which can be found in [2].
We conclude with more explanations for the two different nonlinearities:

(N1) If is genuinely nonlinear, then for small perturbed compactly
supported initial data (pg,ug) (around (1,0)) simple waves and shock
waves arise for finite time. This is the case similar as for Burgers’
equation. Roughly speaking, if a nonlinear hyperbolic conservation
law system is genuinely nonlinear, then the j-characteristics, i.e. the
curves s : (t,z) 2 R* — R defined by

Os+ Aj(v)0ys =0, j=1or2 (2.71)

may interact with each other (see (2.69) above) and in particular, when
two characteristics encounter each other, shock waves appear and the
solution ceases to be classical (see (2.59) above).
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(N2) If (2.60) is totally linearly degenerate, i.e. in the case of Chaplygin
gases p(p) = A — % where A, B are positive constants, the solution
for small perturbed initial data (around (1,0)) exists globally in time.
Roughly speaking, if a nonlinear hyperbolic conservation law system is
totally linearly degenerate, then the j-characteristics

Ors + A\j(v)0ys =0

do not interact strongly with each other and hence the global-in-time
classical solution exists for small initial data.

In the following we discuss further Riemann invariants and more general
first-order system with one space variable P1]

Riemann invariants Historically Riemann introduced the concepts of
Riemann invariants to solve the Riemann problem. In the case of genuine
nonlinearity (otherwise we simply take w; = \;), we define the (single) 1-
Riemann invariant w; = w; (v) : R* — R by (see below)

c(p) P
va1=< i ), ie. ’UJ1=U+/ @,
S

and the (single) 2-Riemann invariant w, : R* — R by
—c(p) P
vagz( p ), i.e.wgzu/ @,
1 5

Tj'ij':(), ]21,2

such that

This means that in the v = (p, u)-space (or manifold), w; remains constant
along the orbit of the vector r;. As ry,ry are linearly independent,

71, is parallel to V,w; when j # k,

Vw; is an eigenvector corresponding to the eigenvalue Ay, and (wy,ws;) can
serve as coordinate system in (p,u)-space. Let ly,ly be the corresponding
left eigenvectors of the eigenvalues Ai, Ay, then 7; - [, = 0 if j # k and hence

I - (Vowi)T = 0. If v solves (2.60)), then

ow;j = 0w - Vyw;

21This is not included in the exam.
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= —a(v)0v - Vyw;

= —(Vow;) a(v)ov

= =M\ 0p¥ - Vyw,

= — A0z Wj.
That is, we diagonize the system if we take (wy, wq) (instead of (p,u))
as unknowns

0tw2 + )\163311)2 = 0. (272)

For example, if the pressure law reads

{ 6tw1 + )\an’wl = 0,

1 2
P(P) = §P

such that c(p) = /p, the two Riemann invariants are (up to constants)

wy = u+2y/p, wy=u—2/p.
We rewrite (2.60)) in terms of the two Riemann invariants

w1 )\2 0 w1 . . . 311)1 + Wo . wy + 3w2
() (5 2)(B) <o iy B Een, miny

(2.73)
If v(t,x) = ¢(s(t,z)) is j-simple wave solution (2.64))-(2.65) of (2.60) (see
Figure , then j-Riemann invariant w; remains a constant in the whole
(t,x)-plane by virtue of

d
Towi(0(s)) = ¢'(s) - Vw;(9(s)) = 15(9(s)) - Vw;(9(s)) = 0,
and the other Riemann invariant wy, k # j is constant along each j-characteristic
(2.65): {s = s(t,z)} by virtue of

Orwy, + A (6(8))0ywy, = 0.
Since the slope A; of each the above j-characteristic is determined by the
values of w; and wy (see (2.73)) above), the slope \; of each j-characteristic
is indeed a constant. This verifies that j-characteristics of j-simples waves
are all straight lines (as shown in Figure .

2.5.3 Appendix: General first-order system with one space vari-

able
We discuss briefly the general first-order system of the form ([2.53)):
o + a(v)ozv = 0, (2.74)
where v = (v, ,v,) and a(v) = (a;;)7;_; is a n x n matrix. We assume

that a(0) has real distinct eigenvalues and a has C'* entries.
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Linear case If a is constant matrix and hence independent of v, then ([2.74)
is satisfied by

v(t,x) = Z bi(x — \jt)rj,
=1

where r; are eigenvectors of a with eigenvalues A;. The initial condition
V|0 = vy is satisfied if

> bi(a)r = wof),

that is, b; is the component of vy along 7;. In this case, we have solved
completely the Cauchy problem of ([2.74]).
In particular, if n = 1 and a > 0 is a constant, then the Cauchy problem

aﬂ) + aa$'U = O, ’U|t:0 = UO(ZL’)
has a unique solution
v(t,x) = vo(x — at).

That is, the initial data vy is transported to the right in the (x,t)—plane with
the speed a: This is completely different from the ODE equation d,v+av = 0
whose solution is v(t) = e~ *wvy which decays exponentially fast at infinity.
More generally, if n = 1 and a = a(¢, z) is a bounded function, then we define
the characteristics { X (t,y) | t,y € R} (i.e. the Lagrangian coordinates), which
solves the ODE

dX (1)
dt

The solution is constant along the characteristics

o(t, X (t,y)) = vo(y). (2.75)

—a(t, X(1)), X(0) =y

Simple waves in nonlinear case The decomposition of solutions in the
linear case has an analogue in the nonlinear case when a depends on v. If v
is in a neighborhood of 0 such that a(v) has n real distinct eigenvalues

A (V) < Ag(v) < - < Ay (v),

and corresponding eigenvectors r1(v), r9(v), -+ , 7 (v). Motivated by the lin-
ear case, let R 3 s — ¢(s) € R" be a parametrization of a curve, and
v(t,x) = ¢(s(t,z)) with s € C'. Then the equation (2.74) reads

(048)d" + (0z8)a(p)d’ = 0.
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This implies that ¢’ is an eigenvector of a(¢), say

a(@)d’ = \j(9)d,

then
05 + Aj(6(5))0zs = 0. (2.76)

Now, conversely, let s — ¢(s) be an integral curve of the eigenvector field
r;(u) such that

¢'(s) = 1;(¢(s)), (2.77)
Let s = s(t,x) satisfies (2.70), then v(t,z) = ¢(s(t,x)) satisfies (2.74), and

we call this solution j-simple wave. Along the characteristics of jth field:

X (ty) = Aj(o(s(t, X(1,9))),  X(0,9) =y,

we have
s(t, X(t,y)) = 5(0,y)
and hence j-simple wave v(t, x) = ¢(s(t,x)) is constant:
U(tv X(ta y)) = ¢(S(t’ X(tv y))) = ¢(S(0, y)) = Uo(y),
which implies in particular the characteristics are straight lines:
atX(ta y) = )‘J'(UO(y))> X(07 y) =Y.

Whether the solution s(t,z) of (2.76]) exists (globally) is questionable, see
Burgers equation for the scalar case: There exists no simple waves for de-
creasing initial data ([2.59)).

Genuinely nonlinear condition VS Totally linearly degenerate The
system (2.74)) is called genuinely nonlinear if

ry- VU)\]‘ 7+ O,
and we normalize r; such that it becomes, without loss of generality,
i VoA = 1. (2.78)

This implies that along the integral curve s — ¢(s),

d

7 (0(8)) = ¢'(s) - VA;(8(s)) = 75(9(s)) - VA;(9(s)) = 1.
We can revisit the rarefactive wave solution (2.58): For any v; € R", if ¢(s) is
defined by the ODE (2.77) and the initial data ¢(\;(v1)) = v1 (which exists
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at least in a neighborhood of A;(v;)), then \;(¢(s)) = s. One may check that

v(t,x) = ¢(%) is a solution:

2B +ald()20(5) = ~ 58/ (5) + alol
= (55 + 7000

T lz T

= (_t_z + ;;)Tj(cb(—)) = 0.

Generally speaking, for the nonlinear hyperbolic conservation laws, the gen-
uinely nonlinear condition can arise blowup of smooth solutions in finite time
and corresponds to the formation of shocks, e.g. for Burgers equation

a() =v, Aw)=v, r(v)=1,
the genuinely nonlinear condition
r(v) - OpA(v) =1

is satisfied, and we have seen the shock wave solution ([2.59)).
The opposite concept is totally linearly degenerate

ri-VA=0, j=1,--n. (2.79)

The nonlinear hyperbolic conservation law (2.74]) satisfying the totally lin-
early degenerate condition ([2.79) can produce global smooth small data so-
lutions.

Shock waves for Riemann problem Unlike the scalar case n = 1, where
the Rankine-Hugoniot condition gives immediately the speed of the shock
wave in (2.59)), in the system with n > 2, the n Rankine-Hugoniot conditions

c(vy —v-) = fi(v) = f-(v)
for a solution of the form

u(t,z) = {

implies n — 1 conditions on v, given v_. Similarly as the argument in Sub-
section [2.5.2) n 4+ 1 unknowns (v, o) should satisfy n equations

vy —v_ —orj(vg,vo) =0, (2.81)

v fzx<ct

vy ifz > ct, (2.80)

which implies, by virtue of r; - V,A\; =1,
Aj(vy) <e=X(vg,vo) < Aj(vo), o<0.

Theorem holds also for general n > 1, up to some obvious changes.
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Riemann invariant In the genuinely nonlinear case, it is convenient to
define j-Riemann invariants w : R" — R by

ri(v) - Vyw(v) =0, YveR". (2.82)

This implies that w is a constant along the integral curve s — ¢(s), since

——w((s)) = ¢'(s) - Vow(e(s)) = r;(¢(s)) - Vow(e(s)) = 0.

There are (n — 1) j-Riemann invariants whose gradients are linearly inde-
pendent, such that the matrix (Vw,---,Vw,_1, VA;) is nonsingular. For
the j-simple wave solution v(t, x) = ¢(s(t,x)) given above, w(¢(s(t,x))) is a
constant on the whole (z,t)-plane.

03.07.2023]
[07.07.2023)]

3 Navier-Stokes equations

In this section we consider the initial value problem for the classical incom-

pressible Navier-Stokes equations (|1.23))

o+ u - Vu — Au + VII = 0,
divu =0, (3.1)
U|t:0 = Ug-

Here ¢t > 0 denotes the time variable, z € RY, N > 2 the space variable,
u = u(t,z) : [0,00) x RY — R the unknown velocity vector field and
IT = II(t,z) : (0,0) x RY - R the unknown pressure term. Compared to
the classical incompressible Euler equations , the viscosity effect, which
is quantified by the viscosity term —Au, is taken into account in the fluids.
We assume that the viscosity coefficient p is a positive constant, which we
take 1 for (notational) simplicity.

We summarize the counterpart of the reformulations we have done for Euler
equations (in the case of smooth and fast decaying solutions) below:

e Pressure formular. We apply div to the u-equation to arrive at the same
equation for IT as for the case of Euler equations (since the vorticity
term —Aw vanishes after applying div ):

—AIl = tr((Vu)?) = (0;uFopu).

1

b=

J
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Thus
VII = VT « tr((Vu)?) =: A(u,u) (3.2)

can be recovered from u, see (2.30) (see also (2.29) for N = 3 and
Lemma for N = 2).

Reformulated Navier-Stokes equations. Inspired by the pressure formu-
lar and the reformulation ([2.30]) of Euler equations ([2.1]), we introduce

the (Leray) projection operator
P =1d + V(-A) div. (3.3)
It is a projection operator on the divergence-free vector fields:
Pu=wu, ifdivu=0,
while annihilates the vector of gradient form:
PVII = 0.

We have indeed applied Id — P = —V(—=A)~div to (3.1]), which anni-
hilates the divergence-free terms 0,u and —Awu, to derive the pressure
formular:

VIl =(1d - P)VIIED _(1d — P)(u- V) = VT » tr((V)?).

In general we can always (formally) decompose a vector field v : RY —
RY into a divergence free part Pv and a vector of gradient form (Id —
P)v (which is called Helmholtz-decomposition):

v=Pv+(Id — P)v,

with div Pv = divv + (div V)(—=A) *dive = dive — dive = 0,

and (Id — P)v = V¢, ¢:=(—(-A)"dive) = —T = (divv).

We now apply P to (3.1)); to annihilate the pressure term, and arrive
at the modified Navier-Stokes equations for u:

{ ou — Au = Q(u, u), (3.4)

u’t:O = Uo,
where
Q(u,u) = —P(u - Vu).

We have shown that if (u, VII) is a regular solution of with
divergence-free initial data ugy, then u satisfies . One can show
that the converse is true, following the proof ideas for Corollary
(Exercise: Notice the fact div P = 0)
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e Another reformulation related to the convection term u-Vu = fozl uk 0y, 1
was not emphasized in the study of Euler equations, that is, due to
divu = 0,

div(u®u) = Y 0y, (uu” (u Opuf + Ol u®) = (u - V).

||M2
l
I

This reformulation of u - Vu in the same spirit of the conservation law-
reformulation for the Burgers’ equation , such that weak
solutions are well-defined in . Below we define analogously weak
solutions for Navier-Stokes equations , where u - Vu is always un-
derstood as div (u®u). Remark that in Theorem strong solutions
for Euler equations are considered, where u € C1* is regular enough,
such that u - Vu is well-defined without resorting to the reformulation

div (u ® u).
e Vorticity formulation.
Oyt — Oy
— Case N = 3. Let w = curl (u) = [ dpyut — dpyu® | If (u, VII)
Oy U2 — Og,ut
satisfies (3.1]), then w satisfies
Ow +u-Vw—Aw = w - Vu, (3.5)

where u is represented by w in terms of the Biot-Savart’s in The-
orem 2.9

— Case N = 2. Let w = 0ju? — Oyu! € R. If (u, VII) satisfies (3.1]),
then w satisfies
Ow +u - Vw — Aw = 0, (3.6)

where u is represented by w in terms of the two-dimensional Biot-
Savart’s law in Lemma [2.19.

The following are two interesting observations which inspire the rigorous
mathematical study of weak resp. strong solutions later. We assume below
regular solutions, say u € C*([0, 20); S(RY; RY)), VII € C((0, ), S(RY; RM)).

Energy (in)equality Let us take L?(R") inner product between the equa-
tion (3.1)) and u itself, and we calculate the resulting terms one by one:

o [onOu-u= [on %8t(|u|2) = %% Jan Jul? = %diHuHLQ (RN)?
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* fRN w-Vu-u = fRN %“ : V(|u\2) = - fRN %(divu)|u|2 =0,
o fovDuu= o [Vu = [Vuf?

L2(RN)’

o Jon VII u=— [nII-divu = (7

Thus we arrive at for all £ > 0,

Ld . 1d
3 P VAR = 0 e S0, + V(O =

which implies immediately the energy equality by integration in time:

1 2 ! 2 ]' 2
§W®MWM+AIWMUMMNf=§w&mw (3.7)

This means that we have a priori estimates for the solutions with the follow-
ing finite time—space norms on the lefthand side:

HUHLOO [0,00);L2(RN)) + HVUHLZ ([0,00); LZ(RN)) HUOHL2 RN (3'8)

As seen in the proofs of local- resp. global-in-time existence results of so-
lutions to Euler equations, the (uniform) estimates resp. have
played an essential role. The above energy 1nequahty . for all the pOs-
itive times leads then to the global-in-time existence of the weak solutions
to , see Subsection below. The associated topology is however not
strong enough to ensure the uniqueness of weak solutions in dimension three.

A heat equation If one ignors the nonlinear convection term u - Vu in the
Navier-Stokes equations, then ({3.1)) become

ou — Au + VII = 0,
divu = 0, (3.9)

U|t:0 = Ug-.
We apply P to (3.9), to get a heat equation for w:
ou—Au =0,  ul—g = up. (3.10)

Remark that since div u also satisfies the heat equation, v remains divergence-
free if initially div ug = 0. Thus any solution to heat equation with divergence-
free initial data, together with vanishing pressure term, is also a solution of

B9).

22That is, a regular divergence-free vector u and a regular vector of gradient form VII
is orthogonal in L2(RY;R™Y).
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As explained in the lecture “Classical methods to PDEs”, the Cauchy prob-
lem for the heat equation (3.10) has a unique solution (Exercise. Verify
this.)

2 oy?
u(t,x) = (47rt)_%e_% * U = (47rt)_]2v/ et up(y)dy, t=0. (3.11)
RN

07.07.2023)
[10.07.2023)

We introduce the following time-dependent nonnegative quantities:

Vin(t) = 8up jaj=m| D7 u(t, 2)| 1o @ry,  m € No,
Wonlt) = S0 ojcm| DSult, )| 2y € Ny
The energy equality (3.7)) also holds for regular solutions for the heat equation
(3.10)), and hence
W()(t), ||W1HL2([O,t]) < Wo(O), Vt = O

We can simply take z-derivatives to the linear heat equation to derive the
heat equations for D{u, such that

Wm(t)> HWm-i-luLz([O,t]) < Wm(o)a vt > 07 Vm € I\IO .

Indeed we have smooth solutions immediately away from the initial time,
and high-order z-derivatives decay faster w.r.t. the time. To see this, by use
of the explicit formula (3.11)) and Young’s and Hélder inequalities, one can
show straightforwardly the following (decay) estimates for ¢ > 0 and initial
data ug € L? (Exercise. Verify this.)

Vin(t) < CruWo(0)t 25,
Win(t) < CpWo(0)t™ 2, (3.12)

where (), are some constants depending on m € Nj.

The question related to the solvability of reduces then to whether the
“linear” part dyu— Au could control the “nonlinear” part u-Vu (the pressure
term VII can be recovered from V(—A)~'div (u - Vu) as in (3.2)). We will
see that it is indeed this case if some smallness assumption either on the
existence time or on the initial data is assumed, in Subsection below.

3.1 Leray-Hopf’s weak solutions

Thanks to the energy estimate (3.8), J. Leray proved the global-in-time ex-
istence of weak solutions to (3.1)) in 1933 in his thesis. The weak solutions
become strong solutions in dimension two, as observed by O. Ladyzhenskaya
in 1959.
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3.1.1 A dip on Fourier analysis and Sobolev spaces H*

We don’t follow the original proof by J. Leray [3] to show the existence results,
and adopt a “modern” proof idea by use of Fourier transform instead. It is
always convenient to deal with functions/problems defined in the whole space
by use of Fourier transform. We recall briefly here the definition and basic
properties of Fourier transform]

Definitions For an integrable function f € L'(RY) defined in the whole
space RY, we define its Fourier transform as a function f € L®(R") below

FE) = _ ! e (1) da e RN
fO=F(© = g [ 7w, veeRY,

Let S(RY) denote the Schwartz space which consists of smooth functions
which decay fast at infinity

SRY) = {f € C*(RY) [sup yepa oy (1 + |2]%)|0f(2)] < o0, VE € N}

Let S'(RY) denote the tempered distribution space as the dual space of
Schwartz space. Since S(RY) < L*(R"), we can define the Fourier transform
of a Schwartz function f € S(R"Y) as above, and one can check that F(f) €
SRY ) is also a Schwartz function. By duality we can extend the definition
of Fourier transform to &'(R”) as follows

(F(T), frs.s =<{T.F(f)s.s, VfeSRY),

such that the Fourier transform of a tempered distribution is also a tempered
distribution. A typical Schwartz function is the Gaussian function e_%MQ,
and one can calculate that its Fourier transform is also the Gaussian function
}"(6_%"”'2) = e 2l A typical tempered distribution is the Dirac function 6,
and its Fourier transform is the constant function —, since

2m)'2

1 1
v | fl@)de ={—F, )s.s-
(2m)z Jr¥ (2m)2
A big benefit to apply Fourier transform to PDEs is that it transforms dif-
ferentiation operator to multiplication operator, and more precisely, it holds

(F(0), )ss =0 F(f)s.s = F(f)le=o =

Fou DO = §FNE), j=1, N,

23Gee e.g. (Chapter 2, my notes for more detailed introduction to Fourier transform.
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and hence more generally for multiindex F ( ! DU)E) = £ F()(E),

which can be checked first for f € S(R") and then for f € S'(R") by duality.
Now let f € L? = &', then the Plancherel’s identity holds

[l = 1F )z
Recall the Sobolev space H*(R") defined by
HERY) = {f € PR || fle = (3] 1D°f12:)* < oo,
|| <k
Hence equivalently, in terms of Fourier transform, H*(R") can be defined by

HYRY) = {f € PRY) [ |f]me = (Y [€°F(HE)I3)* < o0},

lo| <k

L?-Functions with compactly supported Fourier transform If f ¢
L2(RY) and F(f) has compact support, say supp F(f) is included in a ball
B, (0) with radius n, then f is indeed smooth: f e H*(R™), Vk € N. Indeed,
we simply calculate

e = (3 I F(©)13:)

|laf<k

< (2 Dn™IF ()" < Cunlflis, Ve N.

lo| <k
Motivated by this analysis, we introduce the low-frequency cut-off operator
P, :=1p,(D), i.e. F(P,f) = ‘F(f)’{lﬁkn}v (3.13)
such that

e it is a regularizing operator on L? in the sense that P, : L? — H® =
A gen HF

e it is an approximation operator on L? in the sense that

Vfel® [(d =Pu)fle = Iflaele"="0.

It is convenient to apply P, to (the nonlinearities in) some PDE, then to
construct a regular solution wu,, of the regularized PDE, and finally to show
the convergence of the sequence (u,) to some limit u, which is expected to
solve the original PDE. In this way one can show the existence of solutions.
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3.1.2 Global-in-time existence of weak solutions

We call a divergence-free vector-valued function v € L2 _(RT x RV:RY) a

loc
weak solution of (3.1)) if the following equality holds

0¢]
0:/ / (u-Gp+u®u: Vo +u-Ayp)dedt
0 JRY

+ /RN uo(z) - (0, z)dz, (3.14)

for any test function ¢ € C¥([0,0) x RY;RY) with divy = 0. Exercise:
Show that regular solutions of (3.1)) satisfy (3.14) by integration by parts.

[10.07.2023)
[17.07.2023)]

The following existence result of weak solutions is due to J. Leray.

Theorem 3.1 (Existence of weak solutions of (3.1)). Let N = 2 or 3. Let
ug be a divergence-free vector field in (L*>(R™))N. Then there exists a weak
solution u = u(t,z) € C([0,0); L2(RY)) of (3.1)) satisfying the energy in-
equality:

1 2 ! 2 ]' 2
IO, + /0 V) agay & < g luolany  (3.15)

Ideas of proof. The procedure of the proof is similar as in the proof of The-
orem 2.17]

Step 1 Construction of a sequence of smooth solutions
(un) = CY([0,00); (HYHRY)™)
of the regularized Cauchy problem of (3.4):

o = Av + P,Q(v,v), v(0,2) = Prug(z), (3.16)
where P, = 1p, (D), n € N is the low-frequency cut-off operator given in
(3.13), and Q(v,v) = —P(v - Vv). Here P = Id + V(—=A)'div is the
Leray projector (3.3)), which is also a Calderon-Zygmund operator and hence
satisfies the LP-Estimates in Lemma 2.1

[Pv| e < Cplv|e, Vpe (1,00). (3.17)

Notice that any regular solution v, say v e C*([0,00); HN*1), of (3.16)
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is divergence-free. Indeed, we apply div to (3.16)) to arrive at the free
heat equation for div v

or(dive) — A(dive) =0, (dive)(0,z) =0,

where we used the community between P, and div, divP = 0 and
divug = 0. Hence divv = 0 for all the times.

has compactly supported Fourier transform such that v = P,,v. Indeed,
we apply Fourier transform to (3.16)) to arrive at

20 (t,€) + [€10(1,€) = 15, ()Q(v, v)(1,€),  9(0,€) = 1, ()i (€).

We view ¢ as a parameter, and solve the above ordinary differential
equation to get the solution

0(t,€) = e ¥ (1, (€)@ (€)) + / e 1 ()Q(v, v)(¢, E)dt.

0

(3.18)
Fix t > 0, and we see from the above that
Supp (0(t,€)) < By, thatis v =1g, (D)v = P,v.
satisfies the energy equality
1 2 ' 2 g1 2
100+ [ 190l = SPul (3.19)

Indeed, as in the derivation of , we take L%-inner product between
(3.16) with v itself. Then (3.19)) follows, by virtue of the fact

S Pugree = [ F€18,(050) = Put.ie
and P,v = v, Pv = v, dive = 0:
(0, PaQ(v,0))12 = (0, (0 Vo)z = 0.
satisfies in the following sense:

0=/ / (v-Oip+Pr(v®v) : Vo +v-Ap)drdt
0 JRY

+ /RN Ppuo(x) - (0, x) dx (3.20)

for any test function ¢ € C©([0, 0) x RY; RY) with div = 0. Indeed,
it follows as for (3.14)).
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We claim that ([3.16]) has a unique regular solution in C*([0,00); HV*!). In-

deed, (3.16) is an ordinary differential equation in the following subspace of
HN +1

HN* = {o(x) e HY* | Supp (0) < B,},

where the righthand side Av + P,Q(v,v) has uniformly-in-time bounded
Lipschitz constant, since (Exercise)

e by use of Sobolev embedding HY(RY) = L*(RY), Holder’s inequality
v - V|2 < |[v] 2| Vo|ze < |v]z2|Vv|g~ and the L*-estimate of the
projector P, the righthand side of is Lipschitz continuous in
HY*! guch that

1AV + PoQv,v) | gyt < Onpin™ T Av + PoQ(v,v) | 2

M olay + lolzelvlgye)

<
< Ongin
< N+1(‘

Cniin ]| gy + ||UH§1N+1)>

e and hence Cauchy-Lipschitz theorem implies a local-in-time unique so-

lution
u, € CH[0,T]; HY ™)

for some T € (0, ),

e and (similarly as in the proof of Theorem [2.21) we can indeed take
T = oo by virtue of the uniform Lipschitz constant of the righthand
side which comes from (3.19)

[tin ]| Lo (0,00);22) < [Prtiollzz < Juollz2 < oo

Step 2 Convergence by uniform bounds and compactness. Since u,, satisfies
(3.19), the following uniform estimate holds:

1 1
éuunHim([O,oo);LQ) + HVUTLH%Q([O,OO);LQ) < 5”“0“%27 (3.21)
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and hence by interpolation inequality for N = 2, 3@

4N N
HunHL%([Om);UL) < CHUHHLO%([QOO);H)Hvun|’f2([o,oo);L2) < Clug| 2.
This implies

HAunHLQ([O,oo);H*U < HVUnHL2([o,oo);L2) < |uol| 2,
HPnQ(UTUun)HL%([07w);H_1 < CH/LLO”%Q?

< 2
) OHunHL%([O,oo);L‘l)

and hence the uniform bound for d,u,, on any fixed finite time interval

Jovtall 4 goiryar-sy < O o2, (322

[17.07.2023]
[24.07.2023]

This gives compactness of the sequence (u,) w.r.t. the time variable since
~ > 1, and the uniform bound (3.21)) implies the compactness w.r.t. the
x-variable locally. More precisely, we state here the celebrated Aubin-Lions’
Lemma without proof %}

Lemma 3.2 (Aubin-Lions’ Lemma). Let Xy, X; be separable and reflexive
Banach spaces, and X be a Banach space such that Xo € X < X continu-
ously and the embedding Xy < X is compact. Then the embedding

{u e L7([0,T]; Xo) | du e Lq([O,T];Xl)} < IP([0,T]; X), T e (0,)

is compact if p € [1,0) and q € [1,0]. If p = o0, ¢ > 1, then the subset is
compactly embedded in C([0,T]; X).

24This is the celebrated Gagliardo-Nirenberg’s inequality. See e.g. Proposition 2.2
& Proposition 2.3, my notes for the proof of interpolation/embedding inequalities and
the relationship between Besov spaces and Lebesgue spaces (by use of Fourier analysis)
respectively:

= N
UV (U
=N L1
4,00 (]R 4,00

Jul o) < Cllulzg vy < Clul y

RY)

4-N 4-N N
< C“u”B§m( < CHUHL;(RN)HV’U’”;z(

RN)HUHB?;OO(RN) RN)'
25The proof can be found in Section 1.5 of J.L. Lions’ book “Quelques Méthodes de
Résolution des Problemes aux Limites Non Linéaires”, 1969, Dunod, Paris. More general

cases can be found in T. Roubic¢ek’s article “A generalization of the Lions-Temam compact
imbedding theorem, Casopis pest. mat. 115, 338-342.
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For any fixed ball By, we take Xog = H'(By), X = L*(By), X1 = H ' (By)

(which is the dual space of Hj(By) := CCOO(Bk)”HHl), p=2,q=~, then the
sequence {u,} is compact in L?([0,T]; L?*(By)). By Cauchy’s diagonalization
argument, there exists a subsequence (u,,) converges to some (weak) limit
such that

— win L*([0,T); L*(By,)), VkoeN.

Un,,

The limit u satisfies (3.15)) by applying Fatou’s lemma to (3.21]). Finally,
since (uy, ) satisfies (3.20]), the limit u satisfies (3.14)), and hence is a global-
in-time weak solution of (3.1)) since divu = 0. Since u € L®([0,90); L?) and

4
druw € LY. ([0,00); H™1), the solution is continuous in time w.r.t. the weak

topology of L*(RY;R™): u e C([0,0); L?). O

Remark 3.3. In three dimensional case, the energy equality (3.7), the con-
tinuity in time w.r.t. L*(RY;RN)-strong topology or the uniqueness result
does not necessarily hold for weak solutions.

3.1.3 Two-dimensional case

Theorem 3.4 (Energy Equality & Uniqueness & Continuity of weak solu-
tions in dimension two). Let N = 2. Then the weak solution given in The-
orem is unique, continuous (strongly) in L*(R?) and satisfies the energy
equality:

1 ! 1
5”“(15)”%2(1&2) +/0 Hvu(t/)H%Q(RZ) dt’ = 5”“0’@2(1&2)7 vt > 0. (3.23)

Proof. The equality (3.14]) implies that the equation
Oru — Au = —Pdiv (u ® u)

holds in the distribution sense. By the interpolation inequality used in
Step 2 in the proof of Theorem , the weak solutions u satisfying
belongs to L*([0,0); (L*(R?))?), and hence the above equation holds in
L2([0, 0); (HL(R2) )

For any fixed T' > 0, the weak solutions u € L?([0,T]; (H'(R?))?) stays in
the dual space of L2([0,T]; (H~*(R?*))?). Hence we can test rigorously the
equation above by w itself to derive , since the calculation to derive

(3.7)) still holds:

T T
o Jo Covywyp-rmdt =5 [ glulfadt = 5u(T)|72 — 5uol 7,
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° <—AU,U>L%H—1,L%H1 = HVUH%?TLQ’

i <:Pqu (u®u)7u>L%H*1,L%H1 = (u®u, vU>L2TL2,L2TL2 = %(u, v’u’2>L%H1,L%H*1 =
—3{divy, ‘u‘2>L2TL2,L%L2 = 0.

By the time continuity of L%norm given by (3.23), the weak solution u €
C([0,00); L?) given in Theorem [3.1]is indeed continuous in L*-strong topol-

ogy.

The uniqueness of the weak solutions satisfying (3.15)) follows similarly. Let

u,v be two such weak solutions with the same initial data. Then their dif-
ference w € L([0,00); L?) with Vw € L*([0, 00); L?) satisfies

ow — Aw = —Pdiv(w ®u + v Q@ w)

in L2([0,00); H™'). We can test it by w itself, and derive similar energy equal-
ity for w, up to a correction term due to —Pdiv (w ® u): Young’s inequality
and Gronwall’s inequality finally imply w = 0 all the time (Exercise). [J

3.2 Kato’s strong solutions in space dimension three

Scaling property We observe the following scaling invariance property of
the Navier-Stokes equations (3.1): If (u,II)(¢,z) is a solution of (3.1]) with
the initial data ug on the time interval [0, 7], then the rescaled pair

(ux, L)) (¢, ) = (Au, NI (A%, Ax), A >0, (3.24)

is a solution of (3.1]) of the initial data ug x(x) = Aug(Ax) on the time interval
[0, \"2T"]. We calculate the LP(R™)-norm of ug :

_N
Le(RN) = AT HUOHLP(RN)‘

HUO,,\

Heuristically, we then divide the exponent p of the Lebesgue space LP into
three cases:

e p > N (subcritical case)
As A — 0, |lug[lzrryy — 0 and the rescaled solution uy exists on the
time interval [0, \™2T"] with A™2T — oo. This is the most favourable
situation in well-posedness issue: we can make both the small initial
norm and the long time interval at the same time.

e p = N (critical case)
It is easy to see that the LP(RY)-norm is invariant under the scaling;:

luor| v @yy = [uolzv@y), and as A — 0 the rescaled existing time
interval is still [0, \™2T] with A™2T" — oo. This is always a unclear
situation.
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e p < N (supercritical case)
In this case as A — 0, |luga|pp@yy) — © as A>T — oo, that is, the
growing norm corresponds to longer time interval. Blowup may happen
in this situation.

In the two dimensional case N = 2, we have established the global-in-time
well-posedness results for the Navier-Stokes equations in Theorem [3.4]in the
critical case with uy € (L?(R?))?, which happens to be the energy space,
where the energy estimates (3.23]) are at hand a priori.

While in the three dimensional case N = 3, the weak solutions are indeed in
the supercritical case, and we do not expect the uniqueness results for the
weak solutions with ug € (L?(R?))3. We are going to consider the critical
case ug € (L3(R?*))? in dimension three.

[24.07.2023]
[28.07.2023)

Reformulation of NS by use of Fourier transform Recall the defi-
nition of the Leray projector (3.3): P = Id + V(—A)~!div, and we have
applied the operator P to the equation (3.1)) to arrive at (3.4):

U|t=o = Uo,
where Q(u,u) = —Pdiv (u ® u).
Recall the definition of Fourier transform in Subsection [3.1.1} and one calcu-
lates

d
(Poyi(e) = - ] % N %) (3.26)
k=1 k=1
and
. . d
Qlu,u) = —Pdiv(u®@u) = — 3 (&~ %)(i@)u/ka, (3.27)
k=1

We apply Fourier transform to (3.25)) to derive

Opth + |§|2ﬁ = Q(uvu)7 ﬁ“(O) = 12\0(5)7
and as (3.18]) we arrive at the following Duhamel’s formular
d

ﬁj(t,f) _ e—tl§|2uAOj(£) _ Z /t e*(tft’)lﬂz((sj’k _ ﬁ)(ifl)uk(t’)ul(t’) dt .
0

2
Py q
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Denote
eBug = FHe P a (¢)),
Tt ) = (@m) 3F (e P (3~

then (3:25) is reformulated as follows™|

&

£3)(08)).

u(t,z) = ¢ u0+2/Fklt—t « (uFul) (¢, ) dt (3.28)

k=1

that is, we search for the fixed point of the map

u— (e"®ug) + B(u,u), Blu,u):= /Ot Dot —t, )« (WFul) (¢, ) dt' . (3.29)

Heat equation revisited We have shown the decay estimates (3.12)) for
the solution?]

A 2
u(t,r) = ey = f—l(e—tlé\Q%y(S)) _ (47#)_%6_% g
of the Cauchy problem for the heat equation (3.10]) with IL2-initial data:
u—Au=0, ul_o= uo.

Now N = 3 and we take ug € (L3(R?))3. Similar as the derivation of (3.12)),
we apply Young’s inequality to derive for 8 > 3 (Exercise)

_ 13
leuol srs) < Ct 30 ")”UOHLS(R?’)'

For any p € [1,00], T € (0,0), we define Kato’s space
13
Fo(T) = {u e CO, T (LR | fulyry = sup_ 50 Du(t)] oges, < 0},

te(0,T7]
(3.30)
then

etAuo € Kg(T) and HetAUOHKﬁ(T) < CHUOHLg’(RS)? VB > 3. (331)

We aim to find fixed point of in Kg(7T'), and this requires the study of
the function I'y;.

We can show the local-in-time well-posedness result of in different
functional frameworks and here we will follow Kato’s LP approach to show
the well-posedness result of in L*(R?) in three dimensional case.

(27) % F(f)F(9).

‘2
1w, t > 0.

26We have used the fact that F(f = g)
2TWe notice that F—1(e~6") = (2t)~ % e

N
2
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Theorem 3.5. Let ug € (L3(R*))3. Then there exists a positive time T and
a unique solution v e C([0,T]; (L*(R?))3) of the initial value problem (3.25)).
There exists a positive constant ¢ such that if |uo||zs < ¢ then T can be chosen
as +o.

Proof. The ideas of proof are the same as before, and we sketch them below@
Here we have to first establish the a priori estimates, which play the same
role as the energy inequality in the proof for the existence of weak
solutions.

Step 1 A priori estimate Recall the reformulation . A straightfor-
ward calculation (similar as the derivation of (3.12), which we do not do
here) yields the following pointwise bound for I'

0%l < Cmin{la] ™, 72} < C(lz| + V)™

Hence by Young’s inequalities w.r.t.  and t-variables we have

t
Cu(t—1t,- Ful)(t') At <C
1f5<5+a<§+3,1—)+5<1.
To conclude, we have arrived at the following a priori estimates:
lull oy < Cluolls + lull )y 2y)
1 1 1 1 1 2 (3.33)
VB=3st. o< -+-<-+-=-<2, YI'>0.
g p ¢ 3 B 3

Step 2 Existence & Uniqueness of the solution in Kg(7T)

We have established the a priori estimate for the solution ((3.28) to
in Step 1. We would like to use the contraction mapping argument to
show the existence of the solution in the Banach space Kg(7T') under some
smallness condition on the time 7" or on the initial data |ug|zs. That is, we
search for the fixed point of the map u — e"®ugy + B(u,u) given in (3.29) in
K(T).

We have shown e®uy € Kg(T) for any T € (0,0) by (3.31). As T €
C((0,00); (L*(R*))?), Ya € [1,0), implies

B : Ke¢(T) x Kg(T) — Ke(T'), with || B(u, )| xsr) < Cllul ko) v]xscr)-

1. Case of arbitrarily large initial data and small existence time.

28See e.g. my notes for the detailed proof of Theorem 3.4 there.
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For any ug € L*(R?), for any ¢ > 0, there exists ¢ € S(R?) such that
|luo — @[ 13wy < €. On the other hand, HetAgO”Lw([O’T];LtS) < O] gs-
Thus

HetAUoHKe(T) < e (ug — O () + HetASDHKG(T)

< Cllug — ¢llzs + CT207D || s < Ce + CT ] o
We can choose T sufficiently small (depending on wug, ) such that
||6tAu0HK6(T) < Ce. (334)

Therefore for € > 0, T' > 0 sufficiently small, we derive from the con-
traction mapping argument that there exists a unique fixed point u of
the map u ~— e*®uy + B(u,u) in the Banach space Kg(T), with

lull oy < 2] uo] k(- (3.35)

2. Case of small initial data and arbitrarily large existence time.

If [uo| p3g3) < ¢, then
le"uo| oy < Clluols < Ce, VT € (0, 00).

Hence in the small data case that ¢ > 0 is sufficiently small, there exists
a unique fixed point u € Kg(T) for any T' € (0,00), with |[u] g, <
2]le" uo] o).

Step 3 Final check: Continuity and Uniqueness

Although we have showed in Step 2 the existence and the uniqueness of the
solution u € Kg(T) such that [[ul|gyr) < 2[e"®uo|wq(r) is small enough, we
have to prove further v € C([0,T]; L) and the uniqueness of the solution
therein.

Now u € K¢(T') with |u] sy < 2| e uo et is the known function and we
would like to show

u=a+ueC([0,T); L), with a := ¢"®ug and @ := B(u,u).
Obviously a = e'®ug € C([0,T]; L?). As u e Kg(T), we infer from the deriva-
tion of the estimate (3.32) (with 8 = 3) that @ = B(u, u) € C((0,T]; L*) and
for any ¢t € (0,7),

@l 2= o.029) < Cllullicyy < A0 uollieyr), (3.36)
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where the righthand side tends to zero as t — 0% (recalling the decomposition
ePug = e®(ug — @) + e®p). This implies the continuity of % at time zero
and hence @ € C([0,T]; L?).

The proof of the uniqueness of the solutions in C'([0, T']; L?) is more involved
due to the low regularity assumption. It is more convenient to show the
uniqueness in a weaker topology, say L*([0,t]; H ’%), and hence the unique-
ness in the stronger topology holds.

]

Remark 3.6. We have shown the well-posedness results for the three-dimensional
Nawier-Stokes equations in the critical Lebesque space (L*(R?))3 in
the sense of , or more precisely . The obtained solution u €
C([0,T]; (L3(R*))?) together with the pressure term given in satisfies
(3.1) uniquely.
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