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[17.04.2023]

1 Introduction

In this chapter we will introduce the mathematical models which describe the
motion of the fluids. In the derivation we will always assume the smoothness
of the quantities and domains, unless otherwise clarified. The main reference
of this chapter is [4].

1.1 Derivation of mathematical models

The description of an evolutionary fluid (liquid or gas) involves pN ` 2q

evolution equations for pN ` 2q fields, namely

the mass density ρ ě 0, the velocity field u P RN and the energy e ě 0.

We recall the standard derivation of the evolution equations in eulerian form
in the case of a fluid filling the whole space RN . They follow from the
principles of conservation of mass, momentum and energy.

1.1.1 Conservation of mass and momentum

Let t ě 0, x P RN denote the time and space variables. Let Ω Ă RN be
arbitrary smooth volume.
Conservation of mass. By conservation of mass, the variation of mass
inside Ω:

d

dt

ˆ
Ω

ρpt, xqdx “

ˆ
Ω

Btρpt, xqdx

is equal to the flux of mass on BΩ:

´

ˆ
BΩ

ρpt, xqupt, xq ¨ n dσ

where n denotes the unit outer normal to BΩ. By Gauss’ Theorem (or Stokes’
Formular),

´

ˆ
BΩ

ρpt, xqupt, xq ¨ n dσ “ ´

ˆ
Ω

div pρpt, xqupt, xqqdx
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where divF :“
řN

j“1 Bxj
F j for F pxq “

¨

˚

˝

F 1pxq
...

FNpxq

˛

‹

‚

, we deduce that

ˆ
Ω

´

Btρpt, xq ` div pρpt, xqupt, xqq

¯

dx “ 0.

Since Ω is arbitrary, we have derived the continuity equation for the density
function:

Btρ ` div pρuq “ 0. (1.1)

Conservation of momentum. Similarly as above, the conservation of

momentum ρu, u “

¨

˚

˝

u1

...
uN

˛

‹

‚

implies

d

dt

ˆ
Ω

pρujqdx “ ´

ˆ
BΩ

pρujqpu ¨ nqdσ `

ˆ
Ω

ρf jdx `

ˆ
BΩ

pΣ ¨ nq
jdσ, j “ 1, ¨ ¨ ¨ , N.

Here f P RN denotes the possible external forces acting on the fluid, e.g.
gravity, Coriolis, electromagnetic forces, surface forces 2. The tensor Σ P

RNˆN is called Cauchy stress tensor, and two common stresses in a fluid are
caused by compression and viscous effects respectively (Stokes law):

Σ “ ´pIdNˆN ` τ,

where p P R is the pressure and τ P RNˆN is the symmetric viscous stress
tensor:

τ “ τpDu, ρ, θq,

where θ denotes the temperature. If we assume that τ is a linear function of
Du, invariant under translation/rotation and that the fluid is isotropic (i.e.
we consider newtonian fluids 3), then

τ “ λpdiv uqId ` 2µd “ λpdiv uqId ` µp∇u ` p∇uq
T

q, d :“
1

2
p∇u ` p∇uq

T
q,

where λ, µ denote the Lamé viscosity coefficients:

λ “ λpρ, θq, µ “ µpρ, θq,

2They may occur due to the fluid particles lying outside Ω.
3There exist non-newtonian fluids in our life, and common examples could be ketchup,

toothpaste, blood, etc.
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and satisfy

µ ě 0, λ `
2

N
µ ě 0. (1.2)

One can rewrite

τ “ Kpdiv uqId ` 2µ
´1

2
p∇u ` p∇uq

T
q ´

1

N
div uId

¯

, K :“ λ `
2

N
µ,

where the first summand corresponds to the compression effect and the sec-
ond trace-free tensor corresponds to deformation/shear effect. The parame-
ter µ is referred to as the dynamic/kinetic viscosity (coefficient) or the first
viscosity or simply the viscosity, while K is referred to as the bulk/volume
viscosity or the second viscosity.
If λ “ µ “ 0 such that τ “ 0, we are in the inviscid case, while if µ ą 0 and
λ ` µ ą 0, the fluid is viscous.
Hence we arrive at the evolution equation for the momentum ρu:

Btpρu
j
q `

N
ÿ

k“1

Bxk

`

ρujuk ´ τjkq ` Bxj
p “ ρf j, j “ 1, ¨ ¨ ¨ , N, (1.3)

or in a compact form

Btpρuq ` div pρu b uq ´ div τ ` ∇p “ ρf. (1.4)

By use of the continuity equation (1.1), we can rewrite the above equation
in the following form

ρBtu ` ρu ¨ ∇u ` div τ ` ∇p “ ρf. (1.5)

1.1.2 Energy equations

We assume that the fluctuations around thermodynamic equilibria are suf-
ficiently weak so that the thermodynamical state of the fluid is determined
by the state variables as in classical thermodynamics:

thermodynamic pressure p, internal energy per unit mass e, thermodynamic
temperature θ, mass density ρ

Conservation of energy: First law of thermodynamics. As the total
energy E consists of the kinetic energy ρ|u|2{2 and the internal energy ρe:

E “
1

2
ρ|u|

2
` ρe,
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the conservation of energy (i.e. first law of thermodynamics) yields

d

dt

ˆ
Ω

ρp
1

2
|u|

2
` eqdx “ ´

ˆ
BΩ

ρp
1

2
|u|

2
` eqpu ¨ nqdσ

`

ˆ
Ω

ρf ¨ udx `

ˆ
BΩ

u ¨ pΣ ¨ nqdσ ´

ˆ
BΩ

q ¨ ndσ,

where the second and third integrals on the righthand side denote the work
done by the forces, and the last integral denotes the heat transferred by
the heat flux q. By Gauss’ Theorem one arrives at the evolution equation
(Exercise)

Bt
`

ρp
1

2
|u|

2
`eq

˘

`div
´

u
”

ρp
1

2
|u|

2
`eq`p

ı¯

“ div pτ ¨uq´div pqq`ρf ¨u, (1.6)

and furthermore, by view of the continuity equation (1.1) and the momentum
equation (1.4), we derive

Btpρeq ` div pρueq ` pdiv u “ ´div pqq ` τ : d (1.7)

or
ρBte ` ρu ¨ ∇e ` pdiv u “ ´div pqq ` τ : d. (1.8)

where A : B “
řN

j,k“1AjkBjk for two matrices A “ pAjkq1ďj,kďN and B “

pBjkq1ďj,kďN .
State equations & Navier-Stokes-Fourier equations. To close the sys-
tem, we have to postulate the relations among ρ, θ, p, e, q. Let ρ, θ be two
independent thermodynamic state variables.
Let

p “ ppρ, θq, e “ epρ, θq (1.9)

be given by general constitutive laws. Let

q “ ´κpρ, θ, |∇θ|q∇θ (1.10)

be the heat flux given by Fourier law. The heat conduction coefficient κ may
depend on ρ, θ, |∇θ|, and in most cases depends only on ρ, θ, or even is taken
to be constant.
To conclude, we have the following pN ` 2q-evolution equations (1.1)-(1.4)-
(1.7) for pN ` 2q-variables pρ, u, eq:

$

’

’

&

’

’

%

Btρ ` div pρuq “ 0,

Btpρu
jq ` div

`

ρujuq ´
řN

k“1 Bxk
pµpBxk

uj ` Bxj
ukqq

´Bxj
pλdiv uq ` Bxj

p “ ρf j, j “ 1, ¨ ¨ ¨ , N,
Btpρeq ` div pρueq ` pdiv u “ div pκ∇θq ` 2µd : d ` λpdiv uq2,

(1.11)
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where p, e are given in terms of ρ, θ in the state equations (1.9), and the
viscosity and heat conduction coefficients µ, λ, κ may depend on ρ, θ. It is
called (compressible) Navier-Stokes(-Fourier) equations.

[17.04.2023]
[21.04.2023]

Second law of Thermodynamics. We postulate the existence of a new
state variable: the specific entropy

s “ spρ, θq, (1.12)

which satisfies

Bs

Bθ
“

1

θ

Be

Bθ
,

Bs

Bρ
“

1

θ

´

Be

Bρ
´

p

ρ2

¯

.

Then we have the entropy equation from (1.1) and (1.7) (Exercise):

Btpρsq ` div
´

ρus `
q

θ

¯

“
1

θ
τ : d ´

1

θ2
q ¨ ∇θ. (1.13)

By virtue of the second law of thermodynamics, the righthand side should be
nonnegative. Notice that by the decomposition of a matrix into a multiple
identity matrix and a trace-free matrix

τ : d “

´

pλ `
2

N
µqdiv uId ` 2µpd ´

1

N
div uId q

¯

:
´ 1

N
div uId ` pd ´

1

N
div uId q

¯

“ pλ `
2

N
µq

1

N
pdiv uq

2
` 2µpd ´

1

N
div uId q : pd ´

1

N
div uId q.

This gives the restriction:

µ ě 0, K “ λ `
2

N
µ ě 0, q ¨ ∇θ ď 0,

that is, (1.2) and κ ě 0 in (1.10). For common fluids (which e.g. do not
move too fast), experiments show that K “ λ ` 2

N
µ is very small and could

be taken as zero in the simulation. Nevertheless in the study of sound waves
or shock waves which transport in fast-moving compressible fluids it plays
an important role.

1.2 Simplified models

1.2.1 Barotropic models.

In the case of ideal gas, the constitutive equations (1.9) read

p “ pγ ´ 1qρe, e “ Cvθ, (1.14)
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where γ ą 1 is the adiabatic constant, and Cv ą 0 is the thermo capacity at
constant volume. Often one denotes by R “ Cvpγ´1q the ideal gas constant,
and by Cp “ γCv the thermo capacity at constant pressure.

Example 1.1. • Isentropic compressible fluids. In the case of ideal gas,
the entropy (1.12) takes the form (up to a constant)

s “ Cv

`

logpeq ` p1 ´ γq logpρq
˘

.

If s “ s0 “ const. all the time and consequently,

ppρq “ aργ, a “ pγ ´ 1q expps0{Cvq ą 0,

then (1.1)-(1.4) represent a closed system for pN ` 1q´variables pρ, uq

describing the motion of an isentropic compressible viscous fluid:
$

&

%

Btρ ` div pρuq “ 0,

Btpρu
jq ` div

`

ρujuq ´
řN

k“1 Bxk
pµpBxk

uj ` Bxj
ukqq

´Bxj
pλdiv uq ` Bxj

paργq “ ρf j, j “ 1, ¨ ¨ ¨ , N.
(1.15)

The total energy of the flow reads

E “
1

2
ρ|u|

2
` P pρq,

where
P 1

pzqz ´ P pzq “ ppzq.

The energy equation (1.6) is then a consequence of (1.1)-(1.4) if λ “

µ “ κ “ 0 (Exercise). Thus it suffices to solve the system (1.15). The
system (1.15) is sometimes simply called compressible Navier-Stokes
equations.

It is possible to deduce from the kinetic theory of gases that γ “ N`2
N

,
e.g. γ “ 5

3
if N “ 3, for a monatomic gas. The physical relevant case

is γ P p1, 5
3
s.

• Isothermal compressible fluids. Similarly, if we suppose θptq “ θ0 “

const., then (1.14) implies

p “ Rρθ0.

Then (1.15) with aργ replaced by Rρθ0 describes the motion of isen-
thermal compressible fluids.

• Barotropic flows: the pressure p depends solely on the density ρ:

p “ ppρq,

and the fluid motion is described by (1.15) with aργ replaced by ppρq.
The isentropic/isothermal ideal gases are special examples.
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1.2.2 Incompressible models

Lagrangian viewpoint We have derived the evolution equations for the
fluid motion in eulerian form, where one fixes a point x P RN and observe
the fluid flows as time evolves (Eulerian viewpoint). Nevertheless one can
follow directly a specific fluid parcel y P RN (Lagrangian viewpoint).
Let Xpt, yq be the integral curves4

"

BtXpt, yq “ upt,Xpt, yqq,
Xpt, yq|t“0 “ y,

(1.16)

and we call Xt “ Xpt, ¨q the Lagrangian trajectory. Let Jpt, yq “ detp∇yXtq

be the jacobian of the transformation py ÞÑ Xtpyq “ Xpt, yqq, such that
(Exercise)

"

BtJpt, yq “ div upt,Xpt, yqqJpt, yq,
Jpt, yq|t“0 “ 1,

(1.17)

and hence

Jpt, yq “ 1 ` tdiv up0, yq ` op|t|q, as |t| Ñ 0.

Let the initial time be any fixed time t, Xpt ` h, yq be the integral curve

"

BhXpt ` h, yq “ upt ` h,Xpt ` h, yqq,
Xpt, yq “ y,

(1.18)

and Jpt`h, yq be the jacobian of the transformation py ÞÑ Xpt`h, yqq. Then
the conservation of mass at time t and t ` h:ˆ

Ωptq

ρpt, yqdy “

ˆ
Ωpt`hq

ρpt ` h, xqdx, Ωpt ` hq :“ tXpt ` h, yq | y P Ωptqu

“

ˆ
Ωptq

ρpt ` h,Xpt ` h, yqqJpt ` h, yqdy

4If the velocity vector field u : RˆRN
ÞÑ RN is smooth enough, e.g.

u P L1
loc pR; Lip pRN ,RN

qq,

i.e. }}∇xu}L8
x pRN ;RNˆN q}L1

t pIq ă 8, @ finite interval I Ă R,

then the Cauchy-Lipschitz theorem implies the unique flow

Xtp¨q “ Xpt, ¨q : RN
ÞÑ RN ,

which is defined as the solution of initial value problem of the ordinary differential equation
(1.16) (with y P RN viewed as a parameter)
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implies (noticing Ωptq is arbitrary)

ρpt, yq “ ρpt ` h,Xpt ` h, yqqJpt ` h, yq.

Therefore as h Ñ 0` we obtain

ρpt, yq “ ρpt, yq ` h
´

Btρpt, yq ` upt, yq ¨ ∇ρpt, yq ` ρpt, yqdiv upt, yq

¯

` ophq,

and hence the coefficient of h should vanish:

Btρ ` u ¨ ∇ρ ` ρdiv u “ 0,

which is exactly the continuity equation (1.1).
Incompressibility condition and incompressible models. Many com-
mon liquids are incompressible (or only very slightly compressible), that is,
the volume of an open set Ωptq at some fixed time t should be the same as
the volume of the transported set

Ωpt ` hq :“ tXpt ` h, yq | y P Ωptqu,

which reads more precisely as
ˆ
Ωptq

dy “

ˆ
Ωpt`hq

dx “

ˆ
Ωptq

Jpt ` h, yqdy, @t, h. (1.19)

That is,
1 “ detp∇yXpt, yqq “ Jpt, yq, @t, y. (1.20)

or equivalently,
div upt, xq “ 0, @t, x. (1.21)

[21.04.2023]
[24.04.2023]

If div u “ 0, then the pressure Π 5 is in fact a Lagrangian multiplier associated
to (1.21)6. The equations (1.1)-(1.4) together with the (1.21) represent a

5The pressure Π here is not necessarily the thermodynamic pressure. Notice that only
∇Π (instead of Π itself) appears in the momentum equation, and the system does not
change if one modifies the pressure by a constant. In particular, it can not be recovered
simply by applying the constitutive laws for fluids.
In the zero Mach number limit ε Ñ 0, one can expand the thermodynamic pressure

p “ p0 ` ε2Π ` opε2q where p0 is a constant. Then one recovers the incompressible model
(1.22) from the compressible model (1.11).

6Notice that σijBiuj “ 0 for all u such that div u “ 0 if and only if σij “ Πδij for some
Π.
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closed system for pN ` 2q´variables pρ, u,Πq describing the motion of an
incompressible viscous fluid:

$

’

’

&

’

’

%

Btρ ` div pρuq “ 0,

Btpρu
jq ` div

`

ρujuq ´
řN

k“1 Bxk
pµpBxk

uj ` Bxj
ukqq ` Bxj

Π “ ρf j,
j “ 1, ¨ ¨ ¨ , N,

div u “ 0.
(1.22)

Observe that for incompressible fluids, if the solutions are smooth enough,
e.g. upt, xq P L1

loc pR`; Lip pRN
qq, the continuity equation reduces to

Btρ ` u ¨ ∇ρ “ 0,

which admits a unique solution 7 (Exercise)

ρpt,Xpt, yqq “ ρ0pyq, i.e. ρpt, xq “ ρ0pX´1
t pxqq.

If initially ρ0 “ 1 is a constant, then ρpt, xq “ 1 for all the times, and we call
it a homogeneous fluid. If the density ρ is not a constant, then (1.22) are
called inhomogeneous (or density-dependent) incompressible Navier-Stokes
equations.
Incompressible homogeneous models. In the homogeneous case ρ “ 1,
the mass conservation law Btρ`div pρuq “ 0 is equivalent to the incompress-
ibility condition div u “ 0.
The viscosity coefficient µ is then a constant. If µ ą 0, then (1.22) becomes
the (classical) incompressible Navier-Stokes equations:

"

Btu ` u ¨ ∇u ´ µ∆u ` ∇Π “ f,
div u “ 0,

(1.23)

which describes the motion of the homogeneous incompressible viscous fluids.
If µ “ 0, then (1.22) becomes the (classical) incompressible Euler equations:

"

Btu ` u ¨ ∇u ` ∇Π “ f,
div u “ 0,

(1.24)

which describes the motion of the homogeneous incompressible inviscid fluids.
If pρ, uq are known, then the energy equation (1.7) becomes

Btpρeq ` div pρueq ´ div pκ∇θq “
1

2
µpBiu

j
` Bju

i
q
2,

7Indeed it is just the Lagrangian formulation of the above transport equation with
divergence-free velocity field.
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and in particular in the homogeneous case ρ “ 1, e “ ep1, θq “ Cvθ, the above
equation becomes the transport-diffusion equation for the temperature θ.
Incompressible (inhomogeneous) perfect fluids. The evolution of in-
compressible perfect fluids is described by the following equations (i.e. (1.22)
with µ “ 0 and f j “ ´Bxj

F )

$

&

%

Btρ ` u ¨ ∇ρ “ 0,
ρ

`

Btu ` u ¨ ∇u ` ∇F
˘

` ∇Π “ 0,
div u “ 0.

(1.25)

If we consider the perfect fluids in some bounded smooth domain Ω and
assume the impermeability condition on the boundary:

pu ¨ nq|BΩ “ 0, (1.26)

where n denotes the outer normal vector on BΩ, then the incompressibility
condition means that, for each time t, Xpt, ¨q is a smooth diffeomorphism
from Ω to itself that preserves the orientation and volume (recalling (1.20)).
By use of Lagrangian coordinates, the system (1.25) reduces to (recalling
ρpt,Xpt, yqqq “ ρ0pyq)

$

’

&

’

%

ρ0pyq

´

B2
tXpt, yq ` ∇xF pt,Xpt, yq

¯

` ∇xΠpt,Xpt, yqq “ 0,

Xp0, yq “ y, BtXp0, yq “ u0pyq,
Xpt, ¨q P tγ : Ω Ñ Ω diffeomorphism s.t. detp∇γq “ 1u,

(1.27)

where pρ0, u0q are the initial data at time 0. This is related to Least Ac-
tion Principle (a variational problem, formulated by V.I.Arnold 1960s): The
Action is the sum of the kinetic energy and the potential energy

Apt,Xq “

ˆ
Ω

ρ0pyq

´1

2
|BtXpt, yq|

2
´ F pt,Xpt, yqq

¯

dy,

and the Least Action Principle says that if t1 ´ t0 ą 0 is not too large, then

ˆ t1

t0

Apt,Xqdt ď

ˆ t1

t0

Apt, γqdt

holds for all flow map γpt, ¨q, which is an orientation and volume-preserving
diffeomorphism such that γpt0q “ Xpt0q, γpt1q “ Xpt1q, i.e. the Action
integrand from t0 to t1 is minimal for X. The resolution of (1.27) is related
to the shortest patch problem.
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2 Euler equations

In this chapter we discuss the (classical) incompressible Euler equations for
the motion of perfect incompressible fluid flows (without external forces)
given in (1.24) mainly in dimension N “ 2 or 3

"

Btu ` u ¨ ∇u ` ∇Π “ 0,
div u “ 0.

(2.1)

2.1 Vorticity

In this section we will discuss the vorticity and we restrict ourselves in three-
dimensional case N “ 3. The main reference is [5].

2.1.1 Vorticity-Transport formula

Notice that the 3 ˆ 3-matrix U :“ ∇u “ pBxj
uiq can be decomposed into a

symmetric part d (deformation tensor) and an antisymmetric part a (rotation
matrix):

∇u “ d ` a :“
1

2
p∇u ` p∇uq

T
q `

1

2
p∇u ´ p∇uq

T
q

“

¨

˝

Bx1u
1 1

2
pBx1u

2 ` Bx2u
1q 1

2
pBx1u

3 ` Bx3u
1q

1
2
pBx1u

2 ` Bx2u
1q Bx2u

2 1
2
pBx2u

3 ` Bx3u
2q

1
2
pBx1u

3 ` Bx3u
1q 1

2
pBx2u

3 ` Bx3u
2q Bx3u

3

˛

‚

`

¨

˝

0 1
2
pBx2u

1 ´ Bx1u
2q 1

2
pBx3u

1 ´ Bx1u
3q

1
2
pBx1u

2 ´ Bx2u
1q 0 1

2
pBx3u

2 ´ Bx2u
3q

1
2
pBx1u

3 ´ Bx3u
1q 1

2
pBx2u

3 ´ Bx3u
2q 0

˛

‚

[24.04.2023]
[05.05.2023]

We apply ∇ to the u-equation in (2.1) to arrive at the following equation for
the matrix U “ ∇u “ pBxj

uiq

BtU ` u ¨ ∇U ` U2
` ∇2Π “ 0.

We have decomposed U into symmetric part d “ 1
2
pU ` UT q and antisym-

metric part a “ 1
2
pU ´UT q, such that U2 can be decomposed into symmetric

and antisymmetric parts:

U2
“ pd2 ` a2q ` pda ` adq.
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The symmetric part for U -equation reads as

Btd ` u ¨ ∇d ` d2 ` a2 ` ∇2Π “ 0, (2.2)

while the antisymmetric part reads as

Bta ` u ¨ ∇a ` da ` ad “ 0. (2.3)

The vorticity ω of the velocity field u is given by

ω “ curl puq “

¨

˝

Bx2u
3 ´ Bx3u

2

Bx3u
1 ´ Bx1u

3

Bx1u
2 ´ Bx2u

1

˛

‚

and satisfies

ah “
1

2
ω ˆ h, @h P R3 .

If div u “ 0, then trpdq “ 0, and the equation (2.3) is equivalent to the
following equation for the vorticity ω P R3 (Exercise.)

Btω ` u ¨ ∇ω “ dω, (2.4)

or equivalently,

Lemma 2.1. Let N “ 3. If the velocity field u satisfies (2.1) together with
some pressure term, then its curl ω “ curl puq satisfies

Btω ` u ¨ ∇ω “ ω ¨ ∇u. (2.5)

The righthand side of (2.5) is called the vortex stretching term, which am-
plifies the vorticity when the velocity is diverging in the direction of ω.
Recall the definition of the trajectory Xpt, yq in (1.16)

"

BtXpt, yq “ upt,Xpt, yqq,
Xpt, yq|t“0 “ y.

(2.6)

Then the solution to (2.5) is given by (Exercise)

ωpt,Xpt, yqq “ ∇yXpt, yqω0pyq “ pω0pyq ¨ ∇yqXpt, yq, (2.7)

where ω0 denotes the initial vorticity. It is however in general open to solve
(2.5), and one notices that the definition of the trajectory Xpt, yq depends
on the velocity upt, xq, which in turn depends on ωpt, xq (by Biot-Savart’s
law, see later). We have nevertheless some special solutions of (2.1) below.
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2.1.2 Special solutions

Any real, symmetric and trace-free 3ˆ 3 matrix will determine a solution to
the Euler equations (2.1).

Lemma 2.2. Let N “ 3. Let d “ dptq be a real, symmetric and trace-free
3 ˆ 3 matrix. Let ω “ ωptq be determined by the ODE equation on R3:

d

dt
ω “ dω, ω|t“0 “ ω0 P R3 . (2.8)

Then

pu,Πqpt, xq “

´1

2
ω ˆ x ` d x, ´

1

2

`

Btd ` d2 ` a2
˘

x ¨ x
¯

(2.9)

is a solution to (2.1). Here the antisymmetric matrix a is defined by ah “
1
2
ω ˆ h.

Proof. For d “ dptq and ω “ ωptq given by (2.8), we define the velocity as in
(2.9):

upt, xq “
1

2
ω ˆ x ` d x,

such that (Exercise)

div u “ 0, curlu “ ω,
1

2
p∇u ` ∇Tuq “ d, ah :“

1

2
p∇u ´ ∇Tuqh “

1

2
ω ˆ h,

and (2.4) (and hence (2.3)) holds. With the choice of Π in (2.9)

Π “ ´
1

2

`

Btd ` d2 ` a2
˘

x ¨ x,

the equation (2.2) holds correspondingly. Thus the pair (2.9) satisfies (2.1).

Example 2.3. We give some examples of the exact solutions of (2.1) that
illustrate the interactions between a rotation and a deformation.

1. Jet flows. Let γ1, γ2 ą 0 and

ω0 “ 0 P R3, d “

¨

˝

´γ1 0 0
0 ´γ2 0
0 0 pγ1 ` γ2q

˛

‚.

15 [July 24, 2023]



Then by Lemma 2.2, ωptq “ 0, and the pair

pu,Πqpt, xq “

¨

˝

¨

˝

´γ1x1
´γ2x2

pγ1 ` γ2qx3

˛

‚,´
1

2

`

γ21x
2
1 ` γ22x

2
2 ` pγ1 ` γ2q

2x23
˘

˛

‚

is a solution to (2.1).

The flow forms two jets along the positive and negative directions of
x3-axis, along the particle trajectories Xpt, yq (recalling (1.16))

Xpt, yq “

¨

˝

e´γ1t 0 0
0 e´γ2t 0
0 0 epγ1`γ2qt

˛

‚y “

¨

˝

e´γ1ty1
e´γ2ty2
epγ1`γ2qty3

˛

‚.

A jet flow is axisymmetric flow without swirl.

2. Strain flows. Let γ ą 0, and

ω0 “ 0 P R3, d “

¨

˝

´γ 0 0
0 γ 0
0 0 0

˛

‚.

Then by Lemma 2.2, ωptq “ 0, and the pair

pu,Πqpt, xq “

¨

˝

¨

˝

´γx1
γx2
0

˛

‚,´
1

2

`

γ2x21 ` γ2x22
˘

˛

‚

is a solution to (2.1). The particle trajectories read

Xpt, yq “

¨

˝

e´γty1
eγty2
y3

˛

‚.

The strain flow is independent of x3.

3. Vortex flows. Let α P R and

ω0 “

¨

˝

0
0
α

˛

‚, d “ 0 P Id 3ˆ3.

Then by Lemma 2.2, ωptq “ ω0, and the pair

pu,Πqpt, xq “

¨

˝

¨

˝

´1
2
αx2

1
2
αx1
0

˛

‚,
1

8
α2

px21 ` x22q

˛

‚
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is a solution to (2.1). The particle trajectories read

Xpt, yq “

¨

˝

cospφtq ´ sinpφtq 0
sinpφtq cospφtq 0

0 0 1

˛

‚y “

¨

˝

cospφtqy1 ´ sinpφtqy2
sinpφtqy1 ` cospφtqy2

y3

˛

‚, φt “
1

2
αt.

This vortex flow is independent of x3-variable, and rotates on the px1, x2q-
plane.

[05.05.2023]

[08.05.2023]

4. Rotation jets. We take the superposition of a jet and a vortex:

ω0 “

¨

˝

0
0
α

˛

‚, d “

¨

˝

´γ1 0 0
0 ´γ2 0
0 0 pγ1 ` γ2q

˛

‚.

Then by Lemma 2.2, ωptq “

¨

˝

0
0

epγ1`γ2qtα

˛

‚, and the pair

pu,Πqpt, xq “

¨

˝

¨

˝

´γ1x1 ´ 1
2
epγ1`γ2qtαx2

´γ2x2 ` 1
2
epγ1`γ2qtαx1

pγ1 ` γ2qx3

˛

‚,Exercise

˛

‚

is a solution to (2.1). The particle trajectories read

Xpt, yq “

¨

˝

X1pt, yq

X2pt, yq

epγ1`γ2qty3

˛

‚,

where the first two components satisfy the following ODE:

Bt

ˆ

X1

X2

˙

“

ˆ

´γ1 ´1
2
epγ1`γ2qtα

1
2
epγ1`γ2qtα ´γ2

˙ ˆ

X1

X2

˙

,

and in particular BtpX
2
1 ` X2

2 q “ ´2γ1X
2
1 ´ 2γ2X

2
2 , such that

e´2max pγ1,γ2qt
py21 ` y22q ď pX2

1 ` X2
2 qpt, yq ď e´2minpγ1,γ2qt

py21 ` y22q.

A rotating jet is axisymmetric flow with swirl.
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Example 2.4 (Beltrami flows). Any steady, divergence-free velocity field
upxq P R3 that satisfies the Beltrami condition

ωpxq “ λpxqupxq for some λpxq ‰ 0 (2.10)

is a (steady) solution to (2.1). Indeed, if some divergence-free velocity upxq

and its vorticity ωpxq “ curl pupxqq satisfy (2.10), then

0 “ divω “ u ¨ ∇λ ` λdiv u “ u ¨ ∇λ.

Hence the (steady) vorticity equation (2.5) is satisfied:

u ¨ ∇ω “ u ¨ ∇pλuq “ pu ¨ ∇λqu ` λu ¨ ∇u “ 0 ` ω ¨ ∇u.

Therefore, by Corollary 2.12, upxq and the associated ∇Π solves (2.1).
One typical example is the celebrated Arnold-Beltrami-Childress periodic flow

upxq “

¨

˝

A sinpx3q ` C cospx2q

B sinpx1q ` A cospx3q
C sinpx2q ` B cospx1q

˛

‚.

2.2 A dip on analysis and Biot-Savart’s law

In this section we recall some definitions and facts from analysis lectures8,
which will help to understand Biot-Savart’s law: A formula for the divergence-
free velocity field in terms of its vorticity.

2.2.1 Motivations

We first claim that in R3, the following identity (when applied on a vector
field) holds

∆ “ ∇div ´ ∇ ˆ ∇ ˆ . (2.11)

Indeed, for any vector field u : R3
Ñ R3, for any j,

∆uj “ p

3
ÿ

k“1

Bxkxk
ujq ´ Bxj

p

3
ÿ

k“1

Bxk
ukq ` Bxj

p

3
ÿ

k“1

Bxk
ukq

“

3
ÿ

k“1

Bxk
pBxk

uj ´ Bxj
ukq ` Bxj

pdiv uq.

8The students are required to understand the ideas, but not the analysis detail, which
is not the focus of the lecture.
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In terms of ω “ ∇ ˆ u P R3,

∆u1 “ Bx2p´ω3
q ` Bx3pω2

q ` Bx1pdiv uq,

∆u2 “ Bx1pω3
q ` Bx3p´ω1

q ` Bx2pdiv uq,

∆u3 “ Bx1p´ω2
q ` Bx2pω1

q ` Bx3pdiv uq,

and hence (2.11) follows. Notice that if the velocity field is divergence-free
div u “ 0, then u is related to its vorticity ω “ ∇ ˆ u as follows:

´∆u “ ∇ ˆ ω. (2.12)

If we could solve the Poisson equation

´∆v “ f,

with the solution denoted by v “ p´∆q´1f , then one can recover u from ω
as

u “ p´∆q
´1∇ ˆ ω.

2.2.2 Fundamental solution

Recall the fundamental solution to the Laplace-equation ∆v “ 0:

Γpxq “

"

´ 1
2π

ln |x| N “ 2,
1

pN´2qcN
|x|´pN´2q N ě 3,

(2.13)

where cN “ |BB1p0q| denotes the volume of the unit sphere in RN . We will
show that the Newton potential Γ ˚ f solves the Poisson equation ´∆v “ f .
One can simply calculate (Exercise)

Bxj
Γ “ gj for x ‰ 0,

Bxixj
Γ “ gij for x ‰ 0,

∆Γpxq “ 0 for x ‰ 0.

(2.14)

Here

gjpxq :“ ´
1

cN

xj
|x|N

,

gijpxq :“ ´
1

cN

´ 1

|x|N
δij ´ N

xixj
|x|N`2

¯

,
(2.15)

and hence

Γ, gj P L1
loc pRN

q, while gij R L1
loc pRN

q, gij P L1
loc pRN

zt0uq.
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Here L1
loc pΩq with Ω Ă RN an open set consists of all (Lebesgue-)measurable

function g : Ω Ñ R such that g P L1pKq for all compact subset K Ă Ω.
The question we keep in mind is: Is it true that for all x P RN ,

Bxj
Γ “ gj, Bxixj

Γ “ gij?

2.2.3 Functional spaces & Differentiation

We summerize what we have learned from analysis lectures concerning the
differentiation.

1. If f P C1pRN
q, then Bxj

f P CpRN
q is well-defined as the limit of

limhÑ0
fpxj`hq´fpxjq

h
, e.g. fpxq “ sinpxq has derivative f 1pxq “ cospxq.

2. If f P W 1,ppRN
q, then Bxj

f P LppRN
q is the weak derivative of f (see

Definition 2.5 below), e.g. fpxq “

"

1 ` x, x P p´1, 0s

1 ´ x, x P r0, 1q
has weak

derivative f 1pxq “

"

1, x P p´1, 0s

´1, x P p0, 1q

3. If f P D1pRN
q is a distribution, then Bxj

f P D1pRN
q is the distribution

derivative (see Definition 2.6), e.g. the Heaviside function Hpxq “
"

0, x P p´8, 0s

1, x P p0, 1q
has the distribution derivative H 1pxq “ δ, where

xδ, φyD1,D “ φp0q.

Definition 2.5 (Lebesgue spaces and Sobolev spaces). Let pΩ,A,mq be
a Lebesgue measure space, where Ω Ă RN is an open set, A consists of
Lebesgue-measurable sets restricted in Ω, and m is the Lebesgue measure re-
stricted on Ω.
Let 1 ď p ă 8. We call a real-valued Lebesgue-measurable function f : Ω Ñ

R (i.e. f´1ppt,8sq P A for all t P R) p integrable if |f |p is integrable and
denote (we denote dm simply by dx from now on)

}f}Lp “

ˆˆ
Ω

|f |
pdx

˙1{p

“

ˆˆ 8

0

mpp|f |
p
q

´1
ppt,8sqqdt

˙1{p

.

We call a Lebesgue-measurable function 8 integrable or essentially bounded
if there is a constant C so that

mptx : |fpxq| ą Cuq “ 0.

The best constant is denoted by }f}L8.
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We call two measurable functions equivalent (denoted by f „ g), if they are
the same almost everywhere (i.e. mptx P Ω|fpxq ‰ gpxquq “ 0).
We define LppΩq as the set of equivalence classes of p integrable functions.
We define Lp

loc pΩq as the set of equivalence classes of p locally integrable
functions, which are p integrable on any compact subset of Ω.
Let f P LppΩq, and we say f P W 1,ppΩq if for any 1 ď j ď N , there exists
hj P LppΩq such thatˆ

Ω

hjφ dx “ ´

ˆ
Ω

fBxj
φ dx , @φ P C8

c pΩq.

We call hj the weak derivative of f , and we write simply hj “ Bxj
f .

Definition 2.6 (Distributional derivative). Let DpRN
q “ C8

c pRN
q be the

test function space. The distribution space D1pRN
q consists of all continuous

linear map on DpRN
q9. Let T P D1pRN

q, then its (distributional) derivative
Bxj
T is well-defined as a distribution as follows

xBxj
T, φyD1,D “ xT,´Bxj

φyD1,D, @φ P DpRN
q.

2.2.4 Derivatives of Γ

Any locally integrable function K P L1
loc pRN

q is identified as a distribution
TK P D1

xK,φyD1,D “ xTK , φyD1,D “

ˆ
RN

Kφdx, @φ P DpRN
q,

and with an abuse of notation we do not distinguish between K and TK .
If furthermore BjK P C1pRN

zt0uq (not necessarily in L1
loc pRN

q), then by
Gauss’ integration formula

xBxj
K,φyD1,D “ ´

ˆ
RN

KBxj
φdx “ ´ lim

εÑ0

ˆ
t|x|ěεu

KBxj
φdx

“ ´ lim
εÑ0

ˆ
t|x|ěεu

`

Bxj
pKφq ´ Bxj

Kφ
˘

dx (2.16)

“ lim
εÑ0

´

ˆ
t|x|ěεu

Bxj
Kφ dx `

ˆ
t|x|“εu

Kφ
xj
|x|
dσ

¯

“ lim
εÑ0

´

ˆ
t|x|ěεu

Bxj
Kφ dx

¯

` lim
εÑ0

ˆ
t|x|“εu

Kφ
xj
|x|
dσ.

[08.05.2023]
[15.05.2023]

9See e.g. Section 4.2, my notes on Functional Analysis for more details.
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Lemma 2.7. Let Γ be given in (2.13), and let gj, gij be given in (2.15). Then
in the distribution sense,

Bxj
Γ “ gj, (2.17)

Bxixj
Γ “ p.v. gij ´

1

N
δijδ, (2.18)

and in particular,

´∆Γ “ δ, (2.19)

where δ P D1pRN
q denotes the Dirac function: xδ, φyD1,D “ φp0q.

Here p.v. gij P D1 in (2.18) is understood in the sense of Cauchy principle-
value integral

xp.v. gij, φyD1,D “ p.v.

ˆ
RN

gijφ dx :“ lim
εÑ0

ˆ
t|x|ěεu

gijφ dx (2.20)

“

ˆ
B1p0q

gijpxq
`

φpxq ´ φp0q
˘

dx `

ˆ
pB1p0qqC

gijφ dx .

We notice that (2.20) is well-defined: The first integral on the right-hand
side makes sense since the integrand is bounded by the following L1

loc pRN
q-

function

C
1

|x|N
}φ}Lip |x| “ C}φ}Lip |x|

1´N

and the second integral on the right-hand side is also finite since φ has
compact support.

Proof. We first check (2.17): By (2.16),

xBxj
Γ, φyD1,D “ lim

εÑ0

´

ˆ
t|x|ěεu

gjφ dx
¯

` lim
εÑ0

ˆ
t|x|“εu

Γφ
xj
|x|
dσ

“

ˆ
RN

gjφ dx ` lim
εÑ0

ˆ
t|y|“1u

ˆ"

´ 1
2π

ln |εy| N “ 2
1

pN´2qcN
|εy|´pN´2q N ě 3

˙

φpεyq
yj
|y|
εN´1dσ

“ xgj, φyD1,D.

We now calculate the distribution Bxi
Bxj

Γ “ Bxj
gi: We apply (2.16) to K “

gi “ ´ 1
cN

xi

|x|N
, where gi P L1

loc pRN
q and Bjgi P C1pRN

zt0uq Ă L1
loc pRN

zt0uq:

xBxj
gi, φyD1,D “ lim

εÑ0

´

ˆ
t|x|ěεu

gijφ dx
¯

´
1

cN
lim
εÑ0

ˆ
t|x|“εu

xi
εN
φ
xj
ε
dσ

where
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• the second term on the right-hand side reads

´
1

cN

`

ˆ
|x|“1

xixjdσ
˘

φp0q,

which

– vanishes, if i ‰ j, since xixj is odd under a reflection ´xixj;

– is, if i “ j,

´
1

cN

`

ˆ
|x|“1

x2jdσ
˘

φp0q “ ´
1

cN

´ 1

N

N
ÿ

j“1

¯

`

ˆ
|x|“1

x2jdσ
˘

φp0q “ ´
1

N
φp0q.

• the first term on the right-hand side is denoted as Cauchy principle-
value integral

p.v.

ˆ
RN

gijφ dx “ ´
1

cN
p.v.

ˆ
RN

p
δij

|x|N
´ N

xixj
|x|N`2

qφ dx .

It is understood as in (2.20), since (by the above argument)

ˆ
t|x|“rą0u

gijdσ “ ´
1

cN

ˆ
t|x|“rą0u

p
δij

|x|N
´ N

xixj
|x|N`2

qdσ “ 0.

Hence (2.20) follows, and in particular,

x∆Γ, φyD1,D “

N
ÿ

j“1

xBxj
gj, φyD1,D “ ´φp0q “ ´xδ, φyD1,D, i.e. ´ ∆Γ “ δ.

2.2.5 Newtonian potential

We have the following fact from elliptic theory (this is covered in the lectures
“Classical Methods to PDEs” and “Harmonic Analysis”), which we sketch
also here by use of Lemma 2.7. The assumptions on f below can be relaxed.

Convolution We recall first the definitions of convolution. For any two test
functions φ, ψ P DpRN

q, we can easily define their convolution φ˚ψ P DpRN
q

by

pφ ˚ ψqpxq “

ˆ
RN

φpx ´ yqψpyq dy .
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We can generalize the definition to the convolution between one distribution
T P D1pRN

q and one test function φ P DpRN
q

pφ ˚ T qpxq “ xT, φpx ´ ¨qyD1,D P C8
pRN

q,

or even between one distribution T P D1pRN
q and one distribution with

compact support S P E 1pRN
q:

xT ˚ S, φyD1,D “ xT, S̃ ˚ φyD1,D,

where S̃ P E 1 Ă D1 is defined as xS̃, φyD1,D “ xS, φp´¨qyD1,D, such that S̃ ˚φ P

D. For example, the Dirac function δ P D1 has compact support t0u and
hence belongs to E 1. In particular

T ˚ δ “ T, @T P D1. (2.21)

It is also well known that the convolution can be defined between f P LppRN
q

and g P LqpRN
q, with 1

p
` 1

q
ě 1 such that (by Young’s inequality)

f ˚ g “

ˆ
RN

fpx ´ yqgpyq dy P Lr
pRN

q, 1 `
1

r
“

1

p
`

1

q
. (2.22)

[15.05.2023]
[19.05.2023]

Now we can state that the Newtonian potential, as the convolution of the
fundamental solution and the source term, is a solution of the Poisson equa-
tion.

Lemma 2.8. Let f P L1pRN
qXC1pRN

q and if N “ 2,
´

t|x|ě1u
|fpxq| ln |x|dx ă

8. Then the Newtonian potential

vpxq “ pΓ ˚ fqpxq :“

ˆ
RN

Γpx ´ yqfpyqdy P C2, (2.23)

and satisfies

•

p∇vqpxq “ p∇Γ ˚ fqpxq “ ´
1

cN

ˆ
RN

x ´ y

|x ´ y|N
fpyqdy, (2.24)

•

Bijv “ pp.v. gijq ˚ f ´
1

N
fδij, (2.25)
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• the Poisson equation
´∆v “ f.

The convolution above is understood in the sense of Cauchy principle value
integral

pp.v. gijq ˚ fpxq “ p.v.

ˆ
RN

gijpx ´ yqfpyq dy

:“ lim
εÑ0

ˆ
t|x´y|ěεu

gijpx ´ yqfpyq dy .

Proof. If f P D, the Newtonian potential defined in (2.23)

v “ Γ ˚ f

has a distributional derivative

Bxj
v “ Bxj

xΓ, fpx ´ ¨qyD1,D “ xΓpyq, Bxj
fpx ´ yqyD1

y ,Dy

“ xΓpyq,´Byjfpx ´ yqyD1
y ,Dy “ xByjΓpyq, fpx ´ yqyD1

y ,Dy “ BjΓ ˚ f

which can be represented by (2.24) since BjΓ “ gj P L1
loc pRN

q. Similarly, one
can write Bijv as in (2.25):

xBijΓ, fpx ´ ¨qyD1,D “ p.v.

ˆ
RN

gijpx ´ yqfpyq dy ´
1

N
δijfpxq,

and hence ´∆v “ f .
If f is smooth and sufficiently decaying at infinity as in the assumption, then
the integrals (2.23), (2.24) and (2.25) make sense, and hold true (e.g. by
density argument). In particular, the Cauchy principle value integral makes
sense if f P L1 X C1 10 since

|pp.v. gijq ˚ fpxq| “ |p.v.

ˆ
RN

gijpx ´ yq
`

fpyq ´ fpxq
˘

dy|

ď C1

ˆ
t|x´y|ď1u

1

|x ´ y|N
|fpyq ´ fpxq|dy ` C1

ˆ
t|x´y|ě1u

1

|x ´ y|N
|fpyq|dy

ď C2}f}C1
b

ˆ
t|x´y|ď1u

1

|x ´ y|N
|x ´ y|dy ` C2}f}L1 ă 8,

and hence we can write

p.v.

ˆ
RN

gijpx ´ yqfpyq dy “

ˆ
B1pxq

gijpx ´ yq
`

fpyq ´ fpxq
˘

dy

10Indeed Cα, α P p0, 1q is enough.
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`

ˆ
pB1pxqqC

gijpx ´ yqfpyqdy.

One can derive from (2.23)-(2.25) that v P C2 (indeed v P C2,α). (Exercises)
Thus ´∆v “ f holds in the classical sense.

2.2.6 Biot-Savart’s law in 3D

By virtue of (2.12) and Lemma 2.8, we have the celebrated Biot-Savart’s law.
The assumption on ω can be relaxed.

Theorem 2.9 (Biot-Savart’s law in 3D). If the divergence-free velocity field
upxq P L2pR3

q and its vorticity ωpxq “ curl pupxqq P R3 are regular and
decaying sufficiently fast (e.g. ω P C1 XL1), then upxq can be represented by
ωpxq by

upxq “ ´
1

4π

ˆ
R3

px ´ yq ˆ ωpyq

|x ´ y|3
dy. (2.26)

Furthermore, ∇u is

∇upxqh “ p.v.

ˆ
R3

´ 1

4π

ωpyq ˆ h

|x ´ y|3
`

3

4π

rppx ´ yq ˆ ωpyqq b px ´ yqsh

|x ´ y|5

¯

dy

`
1

3
ωpxq ˆ h, @h P R3 .

(2.27)

Proof. It is straightforward to show that the vector field given by (2.26),
denoted from now on by ũ, solves the equation (2.12): ´∆u “ ∇ ˆ ω.
Indeed, we apply Lemma 2.8 to (2.12) (noticing 1

4π
x

|x|3
“ ´∇Γ) to derive

that (Exercise)

ũ :“ ´K3˚ω, where the matrix pK3q is given by K3pxqh “
1

4π

x ˆ h

|x|3
, @h P R3

is a C1-solution of (2.12), and satisfies (2.27).
One still has to show the uniqueness of the solution to the equation (2.12):
´∆u “ ∇ ˆ ω in L2pR3

q. It is straightforward to derive from Young’s
inequality (2.22) that (Exercise) if ω P L1 X L8, then (by dividing the
integrals near 0 and near 8 separately)

ũ P Lr
pRN

q, r P p
3

2
,8s. (2.28)

Since u P L2pR3
q satisfies (2.12) in the distribution sense, the difference

9u :“ u ´ ũ P L2pR3
q satisfies the Laplace equation

∆ 9u “ 0
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in the distribution sense. Since any harmonic tempered distribution is poly-
nomial 11, we have 9u “ 0.
Thus (2.26) holds for u P L2, and indeed u P C1 X Lr, r ą 3

2
, such that its

derivatives read as in (2.27).

The operator from ω to ∇u given by (2.27) is indeed a Calderon-Zygmund
operator, which is singular integral operator. We recall the Lp-estimates
without proof here.

Lemma 2.10 (Lp-Estimates). If ω P Lp with p P p1,8q, then ∇u P Lp:
There exists a constant C ą 0 such that

}∇u}Lp ď C
p2

p ´ 1
}ω}Lp .

Remark 2.11. By Lemma 2.10, (2.26) and (2.27) hold for e.g. ω P L1XL8.
Recall in Example 2.3, the velocity/vorticity field is smooth, but does not
decay at infinity, and the Biot-Savart’s law does not hold in these cases.

We take the trace of (2.2) to arrive at another Poisson equation for Π (Easy
exercise.):

´∆Π “ trp∇uq
2,

since div u “ 0. Hence one can recover the solution to (2.1) by the solution
to (2.5)-(2.26):

Corollary 2.12 (Pressure formula). If ωpt, xq P R3 is smooth and decaying
sufficiently at infinity (e.g. ω P Cpr0,8q;L1XL8q), and satisfies the equation
(2.5): Btω ` u ¨ ∇ω “ ω ¨ ∇u (in the distribution sense) with upt, xq P R3

given by (2.26), then upt, xq together with

p∇Πqpxq “ ´
1

4π

ˆ
R3

x ´ y

|x ´ y|3
trp∇uq

2
pt, yqdy “ ∇Γ ˚ trp∇uq

2. (2.29)

solves (2.1).

Proof. Firstly u “ ´K3 ˚ ω given by (2.26) is divergence-free. Indeed, the
identity

∆u “ ∇div u ´ ∇ ˆ ∇ ˆ u

11Since the Fourier transform of a harmonic tempered distribution is supported on the
origin, and hence is a linear combination of Dirac function and its derivatives, whose
(inverse) Fourier transform is polynomial.
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and (2.26)
´∆u “ ∇ ˆ ω “ ∇ ˆ ∇ ˆ u

imply
∇div u “ 0,

and hence div u is a constant, which is 0 if ω P L1XL8, since then by Lemma
2.10 ∇u P Lp, p P p1,8q.

[19.05.2023]
[22.05.2023]

Since by div u “ 0 and the equation (2.5) (with Bt understood as the distri-
butional derivative)

∇ ˆ pBtu ` u ¨ ∇uq “ Btω ` u ¨ ∇ω ´ ω ¨ ∇u “ 0,

we have

∆pBtu ` u ¨ ∇uq “ ∇div pBtu ` u ¨ ∇uq “ ∇ trp∇uq
2.

Thus by (2.29)
∆pBtu ` u ¨ ∇u ` ∇Πq “ 0,

and hence the tempered distribution

Btu ` u ¨ ∇u ` ∇Π

vanishes since it decays at infinity by virtue of the following estimates in
x-variable:

ω P Lp, @p P p1,8q ñ u P Lr, @r P p
3

2
,8s&∇u P Lp, @p P p1,8q

ñ u ¨ ∇u, trp∇uq
2

P Lp, @p P p1,8q ñ ∇Π “ ∇Γ ˚ trp∇uq
2

P Lr, @r P p
3

2
,8s.

Remark 2.13. Recall the solution (2.7): ωpt,Xpt, yqq “ pω0 ¨ ∇qXpt, yq of
(2.5). One can rewrite (2.1) as a single equation for Xpt, yq:

BtXpt, yqp“ upt,Xpt, yqqq “
1

4π

ˆ
R3

Xpt, yq ´ Xpt, y1q

|Xpt, yq ´ Xpt, y1q|3
ˆ pω0 ¨ ∇qXpt, y1

q dy 1,

where Xp0, yq “ y.
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2.3 Local-in-time well-posedness

Given (2.29) (for the case N “ 3), we are motivated to study the modified
Euler equations for upt, xq : RN`1

Ñ RN :

Btu ` u ¨ ∇u ` Apu, uq “ 0, (2.30)

where the operator A reads as

Apv, wq “ ∇Γ ˚ trp∇v∇wq “ ´
1

cN

x

|x|N
˚ p

ÿ

i,j

Biv
j
Bjw

i
q.

We remark that since div u “ 0, one can rewrite trp∇uq2 “
ř

i,j Biu
jBju

i in
the form

trp∇uq
2

“
ÿ

i,j

Bijpu
iujq,

and hence A in (2.30) can also be rewritten (at formally) as 12

Apv, wq “
ÿ

ij

∇Γ ˚ Bijpv
iwj

q “
ÿ

ij

∇BijΓ ˚ pviwj
q “

ÿ

ij

Γ ˚ ∇Bijpv
iwj

q.

(2.31)

We will benefit from these identities to define the term Apv, wq as a sum
A1 ` ¨ ¨ ¨ `A5 in the functional framework C1,α (see (2.32) below). Formally
one can check that (2.1) and (2.30) are equivalent (for e.g. smooth and fast
decaying solutions and divergence-free initial data).
In the following we will take arbitrary N ě 2, and the data/solutions will be
defined on the whole space RN . The main reference is [1].

2.3.1 Hölder continuous spaces

We introduce the Hölder continuous functional spaces Ck,α, α P p0, 1q, where
our solutions will stay in13. Roughly speaking, f P Ck,α means that f is
pk ` αq-“times” continuously differentiable. We remark that Hölder contin-
uous spaces Ck,α, α P p0, 1q are more “friendly” than the usual continuously
differentiable spaces Ck for some typical PDEs, e.g. one can derive that the
Newtonian potential v “ Γ ˚ f P C2,α (locally) if f P Cα, but not v P C2 if
f P C (as we can see from (2.25)).

12By the cancellation property of gij on the sphere, if u P CαpRN
q, α P p0, 1q, one can

write Apu, uq (rigorously) as

Apu, uq “
ÿ

i,j

p.v.

ˆ
RN

∇gijpx ´ yq
`

uipxq ´ uipyq
˘`

ujpxq ´ ujpyq
˘

dy .

13The Sobolev functional framework W s,p, s ą 1 ` d
p is also suitable.
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Definition 2.14. Let α P p0, 1q. Let Ω Ă RN be an open set. We call a
function f (uniformly) Hölder continuous with exponent α in Ω if

rf sα;Ω :“ sup x,yPΩ,x‰y
|fpxq ´ fpyq|

|x ´ y|α
ă 8,

and f is called locally Hölder continuous in Ω if rf sα;Ω1 ă 8 for all compact
subsets Ω1 Ă Ω.
The Hölder space CαpΩq resp. CαpΩq consists of Hölder continuous func-
tions:

Cα
pΩq “ tf P CpΩq | rf sα;Ω ă 8u,

Cα
pΩq “ tf P CpΩq | rf sα;Ω1 ă 8, @Ω1

Ă Ω compact subsetsu.

Similarly, for any k P N, the Hölder spaces Ck,αpΩq, Ck,αpΩq are defined by

Ck,α
pΩq “ tf P Ck

pΩq | rDkf sα;Ω :“ sup |β|“krDβf sα;Ω ă 8u,

Ck,α
pΩq “ tf P Ck

pΩq | rDkf sα;Ω1 ă 8, @Ω1
Ă Ω compact subsetsu.

If k “ 0, then Cα “ C0,α. If Ω “ RN , with an abuse of notation, we denote

Ck,α
“ Ck,α

pRN
q “ tf P Ck

b pRN
q | }f}Ck,α :“ }f}Ck

b
` rDkf sα;RN ă 8u.

Lemma 2.15. Let α P p0, 1q. Then Ck,α with k P NYt0u is a Banach space.
Furthermore, there exists a constant C such that

}fg}Ck,α ď C}f}Ck,α}g}Ck,α , k “ 0, 1,

}f ˝ g}C1,α ď Cp}f}C1,α , }g}C1,αq,

}f}C1,α1 ď C}f}
θ
Cα}f}

1´θ
C1,α , α1

P p0, θq, θ “ α ´ α1.

Proof. Exercise.

[22.05.2023]
[05.06.2023]

We have shown that the operator A introduced in (2.30) is well-defined on
sufficiently smooth and fast decaying functions v, w (see e.g. Lemma 2.8
or by sharp Young’s inequality ∇v P Lp,∇w P Lq implies Apv, wq P Lr if
1
r

“ 1
p

` 1
q

´ 1
N

P r0, 1s).
The following lemma shows that A is also well-defined on divergence-free
C1,α-vectors.
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Lemma 2.16. Let α P p0, 1q. Then the operator

A : C1,α
σ pRN ;RN

q ˆ C1,α
σ pRN ;RN

q Ñ C1,α
pRN ;RN

q,

via Apv, wq “ ∇Γ ˚ trp∇v∇wq, ∇Γ “ ´
1

cN

x

|x|N

is a bounded bilinear map, where

C1,α
σ pRN ;RN

q “ tu P C1,α
pRN ;RN

q | div u “ 0u.

Proof. The proof is not trivial, and it will not be included in the exam.
We sketch the ideas by delicate Fourier analysis. We can rewrite the op-
erator A as (simply by noticing formally Γ˚ “ p´∆q´1 and using Einstein
summation convention)

Apv, wq “ ∇p´∆q
´1

pBiv
j
Bjw

i
q,

which reads if div v “ divw “ 0 as

Apv, wq “ ∇p´∆q
´1

Bijpv
jwi

q.

By use of Bony’s decomposition for products14, it can be decomposed into
the following five parts

A1pv, wq “ ∇p´∆q
´1TBivjBjw

i,

A2pv, wq “ ∇p´∆q
´1TBjwiBiv

j,

A3pv, wq “ ∇p´∆q
´1

p1 ´ χpDqqBijRpvj, wi
q, (2.32)

A4pv, wq “ pχ̃Γq ˚ ∇BijχpDqBijRpvj, wi
q,

A5pv, wq “ ∇Bijpp1 ´ χ̃qΓq ˚ χpDqRpvj, wi
q,

where χpξq, χ̃pxq are smooth cut-off functions near the origin, in the frequency
and space respectively.
Roughly speaking, A1 cares about the low-frequency part of Biv

j while high-
frequency part of Bjw

i, such that

}A1pv, wq}C1,α ď C}∇v}L8}∇w}Cα ď C}v}C1,α}w}C1,α .

Similarly it holds for A2. The operator A3 involves the disjoint comparable
high-frequency parts of vj, wi, such that e.g.

}A3pv, wq}C1,2α ď C}v}C1,α}w}C1,α .

14See e.g. Chapter 2, my notes on Fourier Analysis.
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The operators A4, A5 take care of the comparable frequency parts of vj, wi,
and we come back to the convolution formulation for p´∆q´1. To remove
the singularities of Γ, which is not integrable at infinity, we locate Γ near the
origin in A4, such that (noticing A4 is also located in the frequency)

}A4}C1,α ď C}A4}L8 ď C}χ̃Γ}L1}χpDqRpvj, wi
q}L8 ď C}v}C1,α}w}C1,α .

In A5 the singularity of Γ at infinity is removed by applying all the derivatives
on p1´ χ̃qΓ, which is then integrable, and the same estimate as for A4 holds
for A5. To conclude, A is a bounded bilinear map.

2.3.2 Some typical examples of ODEs

We give here some typical examples of ODEs:

• We consider the ODE

9yptq “ αptqyptq ` βptq

with initial data y0, and α, β are given functions. It is straightforward
to calculate from the equation that

d

dt
pe´

´ t
0 αpt1qyptqq “ e´

´ t
0 αpt1qβptq,

and hence by the initial data y0 the ODE is uniquely solvable (globally
in time) as follows

yptq “ e
´ t
0 αpt1qy0 `

ˆ t

0

e
´ t
t1 αpt2qdt2

βpt1qdt1.

Moreover, if y0, α, β ě 0, then we can easily derive Gronwall’s inequality

yptq ď e
´ t
0 αpt1qy0 `

ˆ t

0

e
´ t
t1 αpt2qdt2

βpt1qdt1,

for yptq which satisfies

9yptq ď αptqyptq ` βptq.

• If the righthand side is nonlinear in y, e.g.

9y “ y2 (2.33)

with initial data y0 ą 0, then the unique solution reads as

yptq “
y0

1 ´ ty0
, (2.34)

which blows up (tends to 8) as t tends to 1
y0

P p0,8q.
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2.3.3 Local-in-time wellposedness

We are going to see that after taking the C1,α-norm with respect to x-
variables, the quadratic ODE (2.33) (more precisely, the estimates of type
(2.34), see (2.38) below) will appear, and hence the local-in-time results will
follow. In order to “see the ODEs” with respect to t-variable, the estimates
in Cα, C1,α-spaces (w.r.t. x-variable) in Lemma 2.15 and 2.16 will play an
essential role. In the following, the operator A in (2.30) will be understood
as A1 ` ¨ ¨ ¨ ` A5 in (2.32).

Theorem 2.17. Let α P p0, 1q. Then there exists c ą 0 such that for any
initial data u0 P C1,αpRN ;RN

q, the modified Euler equations (2.30) has a
unique solution u P L8pr´T, T s;C1,αq Xα1Pp0,αq Cpr´T, T s;C1,α1

q for some
T ě c}u0}

´1
C1,α ą 0.

Proof of Theorem 2.17. Step 1. Construction of a sequence of global-
in-time divergence-free approximate solutions.
Given un “ unpt, xq P L8

loc pR;C1,αpR3
qq, n ě 0, we define iteratively un`1 as

the solution of the following linear transport equation
"

Btun`1 ` un ¨ ∇un`1 ` Apun, unq “ 0,
un`1|t“0 “ u0,

(2.35)

where A “ A1 ` ¨ ¨ ¨ ` A5 as in (2.32). By Lemma 2.16, the vector-valued
function An :“ Apun, unq belongs to L8

loc pR;C1,αq.
Let Xnpt, yq be the Lagrangian trajectory associated to the velocity field un
(recalling (1.16))

"

BtXnpt, yq “ unpt,Xnpt, yqq,
Xnpt, yq|t“0 “ y.

If un P L8
loc pR;C1,αq, then X˘1

n,t ´ Id P CpR;C1,αq such that for all t ě 0
(Exercise)15

}∇X˘1
n,t }L8 ď e

´ t
0 }∇un}L8 dt1

,

}X˘1
n,t ´ Id }C1,α ď eC

´ t
0 }un}C1,α dt1

. (2.36)

The transport equations (2.35) read as
"

Btpun`1pt,Xnpt, yqqq “ ´Anpt,Xnpt, yqq,
un`1pt,Xnpt, yqq|t“0 “ u0pyq.

15Hint: We define more generally the trajectory Xpt, t1, yq of a velocity field u as

Xpt, t1, yq “ y `

ˆ t

t1

upt2, Xpt2, t1, yqq dt1 1.

Then Xtpyq “ Xpt, 0, yq and X´1
t pyq “ Xp0, t, yq.
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Integration in time gives us

un`1pt,Xnpt, yqq “ u0pyq ´

ˆ t

0

Anpt1, Xnpt1, yqqdt1, @t P R, y P RN ,

and equivalently, the solution of (2.35) reads

un`1pt, xq “ u0pX
´1
n,t pxqq ´

ˆ t

0

Anpt1, Xn,t1pX´1
n,t pxqqqdt1, @t P R, x P RN .

[05.06.2023]
[09.06.2023]

Hence by Lemma 2.15, Lemma 2.16, (2.36) and Gronwall’s inequality we
have for t ě 0 (Exercise)

}un`1}L8pr0,ts;C1,αq

ď eC
´ t
0 }unpt1q}C1,α }u0}C1,α `

ˆ t

0

}Anpt1, xq}C1,αeC
´ t
t1 }un}C1,α dt1 (2.37)

ď eC
´ t
0 }unpt1q}C1,α }u0}C1,α `

ˆ t

0

C}unpt1q}
2
C1,αeC

´ t
t1 }un}C1,α dt1 .

Similar estimate holds for t ď 0. Thus un`1 P CpR;C1,αq X L8
loc pR;C1,αq

given above is the unique solution of (2.35).
Let t P R such that 2C|t|}u0}C1,α ă 1. By iteration, we have the following
uniform estimates for un (Exercise):

}unptq}C1,α ď
}u0}C1,α

1 ´ 2C|t|}u0}C1,α

. (2.38)

Step 2. Convergence of the sequence in the weaker topology.
Since the equations (2.30) are invariant under the symmetry pt, uq ÞÑ p´t,´uq,
it suffices to consider positive times.
Let us fix T ą 0 such that 2CT }u0}C1,α ă 1, and the approximate solutions
un satisfy uniformly the estimate (2.38):

}un}L8pr0,T s;C1,αq ď
}u0}C1,α

1 ´ 2CT }u0}C1,α

“: C0. (2.39)

The iterative equations for the differences Un,m :“ pun`m´unq read as follows

pBt ` un`m ¨ ∇qUn`1,m

“ ´Un,m ¨ ∇un`1 ´ ApUn,m, un`m ` unq,
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which is a linear equation for Un`1,m if Un,m and punq are given. Since there
is a spacial derivative in Un,m ¨ ∇un`1:

}Un,m ¨ ∇un`1}Cα
x

ď C}Un,m}Cα
x

}∇un`1}Cα
x

ď C}Un,m}Cα
x

}un`1}C1,α
x
,

it is convenient to work in a (spatially) weaker topology Cα. Similarly as in
Lemma 2.16 (nontrivial),

}ApUn,m, un`m ` unq}Cα
x

ď C}Un,m}Cα
x

}un`m ` un}C1,α
x
,

and we have a similar estimate as in (2.37) for Un`1,m:

}Un`1,m}L8pr0,ts;Cαq

ď eC
´ t
0 }un`m}C1,α

ˆ t

0

C}Un,mpt1q}Cα}pun`1, un`m, unqpt1q}C1,α dt1 .

By induction it follows (Exercise)

}Un,m}L8pr0,T s;Cαq ď
1

n!
p1 ´ 2CT }u0}C1,αq

´n
}U0,m}L8pr0,T s;Cαq.

By use of the uniform estimates (2.39) for U0,m, un is a Cauchy sequence in
Cpr0, T s;Cαq, and hence converges to a limit u P Cpr0, T s;Cαq.

Step 3. Passing to the limit in the equations and final check.
By the uniform bound (2.39), the limit u indeed stays in L8pr0, T s;C1,αq.
By the interpolation inequality in Lemma 2.15, the sequence un converges in
a stronger topology:

}un ´ u}L8pr0,T s;C1,α1
q Ñ 0, @α1

P p0, αq.

This suffices to pass the limit in the equations (2.35) (Exercise), and hence
u P L8pr0, T s;C1,αq is a solution of (2.30), in the distribution sense. Here
we recall in the distribution theory that as the time differentiation operator
is linear, un Ñ u in D1 implies Btun Ñ Btu in D1. Since un P CpR;C1,αq, the
limit u P Cpr0, T s;C1,α1

q and take the value u0 at the initial time.
[09.06.2023]
[12.06.2023]

It is the unique solution in L8pr0, T s;C1,αq. Indeed, if there are two solutions
u1, u2 in L8pr0, T s;C1,αq, then we can proceed as in Step 2 to consider their
difference δu :“ u1 ´ u2, which satisfies

}δu}L8pr0,ts;Cαq ď exppC

ˆ t

0

}u1}C1,α dt1 q

ˆ t

0

}δupt1q}Cα}pu1, u2qpt1q}C1,α dt1 .

Gronwall’s inequality implies δu “ 0. The uniqueness follows.
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We hence have the following results for the Euler equations (2.1).

Corollary 2.18. Let α P p0, 1q. Then there exists c ą 0 such that for any
initial data u0 P C1,αpRN ;RN

q with div u0 “ 0, the Euler equations (2.1) has
a unique solution pu,∇Πq P L8pr´T, T s;C1,αq Xα1Pp0,αq Cpr´T, T s;C1,α1

q for
some T ě c}u0}

´1
C1,α ą 0.

Proof. Let u be the unique solution constructed in Theorem 2.17. We claim
that div u “ 0. Indeed, we apply div to the modified Euler equations (2.30)
to arrive at

"

Btpdiv uq ` u ¨ ∇pdiv uq ` trp∇uq2 ` divApu, uq “ 0,
div u0 “ 0,

where, by use of ∆Γ “ ´δ or formally ∆p´∆q´1 “ ´1,

trp∇uq
2

` divApu, uq

“ TBiujBju
i

` TBjuiBiu
j

` RpBiu
j, Bju

i
q ´

´

TBiujBju
i

` TBjuiBiu
j

` BijRpui, ujq
¯

“ ´RpBjdiv u, u
j
q ´ Rpui, Bidiv uq ´ Rpdiv u, div uq.

This is essentially transport equation for div u with null initial data, and
hence div u “ 0 for all the times16.
We define ∇Π “ ∇ trp∇uq2 such that Apu, uq “ ∇Π and hence pu,∇Πq

satisfy (2.1). The uniqueness follows from the uniqueness result in Theorem
2.17.

2.4 Two-dimensional case

In this section we restrict ourselves in two-dimensional case N “ 2. The
main reference is [1].

2.4.1 Vorticity revisited

If we are in two-dimensional case: x “

¨

˝

x1
x2
x3

˛

‚ and u “

¨

˝

u1px1, x2q
u2px1, x2q

0

˛

‚, then

as before we decompose ∇u into its symmetric and antisymmetric parts re-

16Similarly as in the proof of Theorem 2.17, the following estimate for div u comes from
the estimates for the remainder operator Rpv, wq

}div u}Cα ď e
´ t
0

}u}C1,α }div u0}Cα .
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spectively:

∇u “

¨

˝

Bx1u
1 Bx2u

1 0
Bx1u

2 Bx2u
2 0

0 0 0

˛

‚“ d ` a

“

¨

˝

Bx1u
1 1

2
pBx1u

2 ` Bx2u
1q 0

1
2
pBx1u

2 ` Bx2u
1q Bx2u

2 0
0 0 0

˛

‚

`

¨

˝

0 1
2
pBx2u

1 ´ Bx1u
2q 0

1
2
pBx1u

2 ´ Bx2u
1q 0 0

0 0 0

˛

‚.

We define the vorticity ω as a scalar function

ω “ Bx1u
2

´ Bx2u
1, (2.40)

such that ah “ 1
2

¨

˝

0
0
ω

˛

‚ˆh, @h P R3. In the following for notational simplicity

we will simply take x “

ˆ

x1
x2

˙

P R2, u “

ˆ

u1

u2

˙

P R2, ω “ Bx1u
2 ´ Bx2u

1 P R.

It is straightforward to verify that (Exercise)

Lemma 2.19. Let N “ 2.

1. If the velocity field u satisfies (2.1) together with some pressure term,
then the vorticity ω “ Bx1u

2 ´ Bx2u
1 satisfies the free-transport equation

Btω ` u ¨ ∇ω “ 0. (2.41)

2. If the divergence-free velocity field upxq P R2 and the vorticity ωpxq “

Bx1u
2 ´ Bx2u

1 P R are smooth and decaying sufficiently fast at infinity,
then upxq can be represented by (Biot-Savart’s law)

upxq “
1

2π

ˆ
R2

px ´ yqK

|x ´ y|2
ωpyqdy, (2.42)

where xK :“

ˆ

´x2
x1

˙

, and ∇u has a simpler form

∇upxq “
1

2π
p.v.

ˆ
R2

σpx ´ yq

|x ´ y|2
ωpyqdy `

1

2
ωpxq

ˆ

0 ´1
1 0

˙

, (2.43)

where

σpzq “
1

|z|2

ˆ

2z1z2 z22 ´ z21
z22 ´ z21 ´2z1z2

˙

.
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3. If a smooth and fast decaying function ωpt, xq solves (2.41), then (2.42)
together with ∇Πpxq “ ´ 1

2π

´
R2

x´y
|x´y|2

trp∇uq2dy solves (2.1).

Remark 2.20 (Stream function). Let ψ P R be a stream function such that

u “ ∇Kψ, that is,

ˆ

u1

u2

˙

“

ˆ

´B2ψ
B1ψ

˙

(2.44)

is divergence-free. Then ψ satisfies the Poisson equation with ω as the source
term

∆ψ “ B1pB1ψq ` B2pB2ψq “ B1pu
2
q ` B2p´u1q “ ω. (2.45)

Conversely, if u is divergence-free velocity field which is smooth and fast
decaying at infinity, then there exists a stream function ψ “ ´p´∆q´1ω such
that u “ ∇Kψ.

[12.06.2023]
[16.06.2023]

2.4.2 Global-in-time well-posedness in 2D

The local-in-time wellposedness in any dimension N ě 2 has been established
in Corollary 2.18, and the prototypical ODE in the proof is (2.33), whose
solution (2.34) blows up in finite time. We are going to see that in dimension
two, a “linear” ODE will appear (see (2.48)-(2.50) below) thanks to the a
priori estimates for the vorticity (see (2.49) below) which satisfies the free
transport equation (2.40). Recall the vorticity equation (2.5) for N “ 3,
where there is an additional nonlinear term on the righthand side, and hence
the following strategy for dimension two does not work for dimension three.

Theorem 2.21. Let N “ 2. Let u0 P C1,αpR2
q, α P p0, 1q be a divergence-

free vector field, such that ω0 “ ∇Ku0 P L1 X L8. Then the Euler equations
(2.21) have a unique global-in-time solution pu,∇Πq such that

u P L8
loc pR;C1,α

q, ω P CpR;L1
X L8

q.

Proof. We sketch the proof ideas here. By symmetry if suffices to consider
positive times. The main strategy here is to “play” with the norms with
respect to the x-variables (which is impossible for ODEs where only the time
variable is present).
Step 1. Continuation criteria. Let u0 P C1,α be a divergence-free
initial data. Let T ˚ denote the maximal existence time of the solution
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pu,∇Πq P L8
loc pr0, T ˚q;C1,αq Xα1Pp0,αq Cpr0, T ˚q;C1,α1

q for Euler equations
(2.1), or equivalently for (2.30). Obviously T ˚ ą 0 by Theorem 2.17. We
claim that

T ˚
ă 8 ùñ

ˆ T˚

0

}∇u}L8dt “ 8. (2.46)

Indeed, by similar arguments implying the estimates (2.37) in Proof of The-
orem 2.17, the following more refined a priori estimates 17 hold for solutions
of the (modified) Euler equations (2.30): Btu ` u ¨ ∇u ` Apu, uq “ 0:

}uptq}C1,α ď }u0}C1,α exp
´

C

ˆ t

0

}∇u}L8 dt1
¯

. (2.47)

Thus if the converse of (2.46) holds

ˆ T˚

0

}∇u}L8dt “: c ă 8,

then

}u}L8pr0,T˚s;C1,αq ď eCc
}u0}C1,α .

For any ε ă mint 1
2CeCc}u0}C1,α

, T ˚u, by Theorem 2.17 there exists a unique

solution

u P L8
prT ˚

´ ε{2, T ˚
` ε{2s;C1,α

q Xα1Pp0,αq CprT ˚
´ ε{2, T ˚

` ε{2s;C1,α1

q.

We have extended the solution beyond T ˚, which is a contradiction to the
maximality of the existence time T ˚. Thus (2.46) holds.
Step 2. Refined continuation criteria. We claim that the Lip -norm in
(2.46) can be replaced by a weaker Besov-norm B1

8,8:

ˆ T˚

0

}u}B1
8,8

dt ă 8 ùñ

ˆ T˚

0

}∇u}L8dt ă 8.

Indeed, this can be achieved by explore the delicate estimate

}∇u}L8 ď C}u}B1
8,8

ln
´

e `
}u}C1,α

}u}B1
8,8

¯

ď Cmax t}uptq}B1
8,8

, }u0}B1
8,8

u
l jh n

“:U1ptq

ln
´

1 `
}u}C1,α

}u0}B1
8,8

¯

.

17We replace }u}C1,α´norm in (2.37) by }u}Lip ´norm, by using e.g. the estimate
}Apv, wq}C1,α ď Cp}v}Lip }w}C1,α ` }v}C1,α}w}Lip q instead of Lemma 2.16.

39 [July 24, 2023]



We the estimate (2.47) to it to derive

}∇u}L8 ď CU1 lnp1 `
}u0}C1,α

}u0}B1
8,8

q

´

1 `

ˆ t

0

}∇u}L8

¯

, (2.48)

which together with Gronwall’s inequality gives

ˆ t

0

}∇u}L8 ď exp
´

C lnp1 `
}u0}C1,α

}u0}B1
8,8

q

ˆ t

0

U1

¯

´ 1.

Step 3. A priori estimates for the vorticity. Since ω satisfies the free
transport equation (2.41), all the Lp-norm of ω is conserved a priori by the
volume-preserving flow Xpt, ¨q : R2

Ñ R2:

ωpt,Xpt, yqq “ ω0pyq ùñ }ωptq}Lp “ }ω0}Lp , @p P r1,8s. (2.49)

Similar as (2.28) in 3D, Young’s inequality implies that for ω P L1 X L8, u
given in (2.42) satisfies

u P Lr, @r P r2,8s.

By use of some Fourier analysis we know that

}uptq}B1
8,8

ď Cp}uptq}Lr ` }ωptq}L8q ď C}ω0}L1XL8 . (2.50)

This implies that for any finite time t ă 8,
´ t
0

}u}B1
8,8

ă 8, and hence´ t
0

}∇u}L8 ă 8 by Step 2, and thus T ˚ “ 8 by Step 1.

2.5 One dimensional isentropic compressible Euler equa-
tions

We have discussed until now the incompressible Euler equations (2.1), for
higher dimensions N ě 2. Notice that if N “ 1 then div u “ 0 reduces to
the fact that u is a constant, which is of no interest.
In this subsection some mathematical theory for the one-dimensional isen-
tropic compressible Euler equations is briefly mentioned, i.e. we consider the
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models (1.15) in the inviscid case µ “ λ “ 0 in dimension N “ 1 18:

"

Btρ ` Bxpρuq “ 0,
Btpρuq ` Bx

`

ρu2q ` Bxpppρqq “ 0,
(2.51)

where t, x P R, pρ, uq is a pair of unknown functions and p “ ppρq is a given
function, e.g. ppρq “ ργ, γ ą 1. We can rewrite (2.51) in a first-order system
of conservation laws

Btv ` Bxfpvq “ 0, (2.52)

where

v “

ˆ

ρ
u

˙

, fpvq “

ˆ

ρu
1
2
u2 ` p1pρq

˙

with p1
1pzq “

1

z
p1

pzq,

or equivalently,

Btv ` apvqBxv “ 0, with apvq :“ p∇vfq “

˜

u ρ
p1pρq

ρ
u

¸

. (2.53)

The mathematical theory is rather different from the incompressible case,
and typical wave phenomena such as rarefraction waves and shock waves are
present. The main reference of this section is [2].

[16.06.2023]
[19.06.2023]

2.5.1 Burgers’ equation

As a warmup, we consider n “ 1 and the Cauchy problem for the celebrated
Burgers’ (inviscid) equation

Btv ` vBxv “ 0, vpt, xq|t“0 “ v0pxq. (2.54)

It is also called Hopf’s equation occationally.

18Sometimes it is convenient to work with the specific volume v :“ 1
ρ (instead of ρ):

"

Btv ` uBxv ´ vBxu “ 0,
Btu ` uBxu ` vBxpppρqq “ 0,

and in some Lagrangian coordinate pt, yq (nontrivial), pv, uq equations read

"

Btv ´ Bxu “ 0,
Btu ` Bxp2pvq “ 0.
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Classical solutions If v P C1 is a classical solution, then as usual we define
the Lagrangian coordinate Xpt, yq by

BtXpt, yq “ vpt,Xpt, yqq with Xp0q “ y,

such that

vpt,Xpt, yqq “ v0pyq.

This implies that the flow Xpt, yq are straight lines:

BtXpt, yq “ v0pyq with Xp0q “ y, i.e. Xpt, yq “ y ` v0pyqt.

If Xt : R Ñ R is invertible all the times, the solution is given by

vpt, xq “ v0pX
´1
t pxqq.

Since the invertibility of Xt : R Ñ R is equivalent to the nonzero of the
Jacobian detpByXtq

19, it depends heavily on the initial data: Observe that if
v0 P C1

b , then

ByXtpyq “ 1 ` v1
0pyqt,

which means that

• If v1
0 ě 0 everywhere, then Xt is globally-in-time invertible and the

solution is given by vpt, xq “ v0pX´1
t pxqq.

• If v1
0py0q “ infR v

1
0 ă 0 at some point y0 P R, then Xt : R Ñ R is

invertible only up to the time

T ˚
“ ´

1

v1
0py0q

,

and there are no C1-solutions beyond the strip r0, T ˚q: More precisely,

BxX
´1
t pxq “

1

ByXtpyq

ˇ

ˇ

ˇ

y“X´1
t pxq

“
1

1 ` v1
0pX´1

t pxqqt
,

Bxvpt, xq “ Byv0pX´1
t pxqqBxX

´1
t pxq “

v1
0pX

´1
t pxqq

1 ` v1
0pX´1

t pxqqt
.

This is typical PDE-type blowup (shock wave) and the derivatives of
the solution cease to be bounded, which does not happen in ODEs
(compare it to (2.33)-(2.34)).

We conclude in particular if the initial data v0 P C8
c pRq has compact support

and is not identically zero, then the solution can not exist globally in time, no
matter how small it is. We then generalize below the definition of solutions.

19We recall that in the incompressible case div u “ 0, by virtue of (1.17), the associated
flow Xt : RN

Ñ RN is invertible and volume-preserving, as long as the solution u is
existing and is Lipschity continuous w.r.t x-variable (in the local-in-time sense).
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Weak solutions It motivates to consider the weak solutions of the Cauchy
problem for the Burgers equation in the form of conservation law

"

Btv ` Bxpfpvqq “ 0, with fpvq “ 1
2
v2,

v|t“0 “ v0.
(2.55)

If v P C1
b is a classical solution, then we test the above equation by a function

φ P C8
c pr0,8q ˆ Rq, and integration by parts implies the following equality

ˆ 8

0

ˆ
R

`

vBtφ `
1

2
v2Bxφ

˘

dxdt `

ˆ
R
v0pxqφp0, xqdx “ 0, @φ P C8

c pr0,8q ˆ Rq.

(2.56)

We call a function v P L2
loc Ă D1 weak solution of (2.55), if (2.56) holds,

that is, the equation and the initial condition are satisfied in the distribution
sense.
If v is a weak solution of (2.55) and v P C1 on both sides of a C1-curve
tx “ xpτq, t “ tpτq | τ P ra, bsu on the px, tq-plane which is parametrized by

the parameter τ in some interval ra, bs P R. Show that the slope cpτq :“ x1pτq

t1pτq

of this curve satisfies the Rankine-Hugoniot condition (Exercise.)20

cpτq “
fpv`pτqq ´ fpv´pτqq

v`pτq ´ v´pτq
(2.57)

“
1

2
pv`pτq ` v´pτqq,

where v˘pτq denote the left and right limits of the solution vpt, xq at the
curve respectively. It is interesting to consider the Riemann problem for the
Burgers’ equation with piecewise-constant initial data (Exercise. Verify
the following. Draw a picture.):

1. If v0pyq “

"

0 if y ď 0
1 if y ą 0

, then there is a continuous solution

vpt, xq “

$

&

%

0 if x ď 0
x{t if 0 ď x ď t
1 if x ą t.

(2.58)

20Note that the unit outer normal vector of the curve is n “ 1
|px1pτq,t1pτqq|

ˆ

t1pτq

´x1pτq

˙

and the conservation law reads in divergence-form div x,t

ˆ

fpvq

v

˙

“ 0. Gaussian Integral

formula implies the jump condition.
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2. If v0pyq “

"

1 if y ď 0
0 if y ą 0

, then there is a discontinuous weak solution

vpt, xq “

"

1 if x ď 1
2
t

0 if x ą 1
2
t.

(2.59)

[19.06.2023]
[26.06.2023]

In the first case the solution is continuous except the singularity p0, 0q, and
is Lipschitz continuous in p0,8q ˆR away from the initial time. Notice that

• The weak solution vpt, xq in (2.58) is self-similar

vpt, xq “ ϕpspt, xqq, ϕpsq “

$

&

%

0 if s ď 0,
s if 0 ă s ă 1,
1 if s ě 1,

spt, xq “
x

t
.

• The curve tϕpsq | s P r0, 1su is an integral curve of the constant “vector
field” 1:

ϕ1
psq “ 1pϕpsqq “ 1,

which connects the left status s “ 0 “ v0|R´ and the right status
s “ 1 “ v0|R` ;

• tc “ spt, xq | t, x P Ru defines a straight line in pt, xq-plane with slope c,
and the solution vpt, xq is constant along this straight line.

Such solution is called rarefaction wave or simple wave.
In the second case the singularity at the origin is propagated along the
straight line t0 “ x ´ 1

2
t | t, x P Ru where the slope 1

2
is calculated by the

condition (2.57).

2.5.2 One dimensional isentropic compressible Euler equations

We consider the Riemann problem for the one-dimensional compressible Eu-
ler equations (2.53):

Btv ` apvqBxv “ 0, with apvq :“ p∇vfq “

˜

u ρ
c2pρq

ρ
u

¸

. (2.60)

where for notational convenience we have introduced (the sound speed) c “

cpρq, defined by

cpρq “
a

p1pρq ą 0.
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Obviously

v “

ˆ

ρ
u

˙

“

ˆ

1
0

˙

is a constant solution of (2.60), and in the following small initial data or
small solutions are always understood as small perturbations of the state
p1, 0qT : This is reasonable since we can introduce ρ̃ “ ρ´ 1 and consider the

equations for ṽ :“

ˆ

ρ̃
u

˙

with small initial data.

It is straightforward to calculate that the 2 ˆ 2 matrix apvq “

˜

u ρ
c2pρq

ρ
u

¸

has two distinct eigenvalues

λ1pvq “ u ´ cpρq, λ2pvq “ u ` cpρq,

and the corresponding eigenvectors could be

r1pvq “

ˆ

1

´
cpρq

ρ

˙

, r2pvq “

ˆ

1
cpρq

ρ

˙

.

Remark that for small solutions v, λ1pvq is close to ´cp1q ă 0 while λ2pvq is
close to cp1q ą 0, such that

λ1pvq ă λ2pvq.

We calculate ∇λ1 “

ˆ

´c1pρq

1

˙

and ∇λ2 “

ˆ

c1pρq

1

˙

. There are two different

types of nonlinearities:

(N1) If c1pρq `
cpρq

ρ
‰ 0, then rj ¨ ∇λj ‰ 0, j “ 1, 2, and we can normalize

r1 “ ´ 1

c1pρq`
cpρq

ρ

ˆ

1

´
cpρq

ρ

˙

(similar for r2) such that

r1 ¨ ∇λ1 “ r2 ¨ ∇λ2 “ 1. (2.61)

We call a nonlinear hyperbolic system of first order satisfying (2.61)
genuinely nonlinear.

(N2) If c1pρq `
cpρq

ρ
“ 0, i.e. cpρq “ 1

ρ
(up to constants), then

rj ¨ ∇λj “ 0, j “ 1, 2.

We call such a nonlinear hyperbolic system of first order totally linearly
degenerate.
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Recall the Burgers equation (2.54), where the “matrix” apvq “ v has the
eigenvalue λpvq “ v and the associated (renormalized constant) eigenvector
1. By the above definition it is genuinely nonlinear hyperbolic equation.
Heuristically genuine nonlinearity means that the characteristics (associated
to the same eigenvalue λjpvq) may interact each other, as presented in the
solution (2.59).

Riemann problem We consider the Riemann problem for (2.60) in the
form of conservation laws

Btv ` Bxfpvq “ 0, fpvq “

ˆ

ρu
1
2
u2 ` p1pρq

˙

with p1
1pzq “

1

z
p1

pzq, (2.62)

in the case of genuine nonlinearity (see (2.61) above), equipped with the
initial data

v0pxq “

"

v´ if x ď 0,
v` if x ą 0,

(2.63)

where v` ‰ v´ are two small different vectors in R2. We call vpt, xq a weak
solution of (2.62) with the initial data v0 if (2.56) holds.
In analogue to the rarefaction wave solution (2.58) and the shock wave so-
lution (2.59) for the Riemann problem of Burgers’ equation, we discuss first
j-simple rarefaction wave and j-shock wave below.

1. j-simple rarefaction waves. Let R Q s ÞÑ ϕpsq P R2 be the orbit of rj
(in the v-space/manifold) starting from v´:

ϕ1
psq “ rjpϕpsqq, ϕp0q “ v´. (2.64)

Then if s : R2
Ñ R satisfies (see (2.76) below for more explanations)

Bts ` λjpϕpsqqBxs “ 0, (2.65)

then vpt, xq :“ ϕpspt, xqq solves Btv ` apvqBxv “ 0, which is called j-
simple rarefaction wave.

Hence if v` “ ϕps˚q for some s˚ ą 0 and v˘ are small enough, then
ϕpsq gives a Lipschitz continuous solution of the Riemann problem.

[26.06.2023]

[03.07.2023]
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Furthermore, since (by virtue of (2.61))

d

ds
λjpϕpsqq “ ϕ1

psq ¨ ∇vλjpϕpsqq “ prj ¨ ∇λjqpϕpsqq “ 1,

λjpϕp¨qq is strictly increasing from 0 to s˚:

λjpv´q “ λjpϕp0qq ă λjpϕps1qq ă λjpϕps2qq

ă λjpϕps˚
qq “ λjpv`q, @0 ă s1 ă s2 ă s˚.

(2.66)

2. j-shock waves. If the Riemann problem has a discontinuous solution

vpt, xq “ v˘ for ˘ px ´ ctq ą 0, (2.67)

then the (two) Rankine-Hugoniot conditions for weak solutions of (2.52):

cpv` ´ v´q “ fpv`q ´ fpv´q

implies one equation for v` for given v´.

Intuitively, if v` ‰ v´ are both small, then

fpv`q´fpv´q “

ˆ 1

0

apv´`tpv`´v´qqdtpv`´v´q “: apv`, v´qpv`´v´q,

and we define λjpv`, v´q, rjpv`, v´q as the corresponding eigenvalues
and eigenvectors of apv`, v´q. This implies, for some j and some σ P R

c “ λjpv`, v´q, v` ´ v´ “ σrjpv`, v´q. (2.68)

Hence v` should satisfy

v ´ v´ ´ σrjpv, v´q “ 0

for some σ, that is, the above two equations should be satisfied by three
unknowns pv`, σq. Since the Jacobian of the lefthand side w.r.t. v when
σ “ 0 is the identity, it follows from the implicit function theorem that
v is a smooth function of σ such that v1pσq|σ“0 “ rjpv´q. Hence such
a solution (2.67) exists if and only if v` stays in a curve through v´,
which is tangent to the orbit of rj.

If v´ and v` are both small, then up to higher order terms,

λjpv`q ´ λjpv´q „ pv` ´ v´q ¨ ∇λjpv´q „ σrjpv´q ¨ ∇λjpv´q.
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By virtue of the genuinely nonlinear condition rj ¨ ∇λj “ 1 ą 0,

σ ă 0, and hence λjpv`q ă c ă λjpv´q, (2.69)

where the case σ ą 0 such that λjpv´q ă c “ λjpv`, v´q ă λjpv`q does
not hold for shock-solution (2.67), since in this case j-characteristics
are pointing away from the shock at both sides, which is rejected in
favor of a rarefaction wave (see also (2.66)). Such as solution (2.67)
satisfying (2.69) is called an admissible j-shock wave solution.

x

tλ1pv´q ă λ1pv`q

x

t λ2pv´q ă λ2pv`q

(a) Characteristics for a 1-simple rarefaction wave (above) and 2-simple
rarefaction wave (below).

x

tλ1pv´q ą c ą λ1pv`q

x

t λ2pv´q ą c ą λ2pv`q

(b) Interaction of characteristics for a 1-shock wave (above) and 2-shock
wave (below).

Figure 1

To conclude, for v´ P R2 we define Φjpεq as

Φjpεqv´ “ v`,

if ε ě 0 and v` is the value for s “ ε of the solution (2.64)-(2.65), or ε ă 0
and v` is the solution (2.67)-(2.68) with σ “ ε. Thus the Riemann problem
with v` “ Φjpεqv´ is solved by a j-simple rarefaction wave if ε ě 0 (see
Figure 1a)or by an admissible j-shock wave if ε ă 0 (see Figure 1b).
If

v` “ Φ2pε2qΦ1pε1qv´, (2.70)

for small εj, then we have obtained a solution of the Riemann problem (2.62)-
(2.63) consisting in order of increasing j from left to right of a j rarefac-
tion wave or an admissible j shock wave of strength εj. More precisely,
from left to right, v´ is connected to some middle state Φ1pε1qv´ by a 1-
rarefaction/shock wave of strength ε1, and then Φ1pε1qv´ is connected to
v` by a 2-rarefaction/shock wave of strength ε2 (see Figure 2a, Figure 2b).
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x

tλ1pv´q ă λ1pΦ1pε1qv´q λ2pΦ1pε1qv´q ă λ2pv`q

x

tλ1pv´q ă λ1pΦ1pε1qv´q λ2pΦ1pε1qv´q ą c ą λ2pv`q

(a) v´ and v` are connected by, from left to right, a 1-simple
rarefaction wave (blue) and a 2-simple rarefaction wave (above),
or a 2-shock wave (below).

x

tλ1pv´q ą c ą λ1pΦ1pε1qv´q λ2pΦ1pε1qv´q ă λ2pv`q

x

tλ1pv´q ą c ą λ1pΦ1pε1qv´q λ2pΦ1pε1qv´q ą c ą λ2pv`q

(b) v´ and v` are connected by, from left to right, a 1-shock wave (blue)
and a 2-simple rarefaction wave (above), or a 2-shock wave (below).

Figure 2

The 1-wave and 2-wave do not interfere with each other since they move
from the origin with quite different speeds, close to λ1 „ ´cp1q, λ2 „ cp1q,
respectively. For small v˘, the equation (2.70) determines pεjq uniquely:

Theorem 2.22 (Unique solvability of the Riemann problem for one-dimen-
sional isentropic compressible Euler equations in the case of genuinely non-
linearity). If v´, v` are sufficiently small, then the Riemann problem (2.62)-
(2.63) has a unique solution consisting from left to right for increasing j of
a small j simple rarefaction wave or a small j admissible shock, j “ 1, 2.

We don’t give the proof here, which can be found in [2].
We conclude with more explanations for the two different nonlinearities:

(N1) If (2.60) is genuinely nonlinear, then for small perturbed compactly
supported initial data pρ0, u0q (around p1, 0q) simple waves and shock
waves arise for finite time. This is the case similar as for Burgers’
equation. Roughly speaking, if a nonlinear hyperbolic conservation
law system is genuinely nonlinear, then the j-characteristics, i.e. the
curves s : pt, xq Q R2

Ñ R defined by

Bts ` λjpvqBxs “ 0, j “ 1 or 2 (2.71)

may interact with each other (see (2.69) above) and in particular, when
two characteristics encounter each other, shock waves appear and the
solution ceases to be classical (see (2.59) above).
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(N2) If (2.60) is totally linearly degenerate, i.e. in the case of Chaplygin
gases ppρq “ A ´ B

ρ
where A,B are positive constants, the solution

for small perturbed initial data (around p1, 0q) exists globally in time.
Roughly speaking, if a nonlinear hyperbolic conservation law system is
totally linearly degenerate, then the j-characteristics

Bts ` λjpvqBxs “ 0

do not interact strongly with each other and hence the global-in-time
classical solution exists for small initial data.

In the following we discuss further Riemann invariants and more general
first-order system with one space variable 21.

Riemann invariants Historically Riemann introduced the concepts of
Riemann invariants to solve the Riemann problem. In the case of genuine
nonlinearity (otherwise we simply take wj “ λj), we define the (single) 1-
Riemann invariant w1 “ w1pvq : R2

Ñ R by (see (2.82) below)

∇vw1 “

ˆ

cpρq

ρ

1

˙

, i.e. w1 “ u `

ˆ ρ cpsq

s
,

and the (single) 2-Riemann invariant w2 : R2
Ñ R by

∇vw2 “

ˆ

´cpρq

ρ

1

˙

, i.e. w2 “ u ´

ˆ ρ cpsq

s
,

such that

rj ¨ ∇wj “ 0, j “ 1, 2.

This means that in the v “ pρ, uq-space (or manifold), wj remains constant
along the orbit of the vector rj. As r1, r2 are linearly independent,

rk is parallel to ∇vwj when j ‰ k,

∇wj is an eigenvector corresponding to the eigenvalue λk, and pw1, w2q can
serve as coordinate system in pρ, uq-space. Let l1, l2 be the corresponding
left eigenvectors of the eigenvalues λ1, λ2, then rj ¨ lk “ 0 if j ‰ k and hence
lk ¨ p∇vwkqT “ 0. If v solves (2.60), then

Btwj “ Btv ¨ ∇vwj

21This is not included in the exam.
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“ ´apvqBxv ¨ ∇vwj

“ ´p∇vwjq
TapvqBxv

“ ´λkBxv ¨ ∇vwj

“ ´λkBxwj.

That is, we diagonize the system (2.60) if we take pw1, w2q (instead of pρ, uq)
as unknowns

"

Btw1 ` λ2Bxw1 “ 0,
Btw2 ` λ1Bxw2 “ 0.

(2.72)

For example, if the pressure law reads

ppρq “
1

2
ρ2

such that cpρq “
?
ρ, the two Riemann invariants are (up to constants)

w1 “ u ` 2
?
ρ, w2 “ u ´ 2

?
ρ.

We rewrite (2.60) in terms of the two Riemann invariants

Bt

ˆ

w1

w2

˙

`

ˆ

λ2 0
0 λ1

˙

Bx

ˆ

w1

w2

˙

“ 0, with λ2 “
3w1 ` w2

4
, λ1 “

w1 ` 3w2

4
.

(2.73)
If vpt, xq “ ϕpspt, xqq is j-simple wave solution (2.64)-(2.65) of (2.60) (see
Figure 1a), then j-Riemann invariant wj remains a constant in the whole
pt, xq-plane by virtue of

d

ds
wjpϕpsqq “ ϕ1

psq ¨ ∇wjpϕpsqq “ rjpϕpsqq ¨ ∇wjpϕpsqq “ 0,

and the other Riemann invariant wk, k ‰ j is constant along each j-characteristic
(2.65): ts “ spt, xqu by virtue of

Btwk ` λjpϕpsqqBxwk “ 0.

Since the slope λj of each the above j-characteristic is determined by the
values of w1 and w2 (see (2.73) above), the slope λj of each j-characteristic
is indeed a constant. This verifies that j-characteristics of j-simples waves
are all straight lines (as shown in Figure 1a).

2.5.3 Appendix: General first-order system with one space vari-
able

We discuss briefly the general first-order system of the form (2.53):

Btv ` apvqBxv “ 0, (2.74)

where v “ pv1, ¨ ¨ ¨ , vnq and apvq “ pai,jq
n
i,j“1 is a n ˆ n matrix. We assume

that ap0q has real distinct eigenvalues and a has C8 entries.
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Linear case If a is constant matrix and hence independent of v, then (2.74)
is satisfied by

vpt, xq “

n
ÿ

j“1

bjpx ´ λjtqrj,

where rj are eigenvectors of a with eigenvalues λj. The initial condition
v|t“0 “ v0 is satisfied if

n
ÿ

j“1

bjpxqrj “ v0pxq,

that is, bj is the component of v0 along rj. In this case, we have solved
completely the Cauchy problem of (2.74).
In particular, if n “ 1 and a ą 0 is a constant, then the Cauchy problem

Btv ` aBxv “ 0, v|t“0 “ v0pxq

has a unique solution
vpt, xq “ v0px ´ atq.

That is, the initial data v0 is transported to the right in the px, tq´plane with
the speed a: This is completely different from the ODE equation Btv`av “ 0
whose solution is vptq “ e´atv0 which decays exponentially fast at infinity.
More generally, if n “ 1 and a “ apt, xq is a bounded function, then we define
the characteristics tXpt, yq | t, y P Ru (i.e. the Lagrangian coordinates), which
solves the ODE

dXptq

dt
“ apt,Xptqq, Xp0q “ y.

The solution is constant along the characteristics

vpt,Xpt, yqq “ v0pyq. (2.75)

Simple waves in nonlinear case The decomposition of solutions in the
linear case has an analogue in the nonlinear case when a depends on v. If v
is in a neighborhood of 0 such that apvq has n real distinct eigenvalues

λ1pvq ă λ2pvq ă ¨ ¨ ¨ ă λnpvq,

and corresponding eigenvectors r1pvq, r2pvq, ¨ ¨ ¨ , rnpvq. Motivated by the lin-
ear case, let R Q s ÞÑ ϕpsq P Rn be a parametrization of a curve, and
vpt, xq “ ϕpspt, xqq with s P C1. Then the equation (2.74) reads

pBtsqϕ
1
` pBxsqapϕqϕ1

“ 0.
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This implies that ϕ1 is an eigenvector of apϕq, say

apϕqϕ1
“ λjpϕqϕ1,

then
Bts ` λjpϕpsqqBxs “ 0. (2.76)

Now, conversely, let s ÞÑ ϕpsq be an integral curve of the eigenvector field
rjpuq such that

ϕ1
psq “ rjpϕpsqq, (2.77)

Let s “ spt, xq satisfies (2.76), then vpt, xq “ ϕpspt, xqq satisfies (2.74), and
we call this solution j-simple wave. Along the characteristics of jth field:

BtXpt, yq “ λjpϕpspt,Xpt, yqqqq, Xp0, yq “ y,

we have
spt,Xpt, yqq “ sp0, yq

and hence j-simple wave vpt, xq “ ϕpspt, xqq is constant:

vpt,Xpt, yqq “ ϕpspt,Xpt, yqqq “ ϕpsp0, yqq “ v0pyq,

which implies in particular the characteristics are straight lines:

BtXpt, yq “ λjpv0pyqq, Xp0, yq “ y.

Whether the solution spt, xq of (2.76) exists (globally) is questionable, see
Burgers equation for the scalar case: There exists no simple waves for de-
creasing initial data (2.59).

Genuinely nonlinear condition VS Totally linearly degenerate The
system (2.74) is called genuinely nonlinear if

rj ¨ ∇vλj ‰ 0,

and we normalize rj such that it becomes, without loss of generality,

rj ¨ ∇vλj “ 1. (2.78)

This implies that along the integral curve s ÞÑ ϕpsq,

d

ds
λjpϕpsqq “ ϕ1

psq ¨ ∇λjpϕpsqq “ rjpϕpsqq ¨ ∇λjpϕpsqq “ 1.

We can revisit the rarefactive wave solution (2.58): For any v1 P Rn, if ϕpsq is
defined by the ODE (2.77) and the initial data ϕpλjpv1qq “ v1 (which exists
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at least in a neighborhood of λjpv1q), then λjpϕpsqq “ s. One may check that
vpt, xq “ ϕpx

t
q is a solution:

Btpϕp
x

t
qq ` apϕp

x

t
qqBxϕp

x

t
q “ ´

x

t2
ϕ1

p
x

t
q `

1

t
apϕp

x

t
qqϕ1

p
x

t
q

“
`

´
x

t2
`

1

t
λjpϕp

x

t
qq

˘

rjpϕp
x

t
qq

“
`

´
x

t2
`

1

t

x

t

˘

rjpϕp
x

t
qq “ 0.

Generally speaking, for the nonlinear hyperbolic conservation laws, the gen-
uinely nonlinear condition can arise blowup of smooth solutions in finite time
and corresponds to the formation of shocks, e.g. for Burgers equation

apvq “ v, λpvq “ v, rpvq “ 1,

the genuinely nonlinear condition

rpvq ¨ Bvλpvq “ 1

is satisfied, and we have seen the shock wave solution (2.59).
The opposite concept is totally linearly degenerate

rj ¨ ∇λj “ 0, j “ 1, ¨ ¨ ¨ , n. (2.79)

The nonlinear hyperbolic conservation law (2.74) satisfying the totally lin-
early degenerate condition (2.79) can produce global smooth small data so-
lutions.

Shock waves for Riemann problem Unlike the scalar case n “ 1, where
the Rankine-Hugoniot condition gives immediately the speed of the shock
wave in (2.59), in the system with n ě 2, the n Rankine-Hugoniot conditions

cpv` ´ v´q “ f`pvq ´ f´pvq

for a solution of the form

vpt, xq “

"

v´ if x ď ct
v` if x ą ct,

(2.80)

implies n ´ 1 conditions on v` given v´. Similarly as the argument in Sub-
section 2.5.2, n ` 1 unknowns pv`, σq should satisfy n equations

v` ´ v´ ´ σrjpv`, v´q “ 0, (2.81)

which implies, by virtue of rj ¨ ∇vλj “ 1,

λjpv`q ă c “ λjpv`, v´q ă λjpv´q, σ ă 0.

Theorem 2.22 holds also for general n ě 1, up to some obvious changes.
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Riemann invariant In the genuinely nonlinear case, it is convenient to
define j-Riemann invariants w : Rn

Ñ R by

rjpvq ¨ ∇vwpvq “ 0, @v P Rn . (2.82)

This implies that w is a constant along the integral curve s ÞÑ ϕpsq, since

d

ds
wpϕpsqq “ ϕ1

psq ¨ ∇vwpϕpsqq “ rjpϕpsqq ¨ ∇vwpϕpsqq “ 0.

There are pn ´ 1q j-Riemann invariants whose gradients are linearly inde-
pendent, such that the matrix p∇w1, ¨ ¨ ¨ ,∇wn´1,∇λjq is nonsingular. For
the j-simple wave solution vpt, xq “ ϕpspt, xqq given above, wpϕpspt, xqqq is a
constant on the whole px, tq-plane.

[03.07.2023]
[07.07.2023]

3 Navier-Stokes equations

In this section we consider the initial value problem for the classical incom-
pressible Navier-Stokes equations (1.23)

$

&

%

Btu ` u ¨ ∇u ´ ∆u ` ∇Π “ 0,
div u “ 0,
u|t“0 “ u0.

(3.1)

Here t ě 0 denotes the time variable, x P RN , N ě 2 the space variable,
u “ upt, xq : r0,8q ˆ RN

ÞÑ RN the unknown velocity vector field and
Π “ Πpt, xq : p0,8q ˆ RN

ÞÑ R the unknown pressure term. Compared to
the classical incompressible Euler equations (2.1), the viscosity effect, which
is quantified by the viscosity term ´∆u, is taken into account in the fluids.
We assume that the viscosity coefficient µ is a positive constant, which we
take 1 for (notational) simplicity.
We summarize the counterpart of the reformulations we have done for Euler
equations (2.1) (in the case of smooth and fast decaying solutions) below:

• Pressure formular. We apply div to the u-equation to arrive at the same
equation for Π as for the case of Euler equations (since the vorticity
term ´∆u vanishes after applying div ):

´∆Π “ trpp∇uq
2
q “

N
ÿ

j,k“1

pBju
k
Bku

j
q.
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Thus
∇Π “ ∇Γ ˚ trpp∇uq

2
q “: Apu, uq (3.2)

can be recovered from u, see (2.30) (see also (2.29) for N “ 3 and
Lemma 2.19 for N “ 2).

• Reformulated Navier-Stokes equations. Inspired by the pressure formu-
lar and the reformulation (2.30) of Euler equations (2.1), we introduce
the (Leray) projection operator

P “ Id ` ∇p´∆q
´1div . (3.3)

It is a projection operator on the divergence-free vector fields:

Pu “ u, if div u “ 0,

while annihilates the vector of gradient form:

P∇Π “ 0.

We have indeed applied Id ´P “ ´∇p´∆q´1div to (3.1), which anni-
hilates the divergence-free terms Btu and ´∆u, to derive the pressure
formular:

∇Π ” pId ´ P q∇Π
(3.1)1

“ ´pId ´ P qpu ¨ ∇uq ” ∇Γ ˚ trpp∇uq
2
q.

In general we can always (formally) decompose a vector field v : RN
Ñ

RN into a divergence free part Pv and a vector of gradient form pId ´

P qv (which is called Helmholtz-decomposition):

v “ Pv ` pId ´ P qv,

with divPv “ div v ` pdiv∇qp´∆q
´1div v “ div v ´ div v “ 0,

and pId ´ P qv “ ∇ϕ, ϕ :“
`

´p´∆q
´1div v

˘

“ ´Γ ˚ pdiv vq.

We now apply P to (3.1)1 to annihilate the pressure term, and arrive
at the modified Navier-Stokes equations for u:

"

Btu ´ ∆u “ Qpu, uq,
u|t“0 “ u0,

(3.4)

where

Qpu, uq “ ´P pu ¨ ∇uq.

We have shown that if pu,∇Πq is a regular solution of (3.1) with
divergence-free initial data u0, then u satisfies (3.4). One can show
that the converse is true, following the proof ideas for Corollary 2.18.
(Exercise: Notice the fact divP “ 0)
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• Another reformulation related to the convection term u¨∇u “
řN

k“1 u
kBxk

uj

was not emphasized in the study of Euler equations, that is, due to
div u “ 0,

div pu b uq “

N
ÿ

k“1

Bxk
pujukq “

N
ÿ

k“1

pujBku
k

` Bku
jukq “ pu ¨ ∇uq.

This reformulation of u ¨∇u in the same spirit of the conservation law-
reformulation (2.55) for the Burgers’ equation (2.54), such that weak
solutions are well-defined in (2.56). Below we define analogously weak
solutions for Navier-Stokes equations (3.1), where u ¨ ∇u is always un-
derstood as div pubuq. Remark that in Theorem 2.17 strong solutions
for Euler equations are considered, where u P C1,α

x is regular enough,
such that u ¨ ∇u is well-defined without resorting to the reformulation
div pu b uq.

• Vorticity formulation.

– Case N “ 3. Let ω “ curl puq “

¨

˝

Bx2u
3 ´ Bx3u

2

Bx3u
1 ´ Bx1u

3

Bx1u
2 ´ Bx2u

1

˛

‚. If pu,∇Πq

satisfies (3.1), then ω satisfies

Btω ` u ¨ ∇ω ´ ∆ω “ ω ¨ ∇u, (3.5)

where u is represented by ω in terms of the Biot-Savart’s in The-
orem 2.9.

– Case N “ 2. Let ω “ B1u
2 ´ B2u

1 P R. If pu,∇Πq satisfies (3.1),
then ω satisfies

Btω ` u ¨ ∇ω ´ ∆ω “ 0, (3.6)

where u is represented by ω in terms of the two-dimensional Biot-
Savart’s law in Lemma 2.19.

The following are two interesting observations which inspire the rigorous
mathematical study of weak resp. strong solutions later. We assume below
regular solutions, say u P C1pr0,8q;SpRN ;RN

qq,∇Π P Cpp0,8q,SpRN ;RN
qq.

Energy (in)equality Let us take L2pRN
q inner product between the equa-

tion (3.1) and u itself, and we calculate the resulting terms one by one:

•
´
RN Btu ¨ u “

´
RN

1
2
Btp|u|2q “ 1

2
d
dt

´
RN |u|2 “ 1

2
d
dt

}u}2
L2pRN q

,

57 [July 24, 2023]



•
´
RN u ¨ ∇u ¨ u “

´
RN

1
2
u ¨ ∇p|u|2q “ ´

´
RN

1
2
pdiv uq|u|2 “ 0,

•
´
RN ´∆u ¨ u “

´
RN |∇u|2 “ }∇u}2

L2pRN q
,

•
´
RN ∇Π ¨ u “ ´

´
RN Π ¨ div u “ 022.

Thus we arrive at for all t ą 0,

1

2

d

dt

ˆ
RN

|u|
2

`

ˆ
RN

|∇u|
2

“ 0, i.e.
1

2

d

dt
}uptq}

2
L2pRN q

` }∇uptq}
2
L2pRN q

“ 0,

which implies immediately the energy equality by integration in time:

1

2
}uptq}

2
L2pRN q

`

ˆ t

0

}∇upt1q}
2
L2pRN q

dt1 “
1

2
}u0}

2
L2pRN q

. (3.7)

This means that we have a priori estimates for the solutions with the follow-
ing finite time-space norms on the lefthand side:

1

2
}u}

2
L8pr0,8q;L2pRN qq

` }∇u}
2
L2pr0,8q;L2pRN qq

ď
1

2
}u0}

2
L2pRN q

. (3.8)

As seen in the proofs of local- resp. global-in-time existence results of so-
lutions to Euler equations, the (uniform) estimates (2.39) resp. (2.49) have
played an essential role. The above energy inequality (3.8) for all the pos-
itive times leads then to the global-in-time existence of the weak solutions
to (3.1), see Subsection 3.1 below. The associated topology is however not
strong enough to ensure the uniqueness of weak solutions in dimension three.

A heat equation If one ignors the nonlinear convection term u ¨∇u in the
Navier-Stokes equations, then (3.1) become

$

&

%

Btu ´ ∆u ` ∇Π “ 0,
div u “ 0,
u|t“0 “ u0.

(3.9)

We apply P to (3.9)1 to get a heat equation for u:

Btu ´ ∆u “ 0, u|t“0 “ u0. (3.10)

Remark that since div u also satisfies the heat equation, u remains divergence-
free if initially div u0 “ 0. Thus any solution to heat equation with divergence-
free initial data, together with vanishing pressure term, is also a solution of
(3.9).

22That is, a regular divergence-free vector u and a regular vector of gradient form ∇Π
is orthogonal in L2pRN ;RN

q.
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As explained in the lecture “Classical methods to PDEs”, the Cauchy prob-
lem for the heat equation (3.10) has a unique solution (Exercise. Verify
this.)

upt, xq “ p4πtq´N
2 e´

|¨|2

4t ˚ u0 “ p4πtq´N
2

ˆ
RN

e´
|x´y|2

4t u0pyq dy , t ě 0. (3.11)

[07.07.2023]
[10.07.2023]

We introduce the following time-dependent nonnegative quantities:

Vmptq “ sup |α|“m}Dα
xupt, xq}L8

x pRN q, m P N0,

Wmptq “ sup |α|“m}Dα
xupt, xq}L2

xpRN q, m P N0 .

The energy equality (3.7) also holds for regular solutions for the heat equation
(3.10), and hence

W0ptq, }W1}L2pr0,tsq ď W0p0q, @t ě 0.

We can simply take x-derivatives to the linear heat equation to derive the
heat equations for Dα

xu, such that

Wmptq, }Wm`1}L2pr0,tsq ď Wmp0q, @t ě 0, @m P N0 .

Indeed we have smooth solutions immediately away from the initial time,
and high-order x-derivatives decay faster w.r.t. the time. To see this, by use
of the explicit formula (3.11) and Young’s and Hölder inequalities, one can
show straightforwardly the following (decay) estimates for t ą 0 and initial
data u0 P L2 (Exercise. Verify this.)

Vmptq ď CmW0p0qt´
2m`N

4 ,

Wmptq ď CmW0p0qt´
m
2 , (3.12)

where Cm are some constants depending on m P N0.
The question related to the solvability of (3.1) reduces then to whether the
“linear” part Btu´∆u could control the “nonlinear” part u ¨∇u (the pressure
term ∇Π can be recovered from ∇p´∆q´1div pu ¨ ∇uq as in (3.2)). We will
see that it is indeed this case if some smallness assumption either on the
existence time or on the initial data is assumed, in Subsection 3.2 below.

3.1 Leray-Hopf’s weak solutions

Thanks to the energy estimate (3.8), J. Leray proved the global-in-time ex-
istence of weak solutions to (3.1) in 1933 in his thesis. The weak solutions
become strong solutions in dimension two, as observed by O. Ladyzhenskaya
in 1959.
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3.1.1 A dip on Fourier analysis and Sobolev spaces Hk

We don’t follow the original proof by J. Leray [3] to show the existence results,
and adopt a “modern” proof idea by use of Fourier transform instead. It is
always convenient to deal with functions/problems defined in the whole space
by use of Fourier transform. We recall briefly here the definition and basic
properties of Fourier transform23.

Definitions For an integrable function f P L1pRN
q defined in the whole

space RN , we define its Fourier transform as a function f̂ P L8pRN
q below

f̂pξq :“ Fpfqpξq “
1

p2πq
N
2

ˆ
RN

e´ix¨ξfpxq dx , @ξ P RN .

Let SpRN
q denote the Schwartz space which consists of smooth functions

which decay fast at infinity

SpRN
q “ tf P C8

pRN
q | sup xPRd, |α|ďkp1 ` |x|

k
q|B

αfpxq| ă 8, @k P Nu.

Let S 1pRN
q denote the tempered distribution space as the dual space of

Schwartz space. Since SpRN
q Ă L1pRN

q, we can define the Fourier transform
of a Schwartz function f P SpRN

q as above, and one can check that Fpfq P

SpRN
q is also a Schwartz function. By duality we can extend the definition

of Fourier transform to S 1pRN
q as follows

xFpT q, fyS1,S “ xT,FpfqyS1,S , @f P SpRN
q,

such that the Fourier transform of a tempered distribution is also a tempered
distribution. A typical Schwartz function is the Gaussian function e´ 1

2
|x|2 ,

and one can calculate that its Fourier transform is also the Gaussian function
Fpe´ 1

2
|x|2q “ e´ 1

2
|ξ|2 . A typical tempered distribution is the Dirac function δ,

and its Fourier transform is the constant function 1

p2πq
N
2
, since

xFpδq, fyS1,S “ xδ,FpfqyS1,S “ Fpfq|ξ“0 “
1

p2πq
N
2

ˆ
RN

fpxq dx “ x
1

p2πq
N
2

, fyS1,S .

A big benefit to apply Fourier transform to PDEs is that it transforms dif-
ferentiation operator to multiplication operator, and more precisely, it holds

Fp
1

i
Bxj
fqpξq “ ξjFpfqpξq, j “ 1, ¨ ¨ ¨ , N,

23See e.g. Chapter 2, my notes for more detailed introduction to Fourier transform.
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and hence more generally for multiindex Fp
1

i|α|
Dαfqpξq “ ξαFpfqpξq,

which can be checked first for f P SpRN
q and then for f P S 1pRN

q by duality.
Now let f P L2 Ă S 1, then the Plancherel’s identity holds

}f}L2 “ }Fpfq}L2 .

Recall the Sobolev space HkpRN
q defined by

Hk
pRN

q :“ tf P L2
pRN

q | }f}Hk :“
`

ÿ

|α|ďk

}Dαf}
2
L2

˘
1
2 ă 8u.

Hence equivalently, in terms of Fourier transform, HkpRN
q can be defined by

Hk
pRN

q “ tf P L2
pRN

q | }f}Hk :“
`

ÿ

|α|ďk

}ξαFpfqpξq}
2
L2

˘
1
2 ă 8u.

L2-Functions with compactly supported Fourier transform If f P

L2pRN
q and Fpfq has compact support, say suppFpfq is included in a ball

Bnp0q with radius n, then f is indeed smooth: f P HkpRN
q, @k P N. Indeed,

we simply calculate

}f}Hk “

´

ÿ

|α|ďk

}ξαFpfqpξq}
2
L2

¯
1
2

ď

´

p
ÿ

|α|ďk

1qn2k
}Fpfq}

2
L2

¯
1
2

ď Ckn
k
}f}L2 , @k P N .

Motivated by this analysis, we introduce the low-frequency cut-off operator

Pn :“ 1BnpDq, i.e. FpPnfq “ Fpfq|t|ξ|ănu, (3.13)

such that

• it is a regularizing operator on L2 in the sense that Pn : L2 Ñ H8 “

XkPNH
k

• it is an approximation operator on L2 in the sense that

@f P L2, }pId ´ Pnqf}L2 “ }f̂ |pBnqC}L2
nÑ8
Ñ 0.

It is convenient to apply Pn to (the nonlinearities in) some PDE, then to
construct a regular solution un of the regularized PDE, and finally to show
the convergence of the sequence punq to some limit u, which is expected to
solve the original PDE. In this way one can show the existence of solutions.
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3.1.2 Global-in-time existence of weak solutions

We call a divergence-free vector-valued function u P L2
loc pR`

ˆRN ;RN
q a

weak solution of (3.1) if the following equality holds

0 “

ˆ 8

0

ˆ
RN

pu ¨ Btφ ` u b u : ∇φ ` u ¨ ∆φq dx dt

`

ˆ
RN

u0pxq ¨ φp0, xq dx , (3.14)

for any test function φ P C8
c pr0,8q ˆ RN ;RN

q with divφ “ 0. Exercise:
Show that regular solutions of (3.1) satisfy (3.14) by integration by parts.

[10.07.2023]
[17.07.2023]

The following existence result of weak solutions is due to J. Leray.

Theorem 3.1 (Existence of weak solutions of (3.1)). Let N “ 2 or 3. Let
u0 be a divergence-free vector field in pL2pRN

qqN . Then there exists a weak
solution u “ upt, xq P Cpr0,8q;L2

wpRN
qq of (3.1) satisfying the energy in-

equality:

1

2
}uptq}

2
L2pRN q

`

ˆ t

0

}∇upt1q}
2
L2pRN q

dt1 ď
1

2
}u0}

2
L2pRN q

. (3.15)

Ideas of proof. The procedure of the proof is similar as in the proof of The-
orem 2.17.
Step 1 Construction of a sequence of smooth solutions

punq Ă C1
pr0,8q; pHN`1

pRN
qq

N
q

of the regularized Cauchy problem of (3.4):

Btv “ ∆v ` PnQpv, vq, vp0, xq “ Pnu0pxq, (3.16)

where Pn “ 1BnpDq, n P N is the low-frequency cut-off operator given in
(3.13), and Qpv, vq “ ´P pv ¨ ∇vq. Here P “ Id ` ∇p´∆q´1div is the
Leray projector (3.3), which is also a Calderon-Zygmund operator and hence
satisfies the Lp-Estimates in Lemma 2.10:

}Pv}Lp ď Cp}v}Lp , @p P p1,8q. (3.17)

Notice that any regular solution v, say v P C1pr0,8q;HN`1q, of (3.16)
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• is divergence-free. Indeed, we apply div to (3.16) to arrive at the free
heat equation for div v

Btpdiv vq ´ ∆pdiv vq “ 0, pdiv vqp0, xq “ 0,

where we used the community between Pn and div , divP “ 0 and
div u0 “ 0. Hence div v “ 0 for all the times.

• has compactly supported Fourier transform such that v “ Pnv. Indeed,
we apply Fourier transform to (3.16) to arrive at

Btv̂pt, ξq ` |ξ|
2v̂pt, ξq “ 1Bnpξq {Qpv, vqpt, ξq, v̂p0, ξq “ 1Bnpξq pu0pξq.

We view ξ as a parameter, and solve the above ordinary differential
equation to get the solution

v̂pt, ξq “ e´|ξ|2t
`

1Bnpξq pu0pξq
˘

`

ˆ t

0

e´|ξ|2pt´t1q1Bnpξq {Qpv, vqpt1, ξqdt1.

(3.18)

Fix t ą 0, and we see from the above that

Supp pv̂pt, ξqq Ă Bn, that is v “ 1BnpDqv “ Pnv.

• satisfies the energy equality (3.7)

1

2
}vptq}

2
L2 `

ˆ t

0

}∇v}
2
L2dt1 “

1

2
}Pnu0}

2
L2 . (3.19)

Indeed, as in the derivation of (3.7), we take L2-inner product between
(3.16) with v itself. Then (3.19) follows, by virtue of the fact

xf,PngyL2 “

ˆ
RN

f̂pξq1Bnpξqĝpξq “ xPnf, gyL2 ,

and Pnv “ v, Pv “ v, div v “ 0:

xv,PnQpv, vqyL2 “ xv,´pv ¨ ∇vqyL2 “ 0.

• satisfies (3.14) in the following sense:

0 “

ˆ 8

0

ˆ
RN

pv ¨ Btφ ` Pnpv b vq : ∇φ ` v ¨ ∆φq dx dt

`

ˆ
RN

Pnu0pxq ¨ φp0, xq dx , (3.20)

for any test function φ P C8
c pr0,8q ˆRN ;RN

q with divφ “ 0. Indeed,
it follows as for (3.14).

63 [July 24, 2023]



We claim that (3.16) has a unique regular solution in C1pr0,8q;HN`1q. In-
deed, (3.16) is an ordinary differential equation in the following subspace of
HN`1

HN`1
n :“ tvpxq P HN`1

| Supp pv̂q Ă Bnu,

where the righthand side ∆v ` PnQpv, vq has uniformly-in-time bounded
Lipschitz constant, since (Exercise)

• by use of Sobolev embedding HNpRN
q Ă L8pRN

q, Hölder’s inequality
}v ¨ ∇v}L2 ď }v}L2}∇v}L8 ď }v}L2}∇v}HN and the L2-estimate of the
projector P , the righthand side of (3.16) is Lipschitz continuous in
HN`1

n such that

}∆v ` PnQpv, vq}HN`1 ď CN`1n
N`1

}∆v ` PnQpv, vq}L2

ď CN`1n
N`1

p}v}HN ` }v}L2}v}HN`1q

ď CN`1n
N`1

p}v}HN ` }v}
2
HN`1q,

• and hence Cauchy-Lipschitz theorem implies a local-in-time unique so-
lution

un P C1
pr0, T s;HN`1

n q

for some T P p0,8q,

• and (similarly as in the proof of Theorem 2.21) we can indeed take
T “ 8 by virtue of the uniform Lipschitz constant of the righthand
side which comes from (3.19)

}un}L8pr0,8q;L2q ď }Pnu0}L2 ď }u0}L2 ă 8.

Step 2 Convergence by uniform bounds and compactness. Since un satisfies
(3.19), the following uniform estimate holds:

1

2
}un}

2
L8pr0,8q;L2q ` }∇un}

2
L2pr0,8q;L2q ď

1

2
}u0}

2
L2 , (3.21)
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and hence by interpolation inequality for N “ 2, 324

}un}
L

8
N pr0,8q;L4q

ď C}un}
4´N

4

L8pr0,8q;L2q
}∇un}

N
4

L2pr0,8q;L2q
ď C}u0}L2 .

This implies

}∆un}L2pr0,8q;H´1q ď }∇un}L2pr0,8q;L2q ď }u0}L2 ,

}PnQpun, unq}
L

4
N pr0,8q;H´1q

ď C}un}
2

L
8
N pr0,8q;L4q

ď C}u0}
2
L2 ,

and hence the uniform bound for Btun on any fixed finite time interval

}Btun}
L

4
N pr0,T s;H´1q

ď CpT, }u0}L2q. (3.22)

[17.07.2023]
[24.07.2023]

This gives compactness of the sequence punq w.r.t. the time variable since
4
N

ą 1, and the uniform bound (3.21) implies the compactness w.r.t. the
x-variable locally. More precisely, we state here the celebrated Aubin-Lions’
Lemma without proof 25:

Lemma 3.2 (Aubin-Lions’ Lemma). Let X0, X1 be separable and reflexive
Banach spaces, and X be a Banach space such that X0 Ă X Ă X1 continu-
ously and the embedding X0 Ă X is compact. Then the embedding

!

u P Lp
pr0, T s;X0q | Btu P Lq

pr0, T s;X1q

)

Ă Lp
pr0, T s;Xq, T P p0,8q

is compact if p P r1,8q and q P r1,8s. If p “ 8, q ą 1, then the subset is
compactly embedded in Cpr0, T s;Xq.

24This is the celebrated Gagliardo-Nirenberg’s inequality. See e.g. Proposition 2.2
& Proposition 2.3, my notes for the proof of interpolation/embedding inequalities and
the relationship between Besov spaces and Lebesgue spaces (by use of Fourier analysis)
respectively:

}u}L4pRN q ď C}u} 9B0
4,1pRN q

ď C}u}
4´N

4

9B
´ N

4
4,8 pRN q

}u}
N
4

9B
1´ N

4
4,8 pRN q

ď C}u}
4´N

4

9B0
2,8pRN q

}u}
N
4

9B1
2,8pRN q

ď C}u}
4´N

4

L2pRN q
}∇u}

N
4

L2pRN q
.

25The proof can be found in Section 1.5 of J.L. Lions’ book “Quelques Méthodes de
Résolution des Problèmes aux Limites Non Linéaires”, 1969, Dunod, Paris. More general
cases can be found in T. Roub́ıček’s article “A generalization of the Lions-Temam compact
imbedding theorem, Casopis pest. mat. 115, 338-342.
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For any fixed ball Bk, we take X0 “ H1pBkq, X “ L2pBkq, X1 “ H´1pBkq

(which is the dual space of H1
0 pBkq :“ C8

c pBkq
}}H1

), p “ 2, q “ 4
N
, then the

sequence tunu is compact in L2pr0, T s;L2pBkqq. By Cauchy’s diagonalization
argument, there exists a subsequence punk

q converges to some (weak) limit
such that

unk
Ñ u in L2

pr0, T s;L2
pBk0qq, @k0 P N .

The limit u satisfies (3.15) by applying Fatou’s lemma to (3.21). Finally,
since punk

q satisfies (3.20), the limit u satisfies (3.14), and hence is a global-
in-time weak solution of (3.1) since div u “ 0. Since u P L8pr0,8q;L2q and

Btu P L
4
N
loc pr0,8q;H´1q, the solution is continuous in time w.r.t. the weak

topology of L2pRN ;RN
q: u P Cpr0,8q;L2

wq.

Remark 3.3. In three dimensional case, the energy equality (3.7), the con-
tinuity in time w.r.t. L2pRN ;RN

q-strong topology or the uniqueness result
does not necessarily hold for weak solutions.

3.1.3 Two-dimensional case

Theorem 3.4 (Energy Equality & Uniqueness & Continuity of weak solu-
tions in dimension two). Let N “ 2. Then the weak solution given in The-
orem 3.1 is unique, continuous (strongly) in L2pR2

q and satisfies the energy
equality:

1

2
}uptq}

2
L2pR2q

`

ˆ t

0

}∇upt1q}
2
L2pR2q

dt1 “
1

2
}u0}

2
L2pR2q

, @t ą 0. (3.23)

Proof. The equality (3.14) implies that the equation

Btu ´ ∆u “ ´Pdiv pu b uq

holds in the distribution sense. By the interpolation inequality used in
Step 2 in the proof of Theorem 3.1, the weak solutions u satisfying (3.15)
belongs to L4pr0,8q; pL4pR2

qq2q, and hence the above equation holds in
L2pr0,8q; pH´1pR2

qq2q.
For any fixed T ą 0, the weak solutions u P L2pr0, T s; pH1pR2

qq2q stays in
the dual space of L2pr0, T s; pH´1pR2

qq2q. Hence we can test rigorously the
equation above by u itself to derive (3.23), since the calculation to derive
(3.7) still holds:

•
´ T
0

xBtu, uyH´1,H1dt “ 1
2

´ T
0

d
dt

}u}2L2dt “ 1
2
}upT q}2L2 ´ 1

2
}u0}

2
L2 ,
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• x´∆u, uyL2
TH´1,L2

TH1 “ }∇u}2
L2
TL2 ,

• x´Pdiv pubuq, uyL2
TH´1,L2

TH1 “ xubu,∇uyL2
TL2,L2

TL2 “ 1
2
xu,∇|u|2yL2

TH1,L2
TH´1 “

´1
2
xdiv u, |u|2yL2

TL2,L2
TL2 “ 0.

By the time continuity of L2-norm given by (3.23), the weak solution u P

Cpr0,8q;L2
wq given in Theorem 3.1 is indeed continuous in L2-strong topol-

ogy.
The uniqueness of the weak solutions satisfying (3.15) follows similarly. Let
u, v be two such weak solutions with the same initial data. Then their dif-
ference w P L8pr0,8q;L2q with ∇w P L2pr0,8q;L2q satisfies

Btw ´ ∆w “ ´Pdiv pw b u ` v b wq

in L2pr0,8q;H´1q. We can test it by w itself, and derive similar energy equal-
ity for w, up to a correction term due to ´Pdiv pw b uq: Young’s inequality
and Gronwall’s inequality finally imply w “ 0 all the time (Exercise).

3.2 Kato’s strong solutions in space dimension three

Scaling property We observe the following scaling invariance property of
the Navier-Stokes equations (3.1): If pu,Πqpt, xq is a solution of (3.1) with
the initial data u0 on the time interval r0, T s, then the rescaled pair

puλ,Πλqpt, xq “ pλu, λ2Πqpλ2t, λxq, λ ą 0, (3.24)

is a solution of (3.1) of the initial data u0,λpxq “ λu0pλxq on the time interval
r0, λ´2T s. We calculate the LppRN

q-norm of u0,λ:

}u0,λ}LppRN q “ λ1´N
p }u0}LppRN q.

Heuristically, we then divide the exponent p of the Lebesgue space Lp into
three cases:

• p ą N (subcritical case)
As λ Ñ 0, }u0,λ}LppRN q Ñ 0 and the rescaled solution uλ exists on the

time interval r0, λ´2T s with λ´2T Ñ 8. This is the most favourable
situation in well-posedness issue: we can make both the small initial
norm and the long time interval at the same time.

• p “ N (critical case)
It is easy to see that the LppRN

q-norm is invariant under the scaling:
}u0,λ}LN pRN q “ }u0}LN pRN q, and as λ Ñ 0 the rescaled existing time

interval is still r0, λ´2T s with λ´2T Ñ 8. This is always a unclear
situation.

67 [July 24, 2023]



• p ă N (supercritical case)
In this case as λ Ñ 0, }u0,λ}LppRN q Ñ 8 as λ´2T Ñ 8, that is, the
growing norm corresponds to longer time interval. Blowup may happen
in this situation.

In the two dimensional case N “ 2, we have established the global-in-time
well-posedness results for the Navier-Stokes equations in Theorem 3.4 in the
critical case with u0 P pL2pR2

qq2, which happens to be the energy space,
where the energy estimates (3.23) are at hand a priori.
While in the three dimensional case N “ 3, the weak solutions are indeed in
the supercritical case, and we do not expect the uniqueness results for the
weak solutions with u0 P pL2pR3

qq3. We are going to consider the critical
case u0 P pL3pR3

qq3 in dimension three.
[24.07.2023]
[28.07.2023]

Reformulation of NS by use of Fourier transform Recall the defi-
nition of the Leray projector (3.3): P “ Id ` ∇p´∆q´1div , and we have
applied the operator P to the equation (3.1) to arrive at (3.4):

"

Btu ´ ∆u “ Qpu, uq,
u|t“0 “ u0,

(3.25)

where Qpu, uq “ ´Pdiv pu b uq.
Recall the definition of Fourier transform in Subsection 3.1.1, and one calcu-
lates

p xPvq
j
pξq “ pvj ´

d
ÿ

k“1

ξjξk
|ξ|2

pvk “

d
ÿ

k“1

pδj,k ´
ξjξk
|ξ|2

q pvk, (3.26)

and

{Qpu, uq
j

“ ´ {Pdiv pu b uq
j

“ ´

d
ÿ

k,l“1

pδj,k ´
ξjξk
|ξ|2

qpiξlq yukul. (3.27)

We apply Fourier transform to (3.25) to derive

Btû ` |ξ|
2û “ {Qpu, uq, ûp0q “ pu0pξq,

and as (3.18) we arrive at the following Duhamel’s formular

ûjpt, ξq “ e´t|ξ|2
pu0

j
pξq ´

d
ÿ

k,l“1

ˆ t

0

e´pt´t1q|ξ|2
pδj,k ´

ξjξk
|ξ|2

qpiξlq {ukpt1qulpt1q dt1 .
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Denote

et∆u0 “ F´1
pe´t|ξ|2

pu0
j
pξqq,

Γj
klpt, ¨q “ p2πq

´ 3
2F´1

´

´e´t|ξ|2
pδj,k ´

ξjξk
|ξ|2

qpiξlq
¯

,

then (3.25) is reformulated as follows26

upt, xq “ et∆u0 `

d
ÿ

k,l“1

ˆ t

0

Γklpt ´ t1, ¨q ˚ pukulqpt1, ¨q dt1 , (3.28)

that is, we search for the fixed point of the map

u ÞÑ pet∆u0q `Bpu, uq, Bpu, uq :“

ˆ t

0

Γklpt´ t1, ¨q ˚ pukulqpt1, ¨q dt1 . (3.29)

Heat equation revisited We have shown the decay estimates (3.12) for
the solution27

upt, xq “ et∆u0 “ F´1
pe´t|ξ|2

pu0
j
pξqq “ p4πtq´N

2 e´
|¨|2

4t ˚ u0

of the Cauchy problem for the heat equation (3.10) with L2-initial data:

Btu ´ ∆u “ 0, u|t“0 “ u0.

Now N “ 3 and we take u0 P pL3pR3
qq3. Similar as the derivation of (3.12),

we apply Young’s inequality to derive for β ě 3 (Exercise)

}et∆u0}LβpR3q ď Ct´
1
2

p1´ 3
β

q
}u0}L3pR3q.

For any p P r1,8s, T P p0,8q, we define Kato’s space

KppT q “ tu P Cpp0, T s; pLp
pR3

qq
3
q | }u}KppT q :“ sup

tPp0,T s

t
1
2

p1´ 3
p

q
}uptq}LppR3q ă 8u,

(3.30)
then

et∆u0 P KβpT q and }et∆u0}KβpT q ď C}u0}L3pR3q, @β ě 3. (3.31)

We aim to find fixed point of (3.29) in K6pT q, and this requires the study of
the function Γkl.
We can show the local-in-time well-posedness result of (3.25) in different
functional frameworks and here we will follow Kato’s Lp approach to show
the well-posedness result of (3.25) in L3pR3

q in three dimensional case.

26We have used the fact that Fpf ˚ gq “ p2πq
N
2 FpfqFpgq.

27We notice that F´1pe´t|ξ|
2

q “ p2tq´ N
2 e´

|x|2

4t , t ą 0.
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Theorem 3.5. Let u0 P pL3pR3
qq3. Then there exists a positive time T and

a unique solution u P Cpr0, T s; pL3pR3
qq3q of the initial value problem (3.25).

There exists a positive constant c such that if }u0}L3 ď c then T can be chosen
as `8.

Proof. The ideas of proof are the same as before, and we sketch them below28.
Here we have to first establish the a priori estimates, which play the same
role as the energy inequality (3.15) in the proof for the existence of weak
solutions.
Step 1 A priori estimate Recall the reformulation (3.28). A straightfor-
ward calculation (similar as the derivation of (3.12), which we do not do
here) yields the following pointwise bound for Γ

|Γj
kl| ď Cmint|x|

´4, t´2
u ď Cp|x| `

?
tq´4.

Hence by Young’s inequalities w.r.t. x and t-variables we have

›

›

›

´ t
0
Γklpt ´ t1, ¨q ˚ pukulqpt1q dt1

›

›

›

KβpT q
ď C}u}KppT q}u}KqpT q,

if 1
β

ď 1
p

` 1
q

ă 1
3

` 1
β
, 1

p
` 1

q
ď 1.

(3.32)

To conclude, we have arrived at the following a priori estimates:

}u}KβpT q ď C
`

}u0}L3 ` }u}KppT q}u}KqpT q

˘

,

@β ě 3 s.t.
1

β
ď

1

p
`

1

q
ă

1

3
`

1

β
ď

2

3
, @T ą 0.

(3.33)

Step 2 Existence & Uniqueness of the solution in K6pT q

We have established the a priori estimate (3.33) for the solution (3.28) to
(3.25) in Step 1. We would like to use the contraction mapping argument to
show the existence of the solution in the Banach space K6pT q under some
smallness condition on the time T or on the initial data }u0}L3 . That is, we
search for the fixed point of the map u ÞÑ et∆u0 ` Bpu, uq given in (3.29) in
K6pT q.
We have shown et∆u0 P K6pT q for any T P p0,8q by (3.31). As Γ P

Cpp0,8q; pLαpR3
qq9q, @α P r1,8q, (3.32) implies

B : K6pT q ˆ K6pT q Ñ K6pT q, with }Bpu, vq}K6pT q ď C}u}K6pT q}v}K6pT q.

1. Case of arbitrarily large initial data and small existence time.

28See e.g. my notes for the detailed proof of Theorem 3.4 there.
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For any u0 P L3pR3
q, for any ε ą 0, there exists φ P SpR3

q such that
}u0 ´ φ}L3pR3q ă ε. On the other hand, }et∆φ}L8pr0,T s;L6q ď C}φ}L6 .
Thus

}et∆u0}K6pT q ď }et∆pu0 ´ φq}K6pT q ` }et∆φ}K6pT q

ď C}u0 ´ φ}L3 ` CT
1
2

p1´ 3
6

q
}φ}L6 ď Cε ` CT

1
4 }φ}L6 .

We can choose T sufficiently small (depending on u0, ε) such that

}et∆u0}K6pT q ď Cε. (3.34)

Therefore for ε ą 0, T ą 0 sufficiently small, we derive from the con-
traction mapping argument that there exists a unique fixed point u of
the map u ÞÑ et∆u0 ` Bpu, uq in the Banach space K6pT q, with

}u}K6pT q ď 2}et∆u0}K6pT q. (3.35)

2. Case of small initial data and arbitrarily large existence time.

If }u0}L3pR3q ă c, then

}et∆u0}K6pT q ď C}u0}L3 ď Cc, @T P p0,8q.

Hence in the small data case that c ą 0 is sufficiently small, there exists
a unique fixed point u P K6pT q for any T P p0,8q, with }u}K6pT q ď

2}et∆u0}K6pT q.

Step 3 Final check: Continuity and Uniqueness
Although we have showed in Step 2 the existence and the uniqueness of the
solution u P K6pT q such that }u}K6pT q ď 2}et∆u0}K6pT q is small enough, we
have to prove further u P Cpr0, T s;L3q and the uniqueness of the solution
therein.
Now u P K6pT q with }u}K6pT q ď 2}et∆u0}K6pT q is the known function and we
would like to show

u “ a ` ũ P Cpr0, T s;L3
q, with a :“ et∆u0 and ũ :“ Bpu, uq.

Obviously a “ et∆u0 P Cpr0, T s;L3q. As u P K6pT q, we infer from the deriva-
tion of the estimate (3.32) (with β “ 3) that ũ “ Bpu, uq P Cpp0, T s;L3q and
for any t P p0, T q,

}ũ}L8pr0,ts;L3q ď C}u}
2
K6ptq ď 4C}et∆u0}

2
K6ptq, (3.36)
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where the righthand side tends to zero as t Ñ 0` (recalling the decomposition
et∆u0 “ et∆pu0 ´ φq ` et∆φ). This implies the continuity of ũ at time zero
and hence ũ P Cpr0, T s;L3q.
The proof of the uniqueness of the solutions in Cpr0, T s;L3q is more involved
due to the low regularity assumption. It is more convenient to show the
uniqueness in a weaker topology, say L8pr0, ts; 9H´ 1

2 q, and hence the unique-
ness in the stronger topology holds.

Remark 3.6. We have shown the well-posedness results for the three-dimensional
Navier-Stokes equations (3.1) in the critical Lebesgue space pL3pR3

qq3 in
the sense of (3.25), or more precisely (3.28). The obtained solution u P

Cpr0, T s; pL3pR3
qq3q together with the pressure term given in (3.2) satisfies

(3.1) uniquely.
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volume 26 of Mathématiques & Applications (Berlin) [Mathematics &
Applications]. Springer-Verlag, Berlin, 1997.

[3] Jean Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace.
Acta Math., 63(1):193–248, 1934.

[4] Pierre-Louis Lions. Mathematical topics in fluid mechanics. Vol. 1, vol-
ume 3 of Oxford Lecture Series in Mathematics and its Applications. The
Clarendon Press, Oxford University Press, New York, 1996. Incompress-
ible models, Oxford Science Publications.

[5] Andrew J. Majda and Andrea L. Bertozzi. Vorticity and incompressible
flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge
University Press, Cambridge, 2002.

72 [July 24, 2023]


	Introduction
	Derivation of mathematical models
	Conservation of mass and momentum
	Energy equations

	Simplified models
	Barotropic models.
	Incompressible models


	Euler equations
	Vorticity
	Vorticity-Transport formula
	Special solutions

	A dip on analysis and Biot-Savart's law
	Motivations
	Fundamental solution
	Functional spaces & Differentiation
	Derivatives of 
	Newtonian potential
	Biot-Savart's law in 3D

	Local-in-time well-posedness
	Hölder continuous spaces
	Some typical examples of ODEs
	Local-in-time wellposedness

	Two-dimensional case
	Vorticity revisited
	Global-in-time well-posedness in 2D

	One dimensional isentropic compressible Euler equations
	Burgers' equation
	One dimensional isentropic compressible Euler equations
	Appendix: General first-order system with one space variable


	Navier-Stokes equations
	Leray-Hopf's weak solutions
	A dip on Fourier analysis and Sobolev spaces Hk
	Global-in-time existence of weak solutions
	Two-dimensional case

	Kato's strong solutions in space dimension three


