Winter term 2022/2023 Functional Analysis Solution sheet 14 Due date: 15.02.2023 # Karlsruhe Institute of Technology JProf. Dr. Xian Liao M.Sc. Rebekka Zimmermann #### Exercise 1 Define $T: l^1(\mathbb{N}) \to (c_0)^*, Ty(x) = \sum_{j=1}^\infty x_j y_j$. By Hölder's inequality we have $||Ty||_{(c_0)^*} \le ||y||_{l^1}$ for all $y \in l^1(\mathbb{N})$. Moreover, we define $S: (c_0)^* \to l^1(\mathbb{N}), S\varphi = (\varphi(e_j))_{j \in \mathbb{N}}$, where $(e_j)_k = \delta_{jk}$. Note that S is well-defined since for all $x \in c_0, \sum_{j=1}^\infty x_j \varphi(e_j) = \lim_{J \to \infty} \varphi(\sum_{j=1}^J x_j e_j) = \varphi(x)$, from which we deduce that $\sum_{j=1}^\infty x_j \varphi(e_j)$ converges. The Banach-Steinhaus theorem yields $S\varphi \in l^1(\mathbb{N})$ with $||S\varphi||_{l^1} \le \sup_{n \in \mathbb{N}} \sup_{x \in c_0, ||x||_{l^\infty} \le 1} |\sum_{j=1}^n x_j \varphi(e_j)| \le ||\varphi||_{(c_0)^*}$. Note that $ST = Id_{l^1(\mathbb{N})}$, $TS = Id_{(c_0)^*}$, which implies that T is a linear isomorphism. The inequalities $||Ty||_{(c_0)^*} \le ||y||_{l^1}$ and $||S\varphi||_{l^1} \le ||\varphi||_{(c_0)^*}$ for all $y \in l^1(\mathbb{N})$, $\varphi \in (c_0)^*$ imply that T is an isometry. # Exercise 2 - 1. "\Rightarrow" The boundedness is clear. If for $n \in \mathbb{N}$, e_n denotes the sequence defined by $(e_n)_j = \delta_{jn}$ $(j \in \mathbb{N})$, then $x_n^{(k)} = \sum_{j=1}^{\infty} (e_n)_j x_j^{(k)} \to \sum_{j=1}^{\infty} (e_n)_j x_j = x_n$ as $k \to \infty$ for all $n \in \mathbb{N}$. "\Rightarrow" Let $y \in l^{\frac{p}{p-1}}(\mathbb{N})$, $\epsilon > 0$. There exist $J_0, k_0 \in \mathbb{N}$ such that $(\sum_{j=J_0+1}^{\infty} |y_j|^{\frac{p}{p-1}})^{\frac{p-1}{p}} < \epsilon$, and $|x_j^{(k)} x_j| < \frac{\epsilon}{J_0+1}$ for all $j = 1, ..., J_0, k \ge k_0$. Then we have for $k \ge k_0$, $|\sum_{j=1}^{\infty} x_j^{(k)} y_j \sum_{j=1}^{\infty} x_j y_j| \le (\sup_{j=1,...,J_0} |y_j|) \sum_{j=1}^{J_0} |x_j^{(k)} x_j| + ||x^{(k)} x||_{l^p} (\sum_{j=J_0+1}^{\infty} |y_j|^{\frac{p}{p-1}})^{\frac{p-1}{p}} \le C\epsilon$ for some constant C > 0 independent of ϵ and k. - 2. The implication from right to left is clear. Let $(x^{(k)})_{k\in\mathbb{N}}\subset l^1(\mathbb{N}), \ x\in l^1(\mathbb{N})$ such that $x^{(k)}\rightharpoonup x$ in $l^1(\mathbb{N})$ as $k\to\infty$, and assume there exists $\epsilon>0$ such that $\limsup_{k\to\infty}\sum_{j=1}^\infty|x_j^{(k)}-x_j|>\epsilon$. Let $k_1\in\mathbb{N}$ be minimal such that $\sum_{j=1}^\infty|x_j^{(k_1)}-x_j|>\epsilon$, $J_1\in\mathbb{N}$ minimal such that $\sum_{j=1}^{J_1}|x_j^{(k_1)}-x_j|>\frac{\epsilon}{2}$ and $\sum_{j=J_1+1}^\infty|x_j^{(k_1)}-x_j|<\frac{\epsilon}{5}$. For $n\in\mathbb{N},\ n\geq 2$, let $k_n\in\mathbb{N},\ k_n\geq k_{n-1}$, be minimal such that $\sum_{j=1}^\infty|x_j^{(k_n)}-x_j|>\epsilon$ and $\sum_{j=1}^{J_{n-1}}|x_j^{(k_n)}-x_j|<\frac{\epsilon}{5}$, and let $J_n\in\mathbb{N},\ J_n\geq J_{n-1}$, be minimal such that $\sum_{j=J_{n-1}+1}^J|x_j^{(k_n)}-x_j|>\frac{\epsilon}{2}$ and $\sum_{j=J_{n+1}}^\infty|x_j^{(k_n)}-x_j|<\frac{\epsilon}{5}$. For $j\in\mathbb{N}$, let $c_j=\operatorname{sgn}(x_j^{(k_1)}-x_j)$, if $1\leq j\leq J_1,\ c_j=\operatorname{sgn}(x_j^{(k_{n+1})}-x_j)$, if $J_n< j\leq J_{n+1}$, for $n\in\mathbb{N}$. Then $(c_j)_{j\in\mathbb{N}}\in l^\infty$ and for all $n\in\mathbb{N}$, $|\sum_{j=1}^\infty c_j(x_j^{(k_n)}-x_j)|\geq \sum_{j=J_{n-1}+1}^{J_n}|x_j^{(k_n)}-x_j|-\sum_{j=1}^{J_{n-1}}|x_j^{(k_n)}-x_j|-\sum_{j=J_{n+1}}^\infty|x_j^{(k_n)}-x_j|\geq \frac{\epsilon}{10}$, which is a contradiction. #### Exercise 3 - 1. Let $x,y \in X$, $\alpha > 0$. We have $p_C(\alpha x) = \inf\{\alpha \lambda > 0 : \frac{1}{\lambda}x \in C\} = \alpha p_C(x)$. Note that the equality also holds if $p_C(x) = \infty$ or $p_C(\alpha x) = \infty$. If $p_C(x) = \infty$ or $p_C(y) = \infty$, then $p_C(x+y) \leq p_C(x) + p_C(y)$ is clear. Let $p_C(x) < \infty$ and $p_C(y) < \infty$. If $\lambda_x, \lambda_y > 0$ such that $\frac{1}{\lambda_x}x, \frac{1}{\lambda_y}y \in C$, then $\frac{x+y}{\lambda_x+\lambda_y} = (\frac{\lambda_x}{\lambda_x+\lambda_y})\frac{1}{\lambda_x}x + (\frac{\lambda_y}{\lambda_x+\lambda_y})\frac{1}{\lambda_y}y \in C$. Taking the infimum over λ_x and λ_y yields $p_C(x+y) \leq p_C(x) + p_C(y)$. - 2. Since for all $x \in X$ there exists $\lambda > 0$ such that $\frac{1}{\lambda}x \in C$, we have $\{\lambda > 0 : \frac{1}{\lambda}x \in C\} \neq \emptyset$, and thus $p_C(x) < \infty$. 3. For $x \in X$ we can write $p_{B_1(0)}(x) = \inf\{\lambda > 0 : \frac{\|x\|}{\lambda} = 1\} = \|x\|$. ## Exercise 4 It suffices to show the claim for $\mathbb{K} = \mathbb{R}$. For $x_0 \in C$ let $U = C - x_0 = \{y - x_0 : y \in C\}$. Then U is convex, open and $0 \in U$. We set $y_0 = -x_0$, $Y = \operatorname{span}\{y_0\}$, and define $l(ty_0) = tp_U(y_0)$ for $t \in \mathbb{R}$. Then $l \leq p_U$ on Y, and by Hahn-Banach there exists $x^* \in X^*$ such that $x^*|_Y = l$ and $x^* \leq p_U$ on X. Note that $x^*(y_0) = l(y_0) = p_U(y_0) \geq 1$ and $x^*(x + y_0) \leq p_U(x + y_0) < 1$ for all $x \in C$. This implies $x^*(x) = x^*(x + y_0) - x^*(y_0) < 0$ for all $x \in C$. ### Exercise 5 Let $p \in (1,2)$ and recall Hanner's inequality $\|f+g\|_{L^p}^p + \|f-g\|_{L^p}^p \geq (\|f\|_{L^p} + \|g\|_{L^p})^p + \|f\|_{L^p} - \|g\|_{L^p}\|^p$ for $f,g \in L^p(U)$. By the definition of $\|\cdot\|_{W^{k,p}(U)}$, it suffices to prove the claim for $L^p(U)$. Let $f,g \in L^p(U)$. For $(u,v) \in [0,\infty)^2$ define $\xi(u,v) = (u+v)^p + |u-v|^p$. Then ξ is symmetric and $\xi(u,\cdot)$ and $\xi(\cdot,v)$ are strictly increasing for all $u,v \in [0,\infty)$. We can write the above Hanner's inequality as $\|f+g\|_{L^p}^p + \|f-g\|_{L^p}^p \geq \xi(\|f\|_{L^p},\|g\|_{L^p})$. Let $\epsilon \in (0,2)$. Let $\|f\|_{L^p},\|g\|_{L^p} \leq 1$ with $\|f-g\|_{L^p} \geq \epsilon$, and set $h_1 = \frac{1}{2}(f+g), \ h_2 = \frac{1}{2}(f-g)$. Then $2 \geq \xi(\|h_1\|_{L^p},\|h_2\|_{L^p}) \geq \xi(\|h_1\|_{L^p},\frac{\epsilon}{2})$. Due to $\xi(1,\frac{\epsilon}{2}) > 2, \ \xi(0,\frac{\epsilon}{2}) < 2$, there exists a unique $\delta > 0$ such that $\xi(1-\delta,\frac{\epsilon}{2}) = 2$. It follows that $\|h_1\|_{L^p} \leq 1-\delta$, which implies $\delta(\epsilon) \geq \delta$. Let $2 \leq p < \infty, \ f,g \in L^p(U), \ \|f\|_{L^p}, \ \|g\|_{L^p} \leq 1$ with $\|f-g\|_{L^p} \geq \epsilon$. In the proof of Hanner's inequality we have seen that $\alpha(r)\|f\|_{L^p}^p + \beta(r)\|g\|_{L^p}^p \geq \|f+g\|_{L^p}^p + \|f-g\|_{L^p}^p$, for $r \in [0,1]$, where $\alpha(r) = (1+r)^{p-1} + (1-r)^{p-1}, \ \beta(r) = ((1+r)^{p-1} - (1-r)^{p-1})r^{1-p}$. For r=1 we obtain $\|f+g\|_{L^p}^p + \|f-g\|_{L^p}^p \leq 2^{p-1}(\|f\|_{L^p}^p + \|g\|_{L^p}^p)$, and thus $\|h_1\|_{L^p}^p + \|h_2\|_{L^p}^p \leq \frac{\|f\|_{L^p}^p}{2} + \frac{\|g\|_{L^p}}{2} \leq 2$, so that we arrive at $1-\|\frac{1}{2}(f+g)\|_{L^p}^p \geq (\frac{\epsilon}{2})^p$. It follows that for some $c>0, 1-\frac{1}{2}\|f+g\|_{L^p} \geq c^{-1}(1-\|\frac{1}{2}(f+g)\|_{L^p}^p)^{1/p} \geq c^{-\frac{\epsilon}{2}}$.