Winter term 2022/2023 Functional Analysis Exercise sheet 11 Due date: 25.01.2023 Karlsruhe Institute of Technology

JProf. Dr. Xian Liao M.Sc. Rebekka Zimmermann

Exercise 1

Prove or disprove whether the following maps define elements $T \in \mathcal{D}'(U)$:

1.
$$U = (0, 1), T\varphi = \sum_{n=2}^{\infty} \varphi^{(n)}(\frac{1}{n}),$$

2. $U = \mathbb{R}, T\varphi = \sum_{n=1}^{\infty} \varphi^{(n)}(\frac{1}{n}),$
where $\varphi \in \mathcal{D}(U).$

Exercise 2

Let $U \subset \mathbb{R}^d$ be open. Suppose that $T_n \to T$ in $\mathcal{D}'(U)$ and that $K \subset U$ is compact. Show that there exist $k \in \mathbb{N}$ and C > 0 so that

$$\sup_{n\in\mathbb{N}} |T_n(\varphi)| \le C \|\varphi\|_{C_b^k(U)},$$

for all $\varphi \in X_K$, and

$$\sup\{|T_n(\varphi) - T(\varphi)| : \varphi \in X_K, \|\varphi\|_{C_b^k} \le 1\} \to 0$$

as $n \to \infty$.

Exercise 3

- 1. Show that $\delta_0 \in \mathcal{E}'(\mathbb{R}^d)$ with supp $\delta_0 = \{0\}$.
- 2. Show that $\delta_0 * T = T$ for all $T \in \mathcal{D}'(\mathbb{R}^d)$.
- 3. Let η_r be as in Exercise 2 on Exercise Sheet 9. Show that $\eta_r \to \delta_0$ as $r \to 0^+$ in the sense of distributions. Conclude that $\eta_r * T \to T$ as $r \to 0^+$ in the sense of distributions for all $T \in \mathcal{D}'(\mathbb{R}^d)$.

Exercise 4

Let η_r be as in Exercise 2 on Exercise Sheet 9.

- 1. Show that $\eta_r * f \to f$ in $C_b(\mathbb{R}^d)$ as $r \to 0^+$ for all $f \in C_c(\mathbb{R}^d)$, but not for all $f \in C_b(\mathbb{R}^d)$. In particular, we do not have $\eta_r * f \to f$ as $r \to 0^+$ in $L^{\infty}(\mathbb{R}^d)$ for all $f \in L^{\infty}(\mathbb{R}^d)$.
- 2. Let $U \subset \mathbb{R}^d$ be an open set and $k \in \mathbb{N}$. Show that for any $f \in C_c^k(U)$ there exists a compact set $K \subset U$ and $\epsilon > 0$ such that supp $(\eta_r * f) \subset K$ for all $0 < r \leq \epsilon$, and $\eta_r * f \to f$ in $C_b^k(U)$ as $r \to 0^+$.

Exercise 5

Let $U \subset \mathbb{R}^d$ be an open connected set, let $T \in \mathcal{D}'(U)$ and suppose that $\partial_j T = 0$ for all j = 1, ..., d. Show that there exists a constant $c \in \mathbb{R}$ such that $T = T_c$.