Winter term 2022/2023 Functional Analysis Exercise sheet 10 Due date: 18.01.2023 Karlsruhe Institute of Technology JProf. Dr. Xian Liao M.Sc. Rebekka Zimmermann

Exercise 1

Give an example of normed spaces X, Y and a subset $\mathcal{F} \subset L(X, Y)$ such that

$$\sup\{\|Tx\|_Y: T \in \mathcal{F}\} < \infty$$

for all $x \in X$, but

 $\sup\{\|T\|_{X\to Y}: T\in\mathcal{F}\}=\infty.$

Exercise 2

Show that the set of nowhere differentiable functions in $C_b(0,1)$ is dense in $C_b(0,1)$.

Exercise 3

Let $U \subset \mathbb{R}^d$ be an open set. Show that any $f \in L^1_{\text{loc}}(U)$ defines a distribution $T_f \in \mathcal{D}'(U)$ given by

$$T_f(\varphi) = \int_U f\varphi dm^d$$

for $\varphi \in \mathcal{D}(U)$. Moreover, show that T_f is uniquely determined by f in the sense that the map $L^1_{\text{loc}}(U) \to \mathcal{D}'(U), f \mapsto T_f$ is linear, continuous and injective.

Exercise 4

Let $\phi \in \mathcal{D}(\mathbb{R}^d)$ and $T \in \mathcal{D}'(\mathbb{R}^d)$.

- 1. Show that $\phi * T \in C^{\infty}(\mathbb{R}^d)$ and $\partial_{x_j}(\phi * T) = (\partial_{x_j}\phi) * T = \phi * (\partial_{x_j}T)$ almost everywhere on \mathbb{R}^d for j = 1, ..., N.
- 2. Show that if $\psi \in L^1(\mathbb{R}^d)$ then $\phi * T_{\psi}(x) = \phi * \psi(x)$ for almost every $x \in \mathbb{R}^d$.
- 3. Show that if supp $\phi = K_1$ and supp $T = K_2$, then supp $\phi * T \subset K_1 + K_2$.

Exercise 5

- 1. Show that $C_c(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ for $p \in [1, \infty)$, but not for $p = \infty$.
- 2. Show that $C_c(\mathbb{R}^d)$ is not dense in $C_b(\mathbb{R}^d)$, but that its closure with respect to $\|\cdot\|_{C_b}$ is given by $C_0(\mathbb{R}^d) := \{f \in C_b(\mathbb{R}^d) : \lim_{|x| \to \infty} |f(x)| = 0\}.$
- 3. Show that $C_c((0,1))$ is not dense in $C_b([0,1])$, but that its closure with respect to $\|\cdot\|_{C_b}$ is given by $C_0([0,1]) = \{f \in C_b([0,1]) : f(0) = f(1) = 0\}.$