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Problem 16:
Determine all bifurcation points (0, λ0) ∈ R2 × R of the nonlinear system{

sin(x1 + λx2) = x1,

cos(λx1 + x2) = 1 + x1.
(1)

Solution to problem 16:
Claim: (0, λ0) is a bifurcation point of problem (1) if and only if λ0 = 0.
Proof: Solving problem (1) is equivalent to finding zeros of the function

F : R2 × R → R2, F (x1, x2, λ) :=
(

sin(x1 + λx2) − x1
cos(λx1 + x2) − 1 − x1

)
.

Then F (0, 0, λ) = 0 for all λ ∈ R, and F is twice continuously differentiable with

Fx(x1, x2, λ) =
(

cos(x1 + λx2) − 1 λ cos(x1 + λx2)
−λ sin(λx1 + x2) − 1 − sin(λx1 + x2)

)
,

Fxλ(x1, x2, λ) =
(

−x2 sin(x1 + λx2) cos(x1 + λx2) − λx2 sin(x1 + λx2)
− sin(λx1 + x2) − λx1 cos(λx1 + x2) −x1 cos(λx1 + x2)

)
for x1, x2, λ ∈ R, and in particular, for λ0 ∈ R,

Fx(0, 0, λ0) =
(

0 λ0
−1 0

)
, Fxλ(0, 0, λ0) =

(
0 1
0 0

)
.

If λ0 ̸= 0, we have that detFx(0, 0, λ0) = λ0 ̸= 0; hence Fx(0, 0, λ0) (interpreted as a linear mapping from
R2 to R2) is a homeomorphism. Proposition 3.9 then states that (0, λ0) cannot be a bifurcation point for
problem (1).

Now let λ0 = 0 and apply the Crandall-Rabinowitz Bifurcation Theorem: We have

kerFx(0, 0, 0) = span
{(

0
1

)}
, ran Fx(0, 0, 0) = span

{(
0
1

)}
,

and thus, the simplicity condition (S) holds. Moreover, with φ :=
(

0
1

)
, we have

Fxλ(0, 0, 0)[φ] =
(

0 1
0 0

)(
0
1

)
=

(
1
0

)
̸∈ ran Fx(0, 0, 0),

which shows that the transversality condition (T) is also satisfied. Theorem 4.3 now states that (0, 0, 0)
is a bifurcation point.
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Problem 17:
Let A ∈ Rn×n be symmetric, and J ∈ Rn×n. For x ∈ Rn and λ ∈ R, we study the equation

Ax = λx+ |x|2Jx.(2)

Discuss the existence of nontrivial solutions in a neighborhood of (0, λ0) ∈ Rn × R if . . .
(a) λ0 is not an eigenvalue of A,

(b) λ0 is a simple eigenvalue of A.

Solution to problem 17:
Solving problem (2) is equivalent to finding zeros of the function

F : Rn × R → Rn, F (x, λ) := Ax− λx− |x|2Jx.

We note that F (0, λ) = 0 for all λ ∈ R, and that F is twice continuously differentiable with

Fx(x, λ)[h] = Ah− λh− |x|2Jh− 2⟨x|h⟩Jx, Fxλ(x, λ)[h] = −h

for x, h, λ ∈ R; moreover, for λ0 ∈ R,

Fx(0, λ)[h] = (A− λI)h, Fxλ(0, λ)[h] = −h.

(a) Let λ0 be not an eigenvalue of A. Claim: There are no nontrivial solutions of problem (2) in a
neighborhood of (0, λ0).
Proof: This is a consequence of Proposition 3.9, as Fx(0, λ0) = A−λ0I : Rn → Rn is invertible.

(b) Let λ0 be a simple eigenvalue of A. Claim: Nontrivial solutions of problem (2) form a continuous
branch bifurcating from (0, λ0).
Proof: We check the assumptions of the Crandall-Rabinowitz Bifurcation Theorem. Since A is
assumed symmetric, there exist eigenpairs (ψj , µj) ∈ Rn × R with Aψj = µjψj and {ψ1, ..., ψn}
being a complete orthonormal subset of Rn.
Without loss of generality, µ1 = λ0 and by assumption (simple eigenvalue), we have µj ̸= λ0 for
j > 1. Thus,

kerFx(0, λ0) = ker(A− λ0I) = span{ψ1},
ranFx(0, λ0) = ran(A− λ0I) = span{ψ2, ..., ψn}

and we infer dim kerFx(0, λ0) = codim ran Fx(0, λ0) = 1, so (S) holds. Moreover,

Fxλ(0, λ)[ψ1] = −ψ1 ̸∈ ranFx(0, λ0),

and (T) is satisfied. Theorem 4.3 ensures the existence of a unique continuous branch of nontrivial
solutions of problem (2) bifurcating from (0, λ0).
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Problem 18:
Let g ∈ C2(R × R × R;R), (x, z, λ) 7→ g(x, z, λ) be 2π-periodic in x with

g(x, 0, λ) = 0, gz(x, 0, λ) = 0, gzλ(x, 0, λ) = 0 for all x ∈ R, λ ∈ R.

In order to find nontrivial 2π-periodic solutions u ∈ C2(R) of the ODE

−u′′ = λu+ g( · , u, λ) on R(3)

in a neighborhood of (u0, λ0) = (0, 0), proceed as follows:
(a) Let F : C2

per(R) × R → Cper(R), F (u, λ) := u′′ + λu+ g( · , u, λ) where

Ck
per(R) :=

{
u ∈ Ck(R) : u(x) = u(x+ 2π) for all x ∈ R

}
for k ∈ N0.

Show that F is twice continuously Fréchet differentiable and calculate F ′ and F ′′.

(b) Show that ker(Fu(0, 0)) = span{1}; ran(Fu(0, 0)) =
{
z ∈ Cper(R) :

∫ 2π

0 z(t) dt = 0
}

.

(c) Prove that there exist δ > 0 and a continuous branch (−δ, δ) → C2
per(R) ×R, s 7→ (û(s), λ̂(s)) with

the property that {
(û(s), λ̂(s)) : 0 < |s| < δ

}
collects all nontrivial 2π-periodic solutions of problem (3) in a neighborhood of (0, 0).

Solution to problem 18:
(a) First let k ∈ N0. Recall that Ck

b (x) consists of functions f ∈ Ck(R) such that

∥f∥Ck
b

(R) = sup
{

|f(x)|, |f ′(x)|, . . . ,
∣∣∣f (k)(x)

∣∣∣ : x ∈ R
}
< ∞.

Since τ : Ck
b (R) → Ck

b (R), f 7→ f( · − 2π) defines an isometric isomorphism, we see that Ck
per(R) =

ker(I−τ) is a closed subspace of Ck
b (R), and thus is a Banach space. We denote Cper(R) := C0

per(R).
Claim: F is twice continuously differentiable and

F ′(u, λ)[(hu, hλ)] = h′′
u + hλu+ λhu + gz( · , u, λ)hu + gλ( · , u, λ)hλ,

F ′′(u, λ)[(hu, hλ), (ηu, ηλ)] = hληu + ηλhu + huηugzz( · , u, λ) + (ηλhu + hληu)gzλ( · , u, λ) + hληλgλλ( · , u, λ).

Proof: We write F = G+H with

G : C2
per(R) × R → Cper(R), G(u, λ) = g( · , u, λ),

H : C2
per(R) × R → Cper(R), H(u, λ) = u′′ + λu.

Using the product rule we see that H is infinitely differentiable with

H ′(u, λ)[(hu, hλ)] = h′′
u + hλu+ λhu,

H ′′(u, λ)[(hu, hλ), (ηu, ηλ)] = hληu + ηλhu,

H ′′′ = 0, . . .

In particular, H is twice continuously differentiable.
Next, we show that G is twice continuously differentiable and that

G′(u, λ)[(hu, hλ)] = hugz( · , u, λ) + hλgλ( · , u, λ),
G′′(u, λ)[(hu, hλ), (ηu, ηλ)] = huηugzz( · , u, λ) + (ηλhu + hληu)gzλ( · , u, λ) + hληλgλλ( · , u, λ).

To do this, we proceed similar to Problem 7. Let (u, λ), (hu, hλ), (ηu, ηλ), (ρu, ρλ) ∈ C2
per(R) × R.

We choose

K := [0, 2π] × [inf u− 1, supu+ 1] × [λ− 1, λ+ 1] ⊆ R3,
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which is compact, so that g, gz, gλ, . . . are uniformly continuous on K. Thus there exists an
increasing function φ : (0,∞) → [0,∞] with limr→0 φ(r) = 0 so that

∣∣g(x, u, λ) − g(x̃, ũ, λ̃)
∣∣ ≤

φ(|x− x̃| + |z − z̃| +
∣∣λ− λ̃

∣∣) for (x, z, λ), (x̃, z̃, λ̃) ∈ K; and the same estimate holds for derivatives
of g.
We then calculate for ∥hu∥∞, |hλ| ≤ 1:

∥G(u+ hu, λ+ hλ) −G(u, λ) − hugz( · , u, λ) − hλgλ( · , u, λ)∥∞

=
∥∥∥∥∫ 1

0
hu[gz( · , u+ thu, λ+ thλ) − gz( · , u, λ)] + hλ[gλ( · , u+ thu, λ+ thλ) − gλ( · , u, λ)] dt

∥∥∥∥
∞

≤
∫ 1

0
∥hu∥∞φ(|t|∥hu∥ + |t||hλ|) + |hλ|φ(|t|∥hu∥ + |t||hλ|) dt

≤ (∥hu∥∞ + |hλ|)φ(∥hu∥∞ + |hλ|) = o(∥hu∥∞ + |hλ|)

as (hu, hλ) → 0. So G is Fréchet-differentiable and the derivative is as stated.
Next we confirm the formula for the second derivative. We calculate for ∥ηu∥∞, |ηλ| ≤ 1:

I := G′(u+ ηu, λ+ ηλ)[(hu, hλ)] −G′(u, λ)[(hu, hλ)]
− huηugzz( · , u, λ) − (ηλhu + hληu)gzλ( · , u, λ) − hληλgλλ( · , u, λ)

=
∫ 1

0
hu(ηu[gzz( · , u+ tηu, λ+ tηλ) − gzz( · , u, λ)] + ηλ[gzλ( · , u+ tηu, λ+ tηλ) − gzλ( · , u, λ)]) dt

+
∫ 1

0
hλ(ηu[gλz( · , u+ tηu, λ+ tηλ) − gλz( · , u, λ)] + ηλ[gλλ( · , u+ tηu, λ+ tηλ) − gλλ( · , u, λ)]) dt

and thus get

∥I∥∞ ≤ (∥hu∥∞ + |hλ|)(∥ηu∥∞ + |ηλ|)φ(∥ηu∥∞ + |ηλ|) = (∥hu∥∞ + |hλ|) · o(∥ηu∥∞ + |ηλ|)

as (ηu, ηλ) → 0. So G is twice Fréchet-differentiable and the derivative is as stated. For continuity
of the second derivative, we calculate for ∥ρu∥∞, |ρλ| ≤ 1:

∥G′′(u+ ρu, λ+ ρλ)[(hu, hλ), (ηu, ηλ)] −G′′(u, λ)[(hu, hλ), (ηu, ηλ)]∥
≤ (∥hu∥∞ + |hλ|)(∥ηu∥∞ + |ηλ|)φ(∥ρu∥∞ + |ρλ|)
= (∥hu∥∞ + |hλ|)(∥ηu∥∞ + |ηλ|) · o(1)

as (ρu, ρλ) → 0. This shows that G is twice continuously Fréchet-differentiable.
The claim now follows from F = G+H and linearity of the derivative operator.

(b) Claim: ker(Fu(0, 0)) = span{1}.

Proof: From part (a) we know that

Fu(0, 0)[h] = F ′(0, 0)[(h, 0)] = h′′

for h ∈ C2
per(R). For such h, the following are equivalent:

h ∈ kerFu(0, 0) ⇐⇒ h′′ = 0 ⇐⇒ ∃α, β ∈ R : h(x) = αx+ β for x ∈ R
⇐⇒ ∃β ∈ R : h(x) = β for x ∈ R ⇐⇒ h ∈ span{1}

where, in passing from the first to the second line, we exploited that h is periodic.

Claim: ran(Fu(0, 0)) =
{
z ∈ Cper(R) :

∫ 2π

0 z(x) dx = 0
}

.

Proof: Assume z ∈ ran (Fu(0, 0)). Then, there exists w ∈ C2
per(R) with z = Fu(0, 0)[w] = w′′ on R.

This yields, however, ∫ 2π

0
z(x) dx =

∫ 2π

0
w′′(x) dx = w′(2π) − w′(0) = 0
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since w is periodic.
Conversely, assume that z ∈ Cper(R) with

∫ 2π

0 z(x) dx = 0. We try to find w ∈ C2
per(R) with

z = Fu(0, 0)[w] = w′′ on R. Integration suggests the ansatz

w(x) = α+ βx+
∫ x

0

∫ y

0
z(t) dtdy, hence

w′(x) = β +
∫ x

0
z(t) dt

with constants α = w(0) and β = w′(0). By assumption on z, we have for x ∈ R

w′(x+ 2π) − w′(x) =
∫ 2π

0
z(x) dx = 0,

i.e. w′ has the asserted periodicity. Moreover, choosing β := − 1
2π

∫ 2π

0
∫ y

0 z(t) dtdy, we also have,
using that w′ is 2π-periodic,

w(x+ 2π) − w(x) =
∫ x+2π

x

w′(t) dt =
∫ 2π

0
w′(t) dt

= w(2π) − w(0) = 2πβ +
∫ 2π

0

∫ y

0
z(t) dtdy = 0

and hence w ∈ C2
per(R) with z = Fu(0, 0)[w].

(c) Proof: Finally, we intend to apply the Crandall-Rabinowitz Bifurcation Theorem.
From part (b) we defer that Fu(0, 0) : C2

per(R) → Cper(R) is a (1,1)-Fredholm operator, meaning
the simplicity assumption (S) from the lecture is satisfied. It remains to check the transversality
condition

Fuλ(0, 0)[ϕ] ̸∈ ran(Fx(0, 0))(T)

where ϕ = 1. We calculate

Fuλ(0, 0)[ϕ] = F ′′(0, 0)[(1, 0), (0, 1)] = 1,

and using (b) find Fuλ(0, 0)[ϕ] ̸∈ ran(Fu(0, 0)).
An application of Theorem 4.3 then closes the proof.
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