

Solution to Problem Sheet 2 Bifurcation Theory

Winter Semester 2022/23

14.11.2022

We consider the problem

(1)
$$\begin{cases} u''(t) + g(u(t), \lambda) = 0 \text{ for } t \in (0, T), \\ u(0) = u(T) = 0. \end{cases}$$

where

(A) $\alpha_0 \in (0, \infty]$ and $g \in C^1((-\alpha_0, \alpha_0) \times \mathbb{R}, \mathbb{R})$ with $g(z, \lambda) = -g(-z, \lambda) > 0$ for $0 < z < \alpha_0, \lambda \in \mathbb{R}$. Recall the necessary and sufficient conditions appearing in Corollary 2.5 from the lecture:

(N)
$$g_z(0, \lambda_{\star}) = \frac{\pi^2 (j+1)^2}{T^2}$$
.

(S) $g_z(0, \cdot)$ is strictly monotone near λ_{\star} .

Problem 4:

Assume (A), (N) and the following stronger assumption, replacing (S):

(S') $g \in C^2((-\alpha_0, \alpha_0) \times \mathbb{R}, \mathbb{R})$ and $g_{z\lambda}(0, \lambda_\star) \neq 0$.

By Corollary 2.5, for $\alpha > 0$ sufficiently small there exist *j*-nodal solutions $(\pm u_{\alpha}, \lambda_{\alpha})$ of (1) with $||u||_{\infty} = \alpha$ that bifurcate from $(0, \lambda_{\star})$ w.r.t. $|| \cdot ||_{\infty}$.

- (a) Prove that if (S') holds, then for α sufficiently small these solutions are uniquely determined by α .
- (b) Prove that if (S') holds and $g_{zz}(0, \lambda) \neq 0$, then for α sufficiently smallthe bifurcation curve has the following "direction":
 - λ_{α} is decreasing in α if $g_{zz}(0, \lambda_{\star})g_{z\lambda}(0, \lambda_{\star}) > 0$,
 - λ_{α} is increasing in α if $g_{zz}(0, \lambda_{\star})g_{z\lambda}(0, \lambda_{\star}) < 0$.

Solution to problem 4:

We revisit the proof of Corollary 2.5, and consider

(2.5)
$$\frac{T}{\sqrt{2}(j+1)} = \int_0^\alpha \frac{1}{\sqrt{G(\alpha,\lambda) - G(z,\lambda)}} \,\mathrm{d}z = \int_0^1 \left(\frac{G(\alpha,\lambda) - G(s\alpha,\lambda)}{\alpha^2}\right)^{-1/2} \,\mathrm{d}s \eqqcolon f(\alpha,\lambda)$$

where $G(z, \lambda) = \int_0^z g(s, \lambda) \, ds$ and we may write

(2)
$$\frac{G(\alpha,\lambda) - G(\alpha s,\lambda)}{\alpha^2} = \int_s^1 \int_0^\tau g_z(\mu\alpha,\lambda) \,\mathrm{d}\mu \,\mathrm{d}\tau$$
$$= \int_s^1 \int_0^\tau g_z(0,\lambda_0) + \mathrm{o}(1) \,\mathrm{d}\mu \,\mathrm{d}\tau = [g_z(0,\lambda_0) + \mathrm{o}(1)] \frac{1-s^2}{2}$$

as $(\alpha, \lambda) \to (0, \lambda_0)$. Using dominated convergence, it follows that

$$f(\alpha,\lambda) = \int_0^1 \left(\frac{G(\alpha,\lambda) - G(s\alpha,\lambda)}{\alpha^2}\right)^{-1/2} \mathrm{d}s \to \int_0^1 \left(g_z(0,\lambda_0)\frac{1-s^2}{2}\right)^{-1/2} \mathrm{d}s = \frac{1}{\sqrt{g_z(0,\lambda_0)}}\frac{\pi}{\sqrt{2}}.$$

as $(\alpha, \lambda) \to (0, \lambda_0)$. Recall Theorem 2.3:

There exists a j-nodal solution (u, λ) of (1) with $||u||_{\infty} = \alpha$ if and only if $f(\alpha, \lambda) = \frac{T}{\sqrt{2}(j+1)}$.

(a) We choose $\varepsilon, \delta > 0$ such that $g_{z\lambda} \neq 0$ on $(-\delta, \delta) \times (\lambda_{\star} - \varepsilon, \lambda_{\star} + \varepsilon)$. W.l.o.g. let $g_{z\lambda} > 0$ (otherwise replace λ by $-\lambda$).

As g_z is strictly increasing in λ , using (4) and the definition of f, we see that f is strictly decreasing in λ . Since in addition

$$f(0+,\lambda_{\star}-\varepsilon) = \frac{1}{\sqrt{g_z(0,\lambda_{\star}-\varepsilon)}}\frac{\pi}{\sqrt{2}} > \frac{1}{\sqrt{g_z(0,\lambda_{\star})}}\frac{\pi}{\sqrt{2}} = \frac{T}{\sqrt{2}(j+1)} > \frac{1}{\sqrt{g_z(0,\lambda_{\star}+\varepsilon)}}\frac{\pi}{\sqrt{2}} = f(0+,\lambda_{\star}-\varepsilon)$$

for $\alpha > 0$ sufficiently small there exists a unique solution $\lambda \in (\lambda_{\star} - \varepsilon, \lambda_{\star} + \varepsilon)$ of $f(\alpha, \lambda) = \frac{T}{\sqrt{2}(j+1)}$.

By Theorem 2.3 this completes the proof.

(b) Again choose $\varepsilon, \delta > 0$ such that $g_{z\lambda}, g_{zz} \neq 0$ on $(-\delta, \delta) \times (\lambda_{\star} - \varepsilon, \lambda_{\star} + \varepsilon)$. W.l.o.g. let $g_{z\lambda} > 0$. Also we only consider the case $g_{zz} > 0$, as $g_{zz} < 0$ can be treated similarly.

Problem 5:

Assume that (A) and (N) hold, but (S) does not. Prove the following:

- (a) Multiple bifurcation curves can exist at $(0, \lambda_{\star})$, i.e. there exist *j*-nodal solutions $(u_{\alpha}, \mu_{\alpha}), (v_{\alpha}, \nu_{\alpha})$ that bifurcate from $(0, \lambda_{\star})$ such that $||u_{\alpha}||_{\infty} = \alpha = ||v_{\alpha}||_{\infty}$ and $\mu_{\alpha} \neq \nu_{\alpha}$ for all α . *Remark:* This does not show that the solutions $(u_{\alpha}, \mu_{\alpha}), (v_{\alpha}, \nu_{\alpha})$ describe curves (i.e. that the maps $\alpha \mapsto (u_{\alpha}, \mu_{\alpha}), \alpha \mapsto (v_{\alpha}, \nu_{\alpha})$ are continuous). You need not show continuity.
- (b) Bifurcation need not occur at $(0, \lambda_{\star})$.

Hint: Consider $g(x, \lambda) = f(\lambda) \sin(x)$ for suitable f.

Solution to problem 5:

(a) Consider, as a slight modification of the pendulum equation discussed in the lecture, $g(z,\mu) = (\lambda_j + (\mu - \lambda_j)^2) \sin(z)$ where $\lambda_j = ((j+1)\pi)^2$ for some $j \in \mathbb{N}_0$, and consider $\mu_\star := \lambda_j$. We know from the lecture that, for $-u'' = \lambda \sin(u), u(0) = u(1) = 0$, *j*-nodal solutions bifurcate at

We know from the fecture that, for $-u^{\alpha} = \lambda \sin(u), u(0) = u(1) = 0$, *j*-nodal solutions bifurcate at the point $(0, \lambda_j)$, parametrized as $(u_{\alpha,j}, \lambda_{\alpha,j})_{0 < \alpha < \pi}$ with $\lambda_j(\alpha) \searrow \lambda_j$ as $\alpha \searrow 0$. With *g* chosen as above, we find two parameters μ corresponding to each value of α via

$$\lambda_{\alpha,j} = \lambda_j + (\mu - \lambda_j)^2 \quad \iff \quad \mu = \lambda_j \pm \sqrt{\lambda_{\alpha,j} - \lambda_j},$$

which yields two distinct families of bifurcating j-nodal solutions of (1) parametrized as

$$\left(u_{\alpha,j},\lambda_j+\sqrt{\lambda_j(\alpha)-\lambda_j}\right)_{0<\alpha<\pi},\quad \left(u_{\alpha,j},\lambda_j-\sqrt{\lambda_j(\alpha)-\lambda_j}\right)_{0<\alpha<\pi}$$

(b) Again, we modify the pendulum equation. We introduce $g(z,\mu) = (\lambda_j - (\mu - \lambda_j)^2) \sin(z)$ where $\lambda_j = ((j+1)\pi)^2$ for some $j \in \mathbb{N}_0$, and consider $\mu_* \coloneqq \lambda_j$.

However, using the notation from part (a), the equation

$$\lambda_{\alpha,j} = \lambda_j - (\mu - \lambda_j)^2$$

does not have solutions, and the bifurcation diagram for $-u'' = \lambda \sin(u), u(0) = u(1) = 0$ from the lecture reveals that there is no bifurcation of (1) at $(0, \lambda_i)$.

Problem 6:

Let $g \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ with $g(0, \lambda) = 0$ $(\lambda \in \mathbb{R})$ and $b \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ with $b(x, \lambda) \neq 0$ for all $x, \lambda \in \mathbb{R}$. Show that

(3)
$$u'' + b(x,\lambda)u' + g(u,\lambda) = 0$$

does not admit nonconstant periodic solutions.

Solution to problem 6:

First, we note that by assumption, b is continuous and does not have any zero, so b is either negative or positive on all of $\mathbb{R} \times \mathbb{R}$.

We assume that $u \in C^2(\mathbb{R})$ is a periodic solution of (3). We introduce

$$E: \mathbb{R} \to \mathbb{R}, \quad E(t) \coloneqq \frac{1}{2} [u'(t)]^2 + G(u(t), \lambda)$$

where $G(z,\lambda) \coloneqq \int_0^z g(s,\lambda) \, \mathrm{d}s$ for $\lambda, z \in \mathbb{R}$. Then, $E \in C^1(\mathbb{R})$, and for $t \in \mathbb{R}$

(4)
$$E'(t) = u'(t) \cdot (u''(t) + g(u(t), \lambda)) = -b(t, \lambda)[u'(t)]^{2}$$

where we have inserted the differential equation in the last step. Since b does not change sign, this implies that E is a monotone function. As u is periodic, so is E, and we conclude that E is constant.

Hence, $E' \equiv 0$, and by (4), $u' \equiv 0$. So u is constant, and the assertion is proved.