

Problem Sheet 11

Bifurcation Theory

Winter Semester 2022/23

23.1.2023

For $x, y \in \mathbb{C}^n$ we write $x \cdot y = \sum_{k=1}^n x_k y_k$ and $\langle x, y \rangle = \overline{x} \cdot y = \sum_{k=1}^n \overline{x_k} y_k$.

We recall assumptions (H1)-(H4):

(H1) "Regularity": $f \in C^2(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$ with $f(\lambda, 0) = 0$ for all $\lambda \in \mathbb{R}$.

(H2) "Simplicity": There are $\phi, \psi \in \mathbb{C}^n$ with $\langle \psi, \phi \rangle = 1$ and $\beta > 0$ such that

 $\ker(f_x(\lambda_0, 0) - \mathbf{i}\beta) = \operatorname{span}\{\phi\}, \quad \ker(f_x(\lambda_0, 0)^\top + \mathbf{i}\beta) = \operatorname{span}\{\psi\}.$

- (H3) "Nonresonance": For all $k \in \mathbb{Z}$ such that $|k| \neq 1$ we have $\ker(f_x(\lambda_0, 0) ik\beta) = \{0\}$.
- (H4) "Transversality": $\operatorname{Re}(\langle f_{x\lambda}(\lambda_0, 0)\phi, \psi \rangle) \neq 0.$

Problem 27 (Hopf bifurcation is incompatible with energy method):

Consider the pendulum equation

(1)
$$\theta''(t) + \lambda \sin(\theta(t)) = 0$$

as discussed in Chapter 2. Write (1) as a first order problem

(2)
$$x'(t) = f(\lambda, x(t))$$

for $x = (\theta, \theta')$ and show that assumptions (H1)–(H4) are not satisfied for any $\lambda_0 \in \mathbb{R}$.

Problem 28 (On simplicity(H2)):

Let ϕ, ψ be as in (H2). Show that $\psi \cdot \phi = 0$.

Problem 29:

Prove Proposition 7.1:

Let $\xi \in \mathbb{C}^n$, $k \in \mathbb{Z}$, $t \in \mathbb{R}$. Further let ϕ, ψ be as in (H2) and write $A \coloneqq f_x(\lambda_0, 0)$. Then

$$y_k(t) \coloneqq -\frac{1}{\beta} \int_0^t \exp\left(\frac{t-\tau}{\beta}A\right) \xi e^{ik\tau} d\tau$$

has the following closed form representation:

(i)
$$y_k(t) = \left(e^{ikt}I - e^{\frac{t}{\beta}A}\right)(A - ik\beta)^{-1}\xi$$
 if $|k| \neq 1$,
(ii) $y_1(t) = \left(e^{it}I - e^{\frac{t}{\beta}A}\right)w - \frac{t}{\beta}e^{it}\langle\psi,\xi\rangle\phi$

where $w \in \mathbb{C}^n$ satisfies $(A - i\beta)w = \xi - \langle \psi, \xi \rangle \phi$.