Universität Karlsruhe Institut für Analysis Prof. Dr. Michael Plum

Dipl.-phys. Vu Hoang

Boundary and Eigenvalue Problems 11th Exercise Sheet

- **32)** Let R, S be Banach spaces and denote by $\mathcal{B}(R, S)$ and $\mathcal{K}(R, S)$ the spaces of all bounded linear resp. all compact linear operators from R to S, each of them endowed with the usual operator norm $||A|| := \sup_{x \neq 0} \frac{||Ax||}{||x||}$ $(A \in \mathcal{B}(R, S), \text{ resp. } A \in \mathcal{K}(R, S))$. Show:
 - (a) $\mathcal{B}(R, S)$ is a Banach space.
 - (b) $\mathcal{K}(R, S)$ is a closed subspace of $\mathcal{B}(R, S)$.

33) Let $k \in L_2((0,1) \times (0,1))$ and

$$(Ku)(x) := \int_0^1 k(x, y)u(y) \, dy \qquad (u \in L_2(0, 1), \ x \in (0, 1))$$

Show that $K: L_2(0,1) \longrightarrow L_2(0,1)$ is compact.

Hint: Approximate k by step functions k_N (i.e. piecewise constant functions). Show that the operators

$$(K_N u)(x) := \int_0^1 k_N(x, y) u(y) \, dy \qquad (u \in L_2(0, 1), \ x \in (0, 1), \ N \in \mathbb{N}).$$

are compact.

34) Prove that $L^{\infty}(a, b)$ is not separable.

35) Let $(\varphi_k)_{k\in\mathbb{N}}$ and $(\psi_j)_{j\in\mathbb{N}}$ be complete orthonormal systems in $L^2(0,1)$. Define ω_{kj} by

$$\omega_{kj}(x,y) = \varphi_k(x)\psi_j(y)$$

Show that $(\omega_{kj})_{k,j\in\mathbb{N}}$ is a complete orthonormal system in $L^2((0,1)\times(0,1))$.