Ezercise 32. By Hardy’s inequality we have
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which finishes the proof.
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Ezercise 33. We first observe that if 1y € H'(R3) with [[1)[|2 = 1 then the function given
by ¥ (z) = agw(ax) is also in H(R3) with [|¢4]|2 = 1. Hence,
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where from the third line to the fourth line we made the change of variables ax — x and
ay — y. Therefore, we have shown that £ = o2&} which is the desired equality.
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Ezercise 34. The proof is the same as in the previous exercise but we work with the func-
tional (instead of P)
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The function 1, that we use in this case is given by the formula
3
Yo(x1, ... 2n) = a2™P(axy, . .., 0xy).
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Ezercise 35. Notice that the following calculations work for general f € L*(R3).

We know that for all g € L?*(R3) and ¢ € D(N%) (where N is the number operator in
the Fock space F(L?(R?))) we have
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It is straightforward to see that n € D(N %) since the series
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In addition, we know that the operator IV 3 is self-adjoint and hence closed. Thus, from
and the fact that the sequence
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is Cauchy in the norm || - || we derive that the series
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is convergent in || - || for all g € L?(R?®). Now observe that
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Hence, we can exchange a(g) with the series and obtain
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which is equivalent to a(k)n = f(k)n since a(g) = [ a(k)g(k) by definition.



