
Exercise 1, Question 1. Since (L2(R3N ), ‖ · ‖2) is a Hilbert space and L2
a(R3N ) ⊂ L2(R3N ),

in order to show that (L2
a(R3N ), ‖ · ‖2) is also a Hilbert space, it suffices to prove that

L2
a(R3N ) is closed in (L2(R3N ), ‖ · ‖2).
Hence, consider a sequence {fn}n∈N ⊂ L2

a(R3N ), an f ∈ L2(R3N ) and suppose that
‖fn − f‖2 → 0 as n→∞. Fix a permutation σ ∈ SN . By the definitions we know that

(1) Tσfn = (−1)σfn.

Therefore, if the operator Tσ : L2(R3N ) → L2(R3N ) is bounded the LHS of (1) converges
to f(xσ(1), . . . , xσ(N)) and the RHS of (1) to (−1)σf(x1, . . . , xN ) which is exactly what we

want. But it is trivial to see that ‖Tσψ‖2 = ‖ψ‖2, for all ψ ∈ L2(R3N ) and the proof is
complete.

�

Exercise 1, Question 2. Fix σ̃ ∈ SN . By definition
(2)

Tσ̃Pa,N = Tσ̃

( 1

N !

∑
σ∈SN

(−1)σTσ

)
=

1

N !

∑
σ∈SN

(−1)σTσ̃Tσ = (−1)σ̃
1

N !

∑
σ∈SN

(−1)σ̃+σTσ̃◦σ =

(−1)σ̃Pa,N .

Since this is true for all σ̃ ∈ SN we obtain Pa,N (L2(R3N )) ⊂ L2
a(R3N ). Observe also that

by the definition of the L2
a(R3N ) space we have that Pa,N |L2

a
= IdL2

a
.

By a change of variables it is straightforward to see that for all ψ ∈ L2(R3N ) we have
〈ψ, Tσψ〉 = 〈Tσ−1ψ,ψ〉, i.e. (Tσ)∗ = Tσ−1 . Hence,

(3) (Pa,N )∗ =
( 1

N !

∑
σ∈SN

(−1)σTσ

)∗
=

1

N !

∑
σ∈SN

(−1)σ(Tσ)∗ =
1

N !

∑
σ∈SN

(−1)σTσ−1 =

1

N !

∑
σ∈SN

(−1)σ
−1
Tσ−1 = Pa,N

which means that Pa,N is self-adjoint.
Finally, with the use of (2) we observe that

Pa,NPa,N =
1

N !

∑
σ∈SN

(−1)σTσPa,N =
1

N !

∑
σ∈SN

(−1)σ(−1)σPa,N = Pa,N

and the proof is complete.
�

Exercise 1, Question 3. By the definition of the Hamiltonian operator HN,Z we have that
HN,Z is invariant under all permutations σ ∈ SN . Therefore, it is obvious that HN,Zψ

inherits the symmetry properties of the input function ψ. In other words, if ψ ∈ L2
a(R3N )

then HN,Zψ ∈ L2
a(R3N ) which completes the argument.

�
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Exercise 1, Question 4. By Exercise 13 of last semester we know that the operator HN,Z :

H2(R3N ) → L2(R3N ) is self-adjoint. In the previous question we showed that the Hilbert
space (L2

a(R3N ), ‖ · ‖2) is invariant under the action of the operator HN,Z and by the

self-adjointness we also obtain that the space (L2
a(R3N ))⊥ is invariant under HN,Z . Thus,

Ran(HN,Z |L2
a
± i) = L2

a(R3N ).

By the basic criterion of self-adjointness the proof is complete.
�

Exercise 1, Question 5. The proof is very similar to the proof of the HVZ theorem given
in last semester. For this reason we will try to highlight the changes that need to be made.

Let us denote by EN−1 = inf σ(HN−1|L2
a
). The argument consists of two steps. The first

one is the following:
We will prove that

(4) [EN−1,∞) ⊂ σ(HN |L2
a
).

To this direction, let λ = EN−1 + δ for some δ ≥ 0 and write

(5) HN = HN−1 −∆xN −
Z

|xN |
+
N−1∑
i=1

1

|xi − xN |
.

Then, for a given ε > 0 there exist ψN−1 ∈ C∞c (R3(N−1)) ∩ L2
a(R3(N−1)) and φ ∈ C∞c (R3)

with ‖ψN−1‖2 = ‖φ‖2 = 1 and

(6) ‖(HN−1 − EN−1)ψN−1‖2 <
ε

3
, ‖(−∆xN − δ)φ‖2 <

ε

3
.

Let us denote by φh(·) = φ(· − h), for h ∈ R3. Trivially, ‖ψN−1 ⊗ φh‖2 = 1. We would like
to have that ψN−1⊗ φh ∈ L2

a(R3N ), but this is not true in general. So we have to consider

the projection Pa,N (ψN−1 ⊗ φh) which since ψ ∈ L2
a(R3(N−1)) we obtain the expression

(7)

Pa,N (ψN−1 ⊗ φh) =
1

N

( =f1︷ ︸︸ ︷
ψN−1(x1, . . . , xN−1)φh(xN )−

=f2︷ ︸︸ ︷
ψN−1(x1, . . . , xN−2, xN )φh(xN−1)

−

=fN−1︷ ︸︸ ︷
φN−1(x1 . . . , xN−3, xN , xN−1)φh(xN−2)− . . .−

fN︷ ︸︸ ︷
ψN−1(xN , x2, . . . , xN−1)φh(x1)

)
.

Notice that since all the summands of the RHS of (7) have disjoint supports we have

(8) ‖
√
NPa,N (ψN−1 ⊗ φh)‖22 =

1

N

N∑
i=1

‖fi‖22 =
1

N

N∑
i=1

1 = 1.

Similarly, since the operators Pa,N and HN commute we may write

(9) ‖(HN − λ)
√
NPa,N (ψN−1 ⊗ φh)‖2 = ‖

√
NPa,N (HN − λ)ψN−1 ⊗ φh‖2 =

‖(HN − λ)ψN−1 ⊗ φh‖2.



3

But then we proceed identically as in the proof of the classical HVZ theorem, i.e. by (5)
and the triangle inequality we have

(10) ‖(HN−λ)ψN−1⊗φh‖2 ≤ ‖(HN−1−EN−1)ψN−1⊗φh‖2+‖(−∆xN −δ)ψN−1⊗φh‖2+∥∥∥(− Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
ψN−1⊗φh

∥∥∥
2

= ‖(HN−1−EN−1)ψN−1‖2 + ‖(−∆xN − δ)φh‖2+

∥∥∥(− Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
ψN−1 ⊗ φh

∥∥∥
2
<

2ε

3
+
∥∥∥(− Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
ψN−1 ⊗ φh

∥∥∥
2

≤ 2ε

3
+

Z

dist(suppφh, 0)
+

N − 1

dist(suppφh, Ai)
< ε

for large enough h, where Ai = {xi ∈ R3 : ψN−1(·, . . . , xi, . . . , ·) 6= 0}. Hence, λ ∈ σ(HN |L2
a
)

as desired.
The second and final step of the proof consists of showing that inf σess(HN |L2

a
) ≥ EN−1.

As in the classical proof of the HVZ theorem given last semester we use the IMS localization
formula

(11) HN =
N∑
k=0

Jk,RHNJk,R −
N∑
k=0

|∇Jk,R|2

which implies

(12) Pa,NHNPa,N =

N∑
k=0

Pa,NJk,RHNJk,RPa,N −
N∑
k=0

Pa,N |∇Jk,R|2Pa,N .

The term Pa,NJ0,RHNJ0,RPa,N is treated exactly as in the classical proof after observing

that Pa,N and J0,R commute with each other and thus, the operator HN acts on L2
a(R3N ).

For the term Pa,NJN,RHNJN,RPa,N we do the following (similar considerations apply to
the remaining terms Pa,NJk,RHNJk,RPa,N for k = 1, . . . , N − 1)

(13) Pa,NJN,RHNJN,RPa,N =

Pa,NPa,N−1JN,R

(
HN−1 −∆xN −

Z

|xN |
+
N−1∑
i=1

1

|xi − xN |

)
JN,RPa,N−1Pa,N

where we used the fact that Pa,NPa,N−1 = Pa,N . Next observe that the operators Pa,N−1
and JN,R commute since they act on different variables which allows us to rewrite the last
expression as

Pa,NJN,RPa,N−1

(
HN−1 −∆xN −

Z

|xN |
+

N−1∑
i=1

1

|xi − xN |

)
Pa,N−1JN,RPa,N .

Notice that the operator HN−1 acts now on the space L2
a(R3(N−1)). Then proceed identi-

cally as in the proof of the classical HVZ theorem presented last semester.
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The argument with the Weyl sequence goes through as it is and the last thing we
have to notice is that the operator J0,R leaves the space L2

a(R3N ) invariant and so J0,R
being compact from H1(R3N ) → L2(R3N ) implies that it is compact as an operator from
H1(R3N ) ∩ L2

a(R3N )→ L2
a(R3N ).

�


