Karlsruhe Institute of Technology (KIT) Institute for Analysis Prof. Dr. Dirk Hundertmark Dr. Vu Hoang

Mathematical Methods of Quantum Mechanics 5th Exercise Sheet

10. Let *H* be a symmetric, semibounded operator in the Hilbert space \mathcal{H} (with domain D(H)), and *A* an operator with $D(H) \subseteq D(A)$. Suppose that there exist \tilde{a}, \tilde{b} such that

$$(**) \quad \|A\phi\|^2 \le \tilde{a}^2 \|H\phi\|^2 + \tilde{b}^2 \|\phi\|^2 \quad (\phi \in D(H)).$$

Show that then the condition (*) from exercise 9 holds:

(*)
$$||A\phi|| \le a ||H\phi|| + b ||\phi|| \quad (\phi \in D(H))$$

and that

$$\inf\{a: (*) \text{ holds for some } b > 0\} = \inf\{\tilde{a}: (**) \text{ holds for some } b > 0\}$$

11. (*Magnetic Schrödinger Hamiltonian*.) The magnetic Schrödinger Hamiltonian is formally given by

$$H\phi = (-i\nabla - e\mathbf{A})^2\phi + V\phi$$

with electric charge e and magnetic vector potential **A**. Show that in case of $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$ and $\mathbf{A} \in L^4(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3), \nabla \cdot \mathbf{A} \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$, the Hamiltonian is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^3)$ when written in the form

$$H\phi = -\Delta\phi - 2ie\mathbf{A}\cdot\nabla\phi - ie(\nabla\cdot\mathbf{A})\phi + e^2(\mathbf{A}\cdot\mathbf{A})\phi + V\phi.$$

Hint: If the exercise seems too difficult, try to take $\mathbf{A} \in L^{\infty}(\mathbb{R}^3), \nabla \cdot \mathbf{A} \in L^{\infty}(\mathbb{R}^3)$.