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Lower bounds for multicolor Ramsey numbers

David Conlon∗ Asaf Ferber†

Abstract

We give an exponential improvement to the lower bound on diagonal Ramsey numbers for any
fixed number of colors greater than two.

1 Introduction

The Ramsey number r(t; ℓ) is the smallest natural number n such that every ℓ-coloring of the

edges of the complete graph Kn contains a monochromatic Kt. For ℓ = 2, the problem of determining

r(t) := r(t; 2) is arguably one of the most famous in combinatorics. The bounds

√
2
t
< r(t) < 4t

have been known since the 1940s, but, despite considerable interest, only lower order improvements

[2, 6, 7] have been made to either bound. In particular, the lower bound r(t) > (1 + o(1)) t√
2e

√
2
t
,

proved by Erdős [3] as one of the earliest applications of the probabilistic method, has only been

improved [7] by a factor of 2 in the intervening 70 years.

If we ignore lower order terms, the best known upper bound for ℓ ≥ 3 is r(t; ℓ) < ℓℓt, proved

through a simple modification of the Erdős–Szekeres neighborhood-chasing argument [4] that yields

r(t) < 4t. For ℓ = 3, the best lower bound, r(t; 3) >
√
3
t
, again comes from the probabilistic method.

For higher ℓ, the best lower bounds come from the simple observation of Lefmann [5] that

r(t; ℓ1 + ℓ2)− 1 ≥ (r(t; ℓ1)− 1)(r(t; ℓ2)− 1).

To see this, we blow-up an ℓ1-coloring of Kr(t;ℓ1)−1 with no monochromatic Kt so that each vertex set

has order r(t; ℓ2)− 1 and then color each of these copies of Kr(t;ℓ2)−1 separately with the remaining

ℓ2 colors so that there is again no monochromatic Kt. By using the bounds r(t; 2) − 1 ≥ 2t/2 and

r(t; 3)− 1 ≥ 3t/2, we can repeatedly apply this observation to conclude that

r(t; 3k) > 3kt/2, r(t; 3k + 1) > 2t3(k−1)t/2, r(t; 3k + 2) > 2t/23kt/2.

Our main result is an exponential improvement to all these lower bounds for three or more colors.

Our principal contribution is the following theorem, proved via a construction which is partly

deterministic and partly random. The deterministic part shares some characteristics with a con-

struction of Alon and Krivelevich [1], in that we consider a graph whose vertices are vectors over

a finite field where adjacency is determined by the value of their scalar product, while randomness

comes in through both random coloring and random sampling.
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Theorem 1. For any prime q, r(t; q + 1) > 2t/2q3t/8+o(t).

In particular, the cases q = 2 and q = 3 yield exponential improvements over the previous

bounds for r(t; 3) and r(t; 4), both of which came from the probabilistic method (in fact, Lefmann’s

observation gives an additional polynomial factor in the four-color case, but this is of lower order

than the exponential improvements that are our concern).

Corollary 2. r(t; 3) > 27t/8+o(t) and r(t; 4) > 2t/233t/8+o(t).

For the sake of comparison, we note that the improvement for three colors is from 1.732t to 1.834t,

while, for four colors, it is from 2t to 2.135t. Improvements for all ℓ ≥ 5 now follow from repeated

applications of Lefmann’s observation, yielding

r(t; 3k) > 27kt/8+o(t), r(t; 3k + 1) > 27(k−1)t/8+t/233t/8+o(t), r(t; 3k + 2) > 27kt/8+t/2+o(t) ,

where we used, for instance,

r(t; 3k + 1)− 1 ≥ (r(t; 3(k − 1))− 1)(r(t; 4) − 1) ≥ (r(t; 3) − 1)k−1(r(t; 4) − 1).

2 Proof of Theorem 1

Let q be a prime. Suppose t 6= 0 mod q and let V ⊆ F
t
q be the set consisting of all vectors v ∈ F

t
q for

which
∑t

i=1 v
2
i = 0 mod q, noting that qt−2 ≤ |V | ≤ qt. Here the lower bound follows from observing

that we may pick v1, . . . , vt−2 arbitrarily and, since every element in Fq can be written as the sum of

two squares, there must then exist at least one choice of vt−1 and vt such that v2t−1+v2t = −
∑t−2

i=1 v
2
i .

We will first color all the pairs
(V
2

)

and then define a coloring of E(Kn) by restricting our attention

to a random sample of n vertices in V . Formally:

Coloring all pairs in
(

V
2

)

. For every pair uv ∈
(

V
2

)

, we define its color χ(uv) according to the

following rules:

• If u · v = i mod q and i 6= 0, then set χ(uv) = i.

• Otherwise, choose χ(uv) ∈ {q, q + 1} uniformly at random, independently of all other pairs.

Mapping [n] into V . Take a random injective map f : [n] → V and define the color of every edge

ij as χ(f(i)f(j)).

Our goal is to upper bound the orders of the cliques in each color class.

Colors 1 ≤ i ≤ q − 1. Note that one cannot find an i-monochromatic clique of order larger than t

for any 1 ≤ i ≤ q − 1. Indeed, suppose that v1, . . . , vs form an i-monochromatic clique. We wish to

show that they must be linearly independent and, therefore, that there are at most t of them. To

this end, suppose that

u :=

s
∑

j=1

αjvj = 0̄

2



and we wish to show that αj = 0 mod q for all j. Observe that since vj · vj = 0 mod q for all j (our

ground set V consists only of such vectors) and vk · vj = i mod q for each k 6= j, by considering all

the products u · vj , we obtain that the vector ᾱ = (α1, . . . , αs) is a solution to

Mᾱ = 0̄

with M = iJ − iI, where J is the s× s all 1 matrix and I is the s× s identity matrix. In particular,

we obtain that the eigenvalues of M (over Z) are is− i with multiplicity 1 and −i with multiplicity

s − 1. Therefore, if s 6= 1 mod q, the matrix is also non-singular over Zq, implying that ᾱ = 0, as

required. On the other hand, if s = 1 mod q, we can apply the same argument with v1, . . . , vs−1 to

conclude that s − 1 ≤ t. But, we cannot have s − 1 = t, since this would imply that t = 0 mod q,

contradicting our assumption. Therefore, we may also conclude that s ≤ t in this case.

Colors q and q + 1. We call a subset X ⊆ V a potential clique if |X| = t and u · v = 0 mod q

for all u, v ∈ X. Given a potential clique X, we let MX be the t × t matrix whose rows consist

of all the vectors in X. Observe that MX · MT
X = 0, where we use the fact that each vector is

self-orthogonal. First we wish to count the number of potential cliques and later we will calculate

the expected number of cliques that survive after we color randomly and restrict to a random subset

of order n.

Suppose that X is a potential clique and let r := rank(X) be the rank of the vectors in this clique,

noting that r ≤ t/2, since the dimension of any isotropic subspace of Ft
q is at most t/2. By assuming

that the first r elements are linearly independent, the number of ways to build a potential clique X

of rank r is upper bounded by

(

r−1
∏

i=0

qt−i

)

· q(t−r)r = qtr−(
r

2
)+tr−r2 = q2tr−

3r
2

2
+ r

2 .

This function is increasing up to r = 2t
3 + 1

6 , so the maximum occurs at t/2. By plugging this into the

estimate above and summing over all possible ranks, we see that the number Nt of potential cliques

in V is upper bounded by q
5t

2

8
+o(t2).

The probability that a potential clique becomes monochromatic after the random coloring is

21−(
t

2
). Suppose now that p is such that p|V | = 2n and observe that p = nq−t+O(1). If we choose a

random subset of V by picking each v ∈ V independently with probability p, the expected number

of monochromatic potential cliques in this subset is, for n = 2t/2q3t/8+o(t),

pt21−(
t

2
)Nt ≤ q−t2+o(t2)nt2−

t
2

2
+o(t2)q

5t
2

8
+o(t2) =

(

2−
t

2 q−
3t

8
+o(t)n

)t
< 1/2.

Since our random subset will also contain more than n elements with probability at least 1/2, there

exists a choice of coloring and a choice of subset of order n such that there is no monochromatic

potential clique in this subset. This completes the proof.

Remark. Our method also gives a new construction which matches Erdős’ bound r(t) >
√
2
t
up to

lower order terms. To see this, we set V = F
2t
2 and color edges red or blue depending on whether

u ·v = 0 or 1 mod q. If we then sample 2t/2+o(t) vertices of V at random, we can show that w.h.p. the

resulting set does not contain a monochromatic clique of order t. It was pointed out to us by Jacob

Fox that one can achieve the same end by starting with any pseudorandom graph on n vertices for

3



which the count of cliques and independent sets of order 2c log2 n is asymptotically the same as in

G(n, 1/2) and sampling nc vertices. This can be applied, for instance, with the Paley graph.
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