Karlsruhe Institute of Technology Institute for Algebra und Geometry Prof. Axenovich Ph.D.

	56	57	58	59	60	Σ
ſ						

Karlsruhe, Jan 17, 2019

Name:

Exercise Sheet No. 12 Advanced Mathematics I

Exercise 56: Compute the following limits:

(a)
$$\lim_{x \to 0} \left(\frac{1}{x^3 + ax^2 + x} - \frac{1}{\sin x} \right)$$
, (b) $\lim_{x \to 0} \left(\frac{1}{x} \right)^{\tan x}$, (c) $\lim_{x \to 0} (\cos x)^{1/x^2}$.

The coefficient $a \in \mathbb{R}$ in part (a) is a constant.

Exercise 57:

Determine the constant $c \in \mathbb{R}$ such that the function $f(x) = \begin{cases} c, & x = 1, \\ \frac{2^{\ln x} - x}{\ln x}, & x \neq 1, \end{cases}$ on $\mathbb{R}_{>0}$ is continuous.

Exercise 58: Calculate all the derivatives $f^{(n)}$, n = 0, 1, 2, ... of the function f and give the Taylor series for f with center of expansion $x_0 = 0$. Where does the series in part (a) converge?

(a)
$$f(x) = \cosh \frac{x}{2}, \quad x \in \mathbb{R},$$
 (b) $f(x) = \sqrt{1+x}, \quad |x| \le 1.$

Hint for (b): The derivatives of f have the following form: $f^{(k)}(x) = -(-1)^k \frac{(2k-2)!}{2^{2k-1}(k-1)!}(1+x)^{-\frac{2k-1}{2}}$.

Exercise 59:

- (a) Determine the Taylor formula for m = 2 about the point $x_0 = 8$ for the function $f(x) = x^{2/3}$, $x \ge 1$, find an expression for the Lagrange form of the remainder.
- (b) For natural numbers n and real x, 1 + x > 0, show using the Taylor formula that

$$(1+x)^n \ge 1+nx.$$

Exercise 60:

- (a) Define the function $f: \mathbb{R} \to \mathbb{R}$ by f(x) = 1 for $x \ge 0$ and f(x) = -1 for x < 0. Show that the function $F(x) = \int_0^x f(t) dt$ is not a primitive (antiderivative) of f.
- (b) Given $g: \mathbb{R}_{>0} \to \mathbb{R}$ defined by $g(x) = \int_{2\pi}^{x} \frac{\sin(t)}{t} dt$. Find the Taylor polynomial $p_2(x)$ of degree 2 about $x_0 = 2\pi$.

Due date: Your written solutions are due at 14:00 on Tuesday, <u>29 January, 2019</u>. Please submit them at the beginning of the problem session.
Website: For detailed information regarding this course visit the following web page: