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p-adic Origamis

Frank Herrlich

Abstract. An origami is a finite covering of a torus which is ramified over
only one point. Origamis can be defined algebraically over an arbitrary field.
In these notes, after a short reminder of complex origamis, we focus on origamis

over p-adic fields with special emphasis on those that can be represented by
Mumford curves. These p-adic origamis, at least those which are normal cov-
erings of the torus, have been classified by K. Kremer. The main goal of this
paper is to give a little background on p-adic uniformization and thus to intro-

duce the reader to Kremer’s work, the main results of which are summarized
in the last section.

1. Introduction

These notes aim at giving an introduction to the interplay between complex
and p-adic origamis for people who are familiar with Riemann surfaces, but not so
much with their p-adic counterpart, the Mumford curves.

“Classical” complex origamis are a special class of translation surfaces, often also
called “square-tiled surfaces”. They have been studied a lot during the last 15
years from quite different points of view, e.g. by Gutkin-Judge [6], Lochak [14]
(who coined the name “origami”), Schmithüsen [18], Hubert-Lelièvre [11], Eskin-
Kontsevich-Zorich [3], Matheus-Möller-Yoccoz [15] and many others. They have a
very simple combinatorial description by gluing squares, see Section 2, but never-
theless encode a very rich and deep structure. In particular, every origami deter-
mines an algebraic curve in moduli space, a so called Teichmüller curve. Each of
these curves contains point representing Riemann surfaces which are (as complex
algebraic curves) defined over a number field, and thus also determine a projective
curve over the field Cp, the completion of the algebraic closure of the field of p-adic
numbers.

Over p-adic fields like Cp and Qp, there is a meaningful notion of analytic functions
and of analytic spaces. But in contrast to the complex case there is no uniformiza-
tion theorem for one-dimensional p-adic analytic manifolds. At least the easy part
of the uniformization theorem holds: any quotient of an open subset of the pro-
jective line P1 by a discontinuously acting group of Möbius transformations is an
analytic manifold. These are considered as the analogues of Riemann surfaces.
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If such a quotient is compact it carries, as in the complex case, the structure of a
nonsingular projective algebraic curve. But unlike the classical complex situation,
not every nonsingular projective algebraic curve over Cp can be obtained this way.
An algebraic curve over Cp that can be represented as quotient of an open subset
of P1(Cp) by a discontinuous subgroup of PGL2(Cp), is called a Mumford curve.
We shall explain this concept from different points of view in Sections 4, 5 and 6.

We call an origami over Cp a p-adic origami if it is a covering of Mumford curves.
The task of describing all p-adic origamis has been done to a large extent by Karsten
Kremer in his PhD thesis [12] and the subsequent paper [13]: he succeeded in clas-
sifying all normal p-adic origamis. In Section 7, we shall discuss one of his two basic
examples in some detail, and then sketch Kremer’s general results.

2. Complex origamis

The most elementary definition of a complex origami is the following, which
also explains the name “square-tiled surface”:

Definition 2.1. An origami is a closed surface X that can be obtained from
finitely many squares in the euclidean plane by gluing each left side of a square to
a right side and each upper side to a lower side in such a way that all gluings are
performed by translations in the plane.

On such a surface there is an obvious notion of horizontal (and vertical) cylin-
ders. Numbering the squares by the integers 1, . . . , d, the decomposition of X into
horizontal (resp. vertical) cylinders corresponds to the cycle decomposition of a
permutation σh (resp. σv) in the symmetric group Sd. That X is connected im-
plies that the subgroup of Sd generated by σh and σv acts transitively on {1, . . . , d}.
Conversely every such pair of permutations determines an origami.

A surface X as in Definition 2.1 comes along with a surjective map p : X → E
to the torus E = R2/Z2: on each square of X, the map p identifies the left and
the right edge, and the top and the bottom edge. Clearly this is compatible with
the gluings that define X. Note that outside the vertices of the squares, p is an
unramified covering.

Identifying R2 with C in the usual way, the torus E = C/(Z ⊕ iZ) is not only a
topological surface, but also a complex torus and a complex projective nonsingular
curve of genus 1. Since translations are in particular holomorphic functions, the
gluing rules in Definition 2.1 turn X into a compact Riemann surface and thus also
a complex nonsingular projective curve. The map p described above is then a holo-
morphic map between Riemann surfaces, and a finite morphism between algebraic
curves. This observation suggests a definition of origami over more general fields
than the complex numbers:

Definition 2.2. Let k be an algebraically closed field. An origami over k is a
finite morphism p : X → E between nonsingular projective curves X and E over k
such that E has genus 1 and p is ramified over at most one point of E.

Remark 2.3. 1) To make sure that the morphism p is finite it suffices to require
that it be nonconstant.
2) The genus of X is at least 1, and if it is 1 then p is unramified by the Riemann-
Hurwitz formula (in this case p is an isogeny).
3) The assumption that k is algebraically closed can be dropped if an appropriate
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notion of “curve over k” is used. In fact we shall be interested later in Riemann
surfaces that “can be defined over a number field K”, by which we mean that there
is a a scheme X0 over K from which X is obtained by base change from K to C,
i. e. X = X0 ⊗K C.

3. Teichmüller curves

As indicated above, origamis are special translation surfaces. We now make
this notion precise:

Definition 3.1. A 2-dimensional manifold X with a given atlas of local charts
is called a strict translation surface if all transition functions between the charts
are translations of the euclidean plane.

Clearly, if X is an origami as in Definition 2.1 and Σ ⊂ X is the finite set
of vertices of the squares, then X∗ := X \ Σ is a strict translation surface. This
observation motivates the following definition:

Definition 3.2. A 2-dimensional manifold X is called a translation surface
if there is a discrete subset Σ ⊂ X such that X∗ := X \ Σ is a strict translation
surface.

Remark 3.3. Every translation surface is also a Riemann surface. This is
obvious for strict translation surfaces since translations are holomorphic maps. The
general case follows from the Riemann extension theorem.

Remark 3.4. The differential dz in the complex plane pulls back via the trans-
lation atlas to a holomorphic differential on every translation surface.
Conversely, every translation surface X can be obtained from a Riemann surface
X and the choice of a nonzero holomorphic differential ω on X: Let Σ be the set
of zeroes of ω, and define charts on simply connected open subsets U ⊂ X \ Σ by

P 7→
∫ P

P0
ω (for some P0 ∈ U).

This remark shows that compact translation surfaces of genus g ≥ 1 are classi-
fied by the space ΩMg of pairs (S, ω), where S is a Riemann surface of genus g and
ω is a nonzero holomorphic differential on S. Note that ΩMg is a vector bundle of
rank g on Mg from which the zero section is removed.

There is a natural action of SL2(R) on the space ΩTg of marked translation surfaces:
given a matrix A ∈ SL2(R) and a translation surface X, we obtain a new translation
surface XA by postcomposing all chart maps with the R-linear map on R2 induced
by A. If a point X in ΩTg is considered as a pair (S, ω) with a marked Riemann
surface S and a nonzero holomorphic 1-form ω on S, the point XA corresponds to

(SA, ωA), where ωA = A ·

(
Reω
Imω

)
and SA is the unique complex structure on the

surface S such that ωA is holomorphic.

For given X = (S, ω) ∈ ΩTg this action induces a map from SL2(R) to Tg by
A 7→ SA. Note that SA is the same marked Riemann surface as S if and only if
A ∈ SO2(R). Thus we obtain an embedding ιX of H = SO2(R)\SL2(R) into Tg.
Such embeddings are called Teichmüller embeddings, and the image ∆X = ιX(H)
in Tg is called a Teichmüller disk.

Proposition 3.5. Teichmüller embeddings are holomorphic and isometric (for
the hyperbolic metric on H and the Teichmüller metric on Tg).
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Proof. A proof of this proposition can be found in [9], Thm. 3.4. �

Recall that the mapping class group Modg acts properly discontinuously and
isometrically on Tg, and the quotient space Mg = Tg/Modg is the moduli space of
Riemann surfaces of genus g, which is known to be a quasiprojective variety. We
are interested in the images of Teichmüller disks in moduli space. In general, this is
a weird (and dense) subset of Mg, but in certain cases it has a much nicer structure:

Proposition 3.6. Let X be a translation surface of genus g ≥ 1 and ∆X the

corresponding Teichmüller disk. Denote by Γ̃X the stabilizer of ∆X in Modg and

by ΓX the factor group of Γ̃X by the (finite) pointwise stabilizer of ∆X .
Then ΓX acts as a Fuchsian group on H = ∆X , and if ΓX is a lattice in SL2(R)
the following holds:

(i) ∆X/ΓX is a Riemann surface of finite type.
(ii) The image CX of ∆X in Mg is birational to ∆X/ΓX .

Moreover Γ̃X is isomorphic to the group Aff+(X) of orientation preserving affine
diffeomorphisms of X, and ΓX is isomorphic to the image of Aff+(X) in SL2(R),
i. e. the group of linear parts of the affine diffeomorphisms.

Proof. For a proof of most of the claims in this proposition see [9]. �

The group ΓX in the proposition is called the Veech group of the translation
surface X. If ΓX is a lattice in SL2(R), the proposition implies that ∆X/ΓX and
CX are complex algebraic curves. In this case CX , considered as a subvariety of
the moduli space Mg, is called a Teichmüller curve. As already observed by Veech
[20], Teichmüller curves are never projective, hence always have “cusps” at the
boundary of Mg.

For an arbitrary translation surface X, CX is rarely a Teichmüller curve. But for
origamis, the situation is different:

Proposition 3.7. For any origami p : X → E of genus g, CX is a Teichmüller
curve in Mg. More precisely, the Veech group ΓX is a finite index subgroup of
SL2(Z).

This was already observed by Thurston and Veech in the late 80’s. Gutkin
and Judge [6] showed that the converse also holds: any translation surface whose
Veech group is commensurable to SL2(Z), is an origami. A nice proof of the propo-
sition and moreover a very useful characterization of the Veech group of an origami
in terms of automorphisms of the free group F2 of rank 2 can be found in G.
Schmithüsen’s thesis [18].

Proposition 3.8. For any origami X, the Teichmüller curve CX is defined
over a number field.

This follows from the previous proposition and Belyi’s theorem: Since the only
elliptic fixed points of SL2(Z) in H are the orbits of i and of ρ = e2πi/3, the modular
map j : H → H/SL2(Z) = C is ramified only above two points (namely 0 and
1728). Since ΓX is a finite index subgroup of SL2(Z), it induces a finite covering

H/ΓX → H/SL2(Z) which can be extended to a finite covering q : H/ΓX → P1(C)
of compact Riemann surfaces. q is ramified over at most three points (0, 1728 and

∞). By Belyi’s theorem this implies that H/ΓX and hence also CX is defined over
a number field.
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Möller [16], Thm. 5.1 has shown that every Teichmüller curve can be defined over
a number field. The proof of this result requires quite different techniques.

4. p-adic uniformization and Mumford curves

A key point in the classical theory of Riemann surfaces is the uniformization
theorem which implies that every compact Riemann surface of genus g ≥ 2 can be
conformally represented as the quotient of the upper half plane H by a discontin-
uous and free action of a Fuchsian group. More generally, any compact Riemann
surface can be obtained in many ways as the quotient of an open subdomain of the
Riemann sphere C ∪ {∞} = Ĉ, which we identify with the projective line P1(C),
by a discontinuous group of Möbius transformations.

In this section we discuss to what extent an analog of this uniformization is possible
over a p-adic field. We begin quite elementary by recalling the construction of the
fields Qp and Cp:

4.1. p-adic valuation and p-adic fields. The p-adic valuation of an integer
a 6= 0 is defined as vp(a) = n if a can be written as a = pn · a′, where p does
not divide a′. In other words vp(a) = n if pn divides a, but pn+1 does not. For
a nonzero rational number z = a

b we define vp(z) = vp(a) − vp(b), and the p-adic

absolute value as |z|p = p−vp(z). Extending the map |.|p to all of Q by |0|p = 0
we obtain a norm |.|p : Q → R. Besides the usual properties of a norm (|x|p = 0
if and only if x = 0, |xy|p = |x|p · |y|p), it satisfies the “ultrametric” triangle
inequality |x+ y|p ≤ max(|x|p, |y|p). As do all norms, |.|p induces a metric on Q by
dp(x, y) = |x− y|p. This metric is non-archimedean in the sense that

dp(x, z) ≤ max(dp(x, y), dp(y, z)) for all x, y, z in Q.

Recall that any non-archimedean metric implies the following “simplified” geome-
try:
(a) Any triangle is isosceles, i. e. has two sides of equal length; the third side then
also has the same length or is shorter.
(b) Any two disks Bri(xi) = {y| dp(xi, y) < ri}, i = 1, 2, are either disjoint, or one
of them is contained in the other.

One very important property of a non-archimedean norm | . | on a field k is that the
closed unit disk D = B1(0) = {x ∈ k| |x| ≤ 1} is a ring Ok, called the valuation ring
of | . |. This holds because for x, y with |x| ≤ 1 and |y| ≤ 1 we also have |x+ y| ≤ 1
and | − x| = |x| ≤ 1. Note that Ok is a local ring with the unique maximal ideal
m = {x ∈ k| |x| < 1}. The quotient field κ = Ok/m is called the residue field; for
k = Q and | . | the p-adic absolute value, the residue field is the prime field Fp.

Like for the euclidean norm, also for the p-adic norm | . |p the metric space (Q, | . |p)
is not complete. Denote by Qp the completion of Q with respect to | . |p. It has the
following properties:

Remark 4.1. (i) Qp is a field which contains Q as a subfield.
(ii) The p-adic norm on Q extends to an absolute value | . |p on Qp which takes on
the same values as on Q, namely the integer powers of p.
(iii) Qp is complete w. r. t. | . |p.

The second property holds because, due to the non-archimedean triangle in-
equality, every Cauchy sequence either converges to 0 or else has constant absolute
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value for sufficiently large n.

Since the p-adic norm on Qp has no other values than on Q, Qp cannot be as close
to an algebraically closed field as R, the completion of Q w. r. t. the euclidean norm:
e. g. not all the roots p1/k of p can be contained in one single finite field extension
of Qp.
On the other hand, the residue field of Qp is still Fp. The valuation ring is Zp,
which can also be obtained as the completion of Z w. r. t. | . |p.

Let Qp be the algebraic closure of Qp. By standard arguments the absolute value

on Qp extends in a unique way to an absolute value on Qp, which is still denoted

| . |p. The residue field of Qp is Fp, the algebraic closure of Fp. Unfortunately Qp is
no longer complete for the absolute value | . |p, so we pass to the completion Cp of

Qp w. r. t. | . |p. It turns out that Cp is the analogue of the complex field C in the
following sense:

Proposition 4.2. (i) Cp is a field extension of Q, and the p-adic norm | . |p
on Q extends in a unique way to Cp.
(ii) Cp is complete w. r. t. | . |p and algebraically closed. The residue field of Cp is

Fp.

The drawback of the big extension from Qp to Cp is that Cp is no longer locally
compact, and the valuation ring is no longer a noetherian ring. Nevertheless, Cp

allows for a theory of analytic functions in the sense of H. Cartan.

4.2. p-adic analytic functions. As in the complex world, convergent power
series are the building blocks of analytic functions also over p-adic fields. A power
series

∑
n≥0 anz

n with coefficients an ∈ Cp has the usual radius of convergence

r = (lim sup n
√
|an|)

−1 and thus converges (if at all) on some open disk Br(0) =
{z ∈ Cp| |z| < r}. But since p-adic fields are totally disconnected and thus a disk
Br(0) is a disjoint union of disks of radius r′ < r, the classical definition of a holo-
morphic function as a function that can locally be expressed as a convergent power
series, would not lead to a satisfactory theory: e. g. a locally constant function,
which is 0 on some of the smaller disks and 1 on the others, would satisfy this
definition.

To obtain a notion which shares the basic properties of complex holomorphic func-
tions (like the identity theorem), one defines the holomorphic functions on a closed
disk Br(a) as the power series in z − a that converge on that disk. Due to the
non-archimedean valuation this is equivalent to the condition on the coefficients
an of the series, that |an|r

n converges to 0. Thus in particular, the holomorphic
functions on B1(0) form the “Tate algebra”

Cp<z>= {
∑

n≥0

anz
n| an → 0}.

Similarly the holomorphic functions on Br(a) are the elements of Cp<
z−a
c >, where

c ∈ Cp is such that |c| = r.

Next we define the holomorphic functions on a domain D ⊂ Cp which is a “disk
with holes”, i. e. of the form

D = Br(a)−
m⋃

i=1

Bri(ai)
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for some ai ∈ Br(a) and ri ≤ r as

A(D) = Cp<
z − a

c
,

c1
z − a1

, . . . ,
cm

z − am
>

with |ci| = ri.

Disks with holes are the simplest examples of (one-dimensional) affinoid domains.
In general, affinoid domains correspond to “affinoid algebras”, i. e. quotients of a
Tate algebra Cp <z1, . . . , zn > by certain ideals. The correspondence is such that
the affinoid algebra is the ring of holomorphic functions on the affinoid domain.
General p-adic analytic varieties are obtained by gluing affinoid domains in an “ad-
missible” way. The admissible coverings in this sense include in particlar the finite
ones. Good introductions to the one-dimensional theory can be found in [5] and
[4], the general case is treated in [1].

Fortunately, in these notes we do not need more complicated affinoid domains than
disks with holes. It should be noted however, that this is due to our limitation to
Mumford curves: Exactly as in the complex case, every algebraic variety over Cp

carries a natural structure as analytic variety. In dimension one, i. e. for projective
algebraic curves over Cp, it turns out, however, that almost no curve can “admis-
sibly” be covered by disks, as is, in contrast, the case for all complex nonsingular
projective curves (“admissibly” here would mean by finitely many of them). The
basic insight, which goes back to Mumford [17], is that many, but by far not all
curves over Cp can be covered by finitely many disks with holes. We call a pro-
jective nonsingular curve over Cp which, as an analytic variety, can be covered by
finitely many disks with holes, a Mumford curve. In the following sections, we shall
characterize these p-adic analogs of Riemann surfaces in different ways.

4.3. p-adic Schottky groups. The projective line P1(Cp) = Cp ∪ {∞} is an
analytic variety which can be covered by two disks. As usual, the group PGL2(Cp)
of Möbius transformations acts on P1(Cp) by analytic automorphisms. If Γ ⊂
PGL2(Cp) is a finitely generated subgroup which acts discontinuously on some
open subdomain Ω ⊂ P1(Cp), then the quotient Ω/Γ inherits a structure of one-
dimensional analytic variety exactly in the same way as it is a Riemann surface in
the corresponding complex situation.

There is one kind of classical Kleinian groups that can be defined in the same way
over p-adic fields, namely Schottky groups. Instead of recalling Schottky’s classical
construction we give the p-adic definition right away since it is literally the same:

Definition 4.3. Let g ≥ 1 and Di = Bri(ai), i = 1, . . . , 2g mutually disjoint
closed disks in Cp. Denote by Ci the “boundary” of Di, i. e. Ci = Bri(ai) −
Bri(ai) = {z ∈ Cp| |z − ai| = ri} (note that, unlike the complex case, the “center”
ai of Di is not unique and therefore Ci depends on the choice of ai).
Choose γi ∈ PGL2(Cp), i = 1, . . . , g, such that γi(Ci) = Ci+g and γi(Di) =
(P1(Cp)−Di+g) ∪ Ci+g = P1(Cp)−Bri+g

(ai+g).
Then the subgroup Γ of PGL2(Cp) generated by γ1, . . . , γg is called a p-adic Schottky
group.

Clearly the definition can be extended to allow disks in P1(Cp) that contain ∞.
A p-adic Schottky group has the same properties as a complex one:

Theorem 4.4. Let Γ ⊂ PGL2(Cp) be a Schottky group as in Definition 4.3.
Then the following hold:
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(i) Γ is a free group of rank g.

(ii) Let F = P1(Cp) −
⋃2g

i=1 Di and Ω =
⋃

γ∈Γ γ(F ). Then Γ acts properly

discontinuously (and freely) on Ω, and F is a fundamental domain for
this action.

(iii) The quotient space Xan = Ω/Γ is the analytic space associated with a
projective nonsingular algebraic curve XΓ over Cp of genus g.

(iv) XΓ is a Mumford curve.

Proof. (i) and (ii) are proved exactly in the same way as in the complex
situation.
(iii) can be proved by constructing nonconstant Γ-invariant meromorphic functions
on Ω, see [5]. The original result, in a more algebraic-geometric setting, is due to
Mumford [17].
To prove (iv), note that XΓ can be covered by one disk with 2g holes F ′ and 2g
annuli: For i = 1, . . . , 2g choose positive real numbers r−i , r

′
i and r+i satisfying

r−i < ri < r′i < r+i such that the closed disks Br+
i
(ai) are still mutually disjoint and

the projection map from Ω to Xan is injective on each annulus ∆i = {z ∈ Cp | r
−
i ≤

|z − ai| ≤ r+i }. Finally let F ′ = P1(Cp)−
⋃2g

i=1 Br′
i
(ai). �

The following result shows that p-adic Schottky groups play a very important
role among the discontinuous subgroups of PGL2(Cp):

Theorem 4.5. Let G ⊂ PGL2(Cp) be a finitely generated subgroup which acts
discontinuously on some nonempty open subset of P1(Cp). Then G contains a p-
adic Schottky group Γ as a subgroup of finite index.

This theorem can be obtained by looking at the action of G on the Bruhat-
Tits tree and using the structure theorem for the fundamental group of a graph of
groups from Bass-Serre theory. A different proof is contained in [5].

There is a second result that emphasizes the importance of Schottky groups; its
proof relies on the results of the following section:

Theorem 4.6. Every Mumford curve can be obtained as the quotient of an
open dense subset of P1(Cp) by a p-adic Schottky group.

5. The Bruhat-Tits tree

There is a very useful tree associated with the field of p-adic numbers which at
the same time helps to understand the action of PGL2(Qp) and its subgroups on
P1(Qp) and also the “reduction mod p” of certain subsets of P1(Qp) and analytic
varieties. Algebraically it is a special case of the general concept of the Bruhat-
Tits building for a reductive algebraic group over a local field. The group here is
PGL2(Qp), and the building is one-dimensional and turns out to be a tree.

The tree T = T (Qp) is defined as follows: the vertex set V (T ) is the set of closed

disks in P1(Qp), i. e. V (T ) = {Br(a)| a ∈ Qp), r ∈ pZ}. There is a (directed) edge
between disks D and D′ if D ⊂ D′ and D is maximal in D′ w.r.t. inclusion, i. e.
there is no disk D′′ with D 6= D′′ 6= D′ and D ⊂ D′′ ⊂ D′.
Clearly this graph is connected since any two disks D = Br(a) and D′ = Br′(a

′) are
contained in a common larger disk, e. g. B|a−a′|(a). Moreover, from every vertex

Br(a) there is exactly one directed edge going out, namely the one to Br·p(a). Thus
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a path in T without backtracking can change its direction at most once. From this
observation one deduces immediately that T is a tree.

Remark 5.1. The ends of T correspond bijectively to the elements of P1(Qp).

Proof. An end is an equivalence class of rays in T , where “equivalence” in
a tree means finite difference. From a given vertex v, there is a unique ray in T
starting at v and going up all the time. All these rays (for different v) are equivalent
and thus form a single end in T which we let correspond to ∞ ∈ P1(Qp). All other
rays ultimately go down infinitely many times and thus correspond to a sequence
of disks D1 ⊃ D2 ⊃ . . . whose radii tend to 0. Therefore

⋂∞
i=1 Di is a single point

in Qp, which corresponds to the end represented by the ray D1 ⊃ D2 ⊃ . . . . �

Note that T is a regular tree of valency p + 1; for the particular vertex Zp =

B1(0), the p smaller neighbors correspond to the residue classes pZp, 1+pZp, . . . , (p−
1)+ pZp, while the unique larger neighbor is Bp(0) = B| 1

p
|(0). Similar descriptions

can be given for all other vertices.

Any two elements a, b of P1(Qp) define an axis A(a, b) in T , namely the straight
line in T whose two ends correspond to the points a and b. Any three points a, b, c
define a unique vertex called the median m(a, b, c); it is the intersection of A(a, b),
A(a, c) and A(b, c).

Proposition 5.2. PGL2(Qp) acts in a way on T which is compatible with its
action on P1(Qp) (considered as the set of ends of T ).

Proof. For a closed disk D in Qp and an element γ ∈ PGL2(Qp), γ(D) is
again a closed disk in Qp if (and only if) γ−1(∞) 6∈ D. In this case γ maps the
vertex D of T to the vertex γ(D). Clearly inclusion is preserved by γ, hence edges
are mapped to edges.
If γ−1(∞) ∈ D, then γ(D) = P1(Qp) \ Br(a) for some open disk Br(a); we then

map the vertex D to the vertex Br(a). It is an easy exercise to verify that this
definition is compatible with inclusions and defines an action of PGL2(Qp) on T .
It is clear from the definition that an element a ∈ P1(Qp) corresponding to a ray R
in T is mapped by γ ∈ PGL2(Qp) to γ(a), which corresponds to the ray γ(R). �

Remark 5.3. Let γ ∈ PGL2(Qp) be an element with two fixed points a, b in
P1(Qp).
a) If γ is hyperbolic, then γ acts on the axis A(γ) = A(a, b) by nontrivial translation.
b) If γ is elliptic, it fixes the axis A(a, b) pointwise.

Proof. Conjugating γ with a suitable δ ∈ PGL2(Qp) we may assume a = 0
and b = ∞. Then γ(z) = λ · z for some λ ∈ Qp \ {0}. γ is hyperbolic iff |λ| 6= 1, in
which case γ acts on A(0,∞) by translation by logp|λ|. If |λ| = 1, γ is elliptic, and
γ(Br(0)) = Br(0) for every r. �

In the same way as for Qp, a tree T (K) can be constructed for every finite
field extension K/Qp. There is a unique way to extend the p-adic valuation to
K. The value group of K is a finite extension, say of degree e, of the value group
pZ of Qp. Thus K is again a field with a discrete valuation, its field of integers
OK = {z ∈ K| |z| ≤ 1} is a discrete valuation ring with the unique maximal ideal
mK = {z ∈ K| |z| < 1}. The residue field OK/mK is a finite field extension of
Zp/pZp

∼= Fp, say of degree f . The degree n = [K : Qp] of K over Qp satisfies the
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famous formula n = e · f .

The tree T (K) arises from T = T (Qp) by subdividing each edge into e edges (of
equal length), subsequently adding pf −p edges to each of the original vertices, and
finally completing this to a regular tree of valency pf + 1.

We also have to consider infinite field extensions of Qp which arise as limits of finite
ones, e. g. Cp. In this case one of the numbers e and f , or both of them, tends
to ∞. As long as e stays bounded, we still have a simplicial tree T (K), but it is
not locally finite if f is not finite. Note that for any finitely generated subfield K
of Cp, the degree e of the extension of value groups is finite. If e tends to ∞ the
corresponding limit of trees is no longer a simplicial tree, but it exists as an R-tree.

It should be mentioned that there is an alternative way of constructing the tree
T (K) (which is in fact the original one): the vertices are homothety classes of OK-
lattices in K2, and the edges correspond to classes with representatives that are
neighbors for inclusion. This approach is used e. g. in Serre’s classical book [19].

Proposition and Definition 5.4. Let Γ ⊂ PGL2(Cp) be a finitely generated
discontinuous subgroup and K ⊂ Cp the smallest subfield containing the fixed points
of all elements of Γ \ {id}. Then
a) K is a finitely generated field extension of Qp.
b) There is a minimal nonempty subtree T (Γ) of T (K) on which Γ acts; this action
is without inversions of edges.
c) If Γ is finite, T (Γ) is reduced to a single vertex.
d) If Γ is infinite, T (Γ) is the union of the axes of the hyperbolic elements in Γ.
e) T (Γ)/Γ is a finite graph.

Proof. a) Let γ1, . . . , γn ∈ GL2(Cp) be representatives of generators of Γ
and K0 the subfield of Cp generated by the matrix entries of the γi. K0 is finitely
generated overQp and contains all matrix entries of all representatives of elements of
Γ. The fixed points of an element of PGL2(K0) are solutions of quadratic equations
over K0. There is an extension of K0 of degree 4 which contains the solutions to
all quadratic equations over K0: a quadratic extension of the value group and a
quadratic extension of the residue field suffice.
b) follows from c) and d). These in turn follow from the following two lemmas
valid in general for group actions on trees:

Lemma 5.5. Let γ1, γ2 be elliptic elements without common fixed point in T .
Then the product γ1γ2 is hyperbolic.

Lemma 5.6. Let γ ∈ Aut(T ) and v ∈ V (T ) a vertex of T . Then the unique
path in T connecting v and γ(v) intersects the axis A(γ).

Lemma 5.5 shows that all elements of a finite subgroup of PGL2(Cp) must have
a common fixed point; this proves c).
Lemma 5.6 shows that any nonempty subtree of T (K) on which Γ acts must contain
the axes of all hyperbolic elements of Γ. Since their union is already a Γ-invariant
subtree, d) follows.
e) A finite fundamental domain for the action of Γ on T (Γ) is obtained as follows:
let γ1, . . . , γn be generators of Γ; for each i, let Fi be a segment of length li of the
axis A(γi), where li is the translation length of γi. Then the smallest subtree F of
T (Γ) containing F1, . . . , Fn is finite and surjects onto T (Γ)/Γ. �
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The quotient graph T̄ (Γ) = T (Γ)/Γ acquires the structure of a graph of groups
as follows: For every vertex v of T̄ (Γ) take a vertex ṽ in T (Γ) representing v and let
Gv be the stabilizer in Γ of the disk corresponding to ṽ; since Γ is discontinuous,
Gv is a finite group. For every edge e of T̄ (Γ) let ẽ be an edge in T representing e
and Ge the stabilizer of ẽ in Γ. Let v1 and v2 be the endpoints of e and ṽ′1, ṽ

′
2 the

endpoints of ẽ; then since Γ acts without inversions on T (Γ), Ge is the intersection
of the stabilizers of ṽ′1 and ṽ′2 in Γ. These stabilizers are conjugate to Gv1

resp.
Gv2

, and thus Ge corresponds to well defined subgroups of Gv1
and Gv2

.
These data, the graph T̄ (Γ) together with the vertex groups Gv, the edge groups
Ge and the inclusions Ge →֒ Gvi

, constitute a graph of groups. The main theorem
of Bass-Serre theory says that the group Γ can be recovered (as an abstract group)
from these data as the “fundamental group” of the graph of groups, see [19], Thm.
13. In our situation, Γ can even be recovered as a subgroup of PGL2(K) up to
conjugation.

Note that if Γ is a Schottky group, all vertex and edge groups are trivial. For an
arbitrary discontinuous group, the vertex groups are finite subgroups of PGL2(K).
Since K is a field of characteristic 0, PGL2(K) has the same finite subgroups as
PGL2(C), namely the cyclic groups Z/nZ and the dihedral groups Dn for all n ≥ 1,
and the symmetry groups of the platonic solids, A4, S4 and A5. It turns out that
there are not too many possibilities for an edge group to be a proper subgroup of
the vertex groups of both its end points. A complete list of all finite graphs of
groups that come from finitely generated discontinuous subgroups of PGL2(K) can
be found in [8].

6. Reduction

Another way of characterizing Mumford curves is via reduction. This can be
done either in an algebraic-geometric way (which I shall mention briefly at the end
of this section) or in an analytic way which I shall explain now.
The basic idea of analytic reduction is a geometric interpretation of reduction mod
p of K-algebras, where K is a p-adic field. In the simplest situation, the geometric
object to be reduced is the p-adic unit disk, which is the same as the ring Zp of
p-adic integers. Its algebraic reduction Zp/pZp

∼= Fp is geometrically interpreted
as the points of the affine line over Fp, thus in particular an affine variety.

Conceptually this interpretation runs as follows: recall from Section 4.2 that the
holomorphic functions on the unit disk are the elements of the Tate algebra Qp <z>
of power series in the variable z with coefficients that tend to 0. For a power series
f =

∑
anz

n we define its norm as ||f || = max{|an| | n ≥ 0}. Let Q0
p <z> be the

subring of Qp <z> of elements of norm ≤ 1, and Q00
p <z> the ideal of elements

of norm < 1. Then the quotient ring Q0
p <z> /Q00

p <z> is obviously isomorphic
to the polynomial ring Fp[z], which should be seen as the ring of regular functions
on the affine line over Fp. If we replace, as we did in Section 4.2, Qp by Cp we have
to replace Fp by its algebraic closure F̄p.

In Section 4.2 we have defined Mumford curves as those curves that can be covered
by finitely many disks with holes. Therefore we need to understand the reduction
of disks with holes.

Definition 6.1. Let D ⊂ Cp be a disk with holes and A(D) the Cp-algebra of
holomorphic functions on D. Let ||.|| be the norm on A(D) defined as the maximal
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absolute value of the coefficients (where each of the generators is given norm 1).
Finally let A0(D) be the subring of A(D) of elements of norm ≤ 1 and A00(D) the
ideal in A0(D) of elements of norm < 1.
Then Ā(D) = A0(D)/A00(D) is a finitely generated F̄p-algebra and hence the ring
of regular functions of a unique (up to isomorphism) affine variety D̄ over F̄p. D̄ is
called the reduction of D.

Example 6.2. 1) Let D = B1(0) \ B1(0) = {z ∈ Cp| |z| = 1}. Then A(D) =
Cp <z, 1

z > and Ā(D) = F̄p[z,
1
z ]. Hence D̄ = F̄p \ {0}.

2) D = B1(0) \ B1/p(0) = {z ∈ Cp|
1
p ≤ |z| ≤ 1}. Here A(D) = Cp < z, p

z >=

Cp <Z1, Z2> /(Z1Z2 − p). It follows that Ā(D) = F̄p[Z1, Z2]/(Z1Z2) is the affine
coordinate ring of the union of two lines that intersect in one point (the Z1-axis
and the Z2-axis in the plane).

In the first example, we removed a disk which is a whole residue class (in the
ring Z̄p of integers in Cp). The “missing” point in the reduction D̄ corresponds to
this residue class.
In the second example, the residue class of 0 is not completely removed, but only
part of it (namely a residue class mod p2). This is reflected in the affine variety D̄ by
“blowing up” the point corresponding to the residue class of 0 to a whole projective
line. The points of this projective line correspond to the residue classes mod p2

which lie within the class of 0 mod p, and one additional point (“∞”) corresponding
to the elements in Z̄p that are not 0 mod p. Out of this projective line one point is
missing, namely the one corresponding to the removed disk B1/p(0).

Proposition 6.3. Let D ⊂ Cp be a disk with holes. Then the reduction D̄
is a “tree of affine lines” over F̄p, i. e. an affine variety such that all irreducible
components of D̄ are affine lines (over F̄p) and the dual graph is a tree (the vertices
of the dual graph are the irreducible components of D̄ and an edge is drawn for
every point of intersection of two components).

Proof. The proof of this proposition is a nice exercise, mainly in classical
algebraic geometry. �

The next step is to define the reduction of an analytic variety that can be
covered by disks with holes. This will be done by gluing the reductions of the
covering sets. It turns out that the reduction depends to some extent on the chosen
covering. Since Definition 6.1 carries over literally to more general affinoid domains
it is possible to define reductions for arbitrary p-adic analytic varieties, but we shall
explain the construction in detail only for varieties that can be covered by disks
with holes since this is sufficient in the context of Mumford curves.

Remark 6.4. Let D1, D2 be two disks with holes in Cp. If D1 ∩D2 6= ∅, the
intersection Y is another disk with holes. The inclusions Y ⊂ Di induce restriction
homomorphisms A0(Di) → A0(Y ) and thus morphisms Ȳ → D̄i (i = 1, 2) which
are in fact inclusions.

We define the reduction of D1∪D2 with respect to the covering {D1, D2} as the
algebraic variety obtained by gluing D̄1 and D̄2 along Ȳ . Observe that Z = D1∪D2

is itself a disk with holes if Y 6= ∅ and that the reduction of Z̄ of this disk with
holes may be different from the reduction with respect to {D1, D2}, as the following
example shows:
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Example 6.5. Let D1 = B1(0) \ B1/p(0) and D2 = B1/p(0) \ B1/p2(0). We

have seen above that each of D̄1 and D̄2 is the union of two lines intersecting in one
point, and the same holds for the union D1 ∪D2 = B1(0) \B1/p2(0). On the other

hand, the intersection is Y = D1 ∩D2 = {z ∈ Cp| |z| =
1
p}; by the first example, Ȳ

is a line with one point removed. In the glued variety, Ȳ is an open part of a line
which has one additional point in D̄1 and one in D̄2, hence is a projective line. The
reduction thus has 3 irreducible components, two affine lines and one projective
line; each of the affine lines intersects the projective line in one point (not both in
the same), and there are no other intersections.

Definition 6.6. Let X be a p-adic analytic variety und U = (Ui)i∈I an open
covering of X by disks with holes. Then we define the reduction X̄ of X with respect
to U to be the gluing of the affine varieties Ūi along their intersections as above.

Remark 6.7. If X is an open analytic subset of Cp, X̄ is a tree of (affine and)
projective lines.

This follows from Proposition 6.3 and a generalization of Example 6.5.

Example 6.8. Let X = Cp \ {0} and q ∈ Cp with |q| > 1. Then the annuli
Ui = {z ∈ Cp| |q|

i ≤ |z| ≤ |q|i+1} (i ∈ Z) cover X. The reduction is an infinite
“cyclic” (i. e. 2-regular) tree of projective lines.

This example generalizes to

Proposition 6.9. Let Γ ⊂ PGL2(Cp) be a Schottky group, F a fundamental
region as in Theorem 4.4 and Ω its region of discontinuity; the γ(F ), γ ∈ Γ, form
an open covering of Ω by disks with holes. The reduction of Ω with respect to this
covering is a tree of projective lines whose dual graph is isomorphic to the tree T (Γ)
defined in Proposition 5.4 (up to removing or inserting vertices of order 2).

Corollary 6.10. Let X be a Mumford curve of genus g over Cp. Then X
admits a finite open covering U by disks with holes such that the reduction of X
with respect to U is a (singular) projective curve X̄ over F̄p of arithmetic genus g.
All irreducible components of X̄ are rational curves, and all intersection points are
ordinary double points.

Proof. Let Γ ⊂ PGL2(Cp) be a Schottky group with domain of discontinuity
Ω such that Ω/Γ = X. The reduction Ω̄ of Ω has a natural Γ-action, and Ω̄/Γ is
the reduction of X with respect to the covering used in the proof of Theorem 4.4
(iv).
Since Γ acts by translation on the irreducible components of Ω̄, identification of
points on the same component can occur at most for intersection points with other
components. Thus the irreducible components of X̄ are projective lines on which
possibly finitely many pairs of points are identified (at most g). This shows that all
irreducible components of X̄ have geometric genus 0. It follows that the arithmetic
genus of X̄ is just the genus (or first Betti number) of the intersection graph. By
the proposition, this graph is (up to subdivision of edges) isomorphic to T̄ (Γ). As
the quotient graph of a tree by the free action of a free group of rank g, T̄ (Γ) has
genus g. �

Projective curves as in the corollary are called “totally degenerate”. As men-
tioned before, reduction can be defined for all p-adic analytic varieties and thus in
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particular for all projective curves. Then Mumford curves can be characterized as
those nonsingular projective curves over Cp whose reduction is totally degenerate.

The reduction of a variety is not unique. It is e. g. always possible to insert an
additional annulus into the intersection of two disks with holes. In the reduction
such an annulus corresponds to replacing the intersection point of two components
L1, L2 by an additional component L which intersects L1 and L2 in the respective
points where they originally intersected:

• • •

L1 L1 L2

L2 L

The inverse process is called “contracting the component L”. It turns out that
reduction is unique up to inserting or contracting components in this way. In par-
ticular, there is a unique “stable reduction” where no component can be contracted,
i. e. all components are either singular or intersect other components in at least
three points.

There is a purely algebraic way of defining the reduction of a projective curve X
over Cp: one has to find a “model” X of X over Z̄p, the valuation ring of Cp. X is
a scheme over Z̄p such that X is obtained from X by base change: X = X ×Z̄p

Cp.

The reduction X̄ is then defined as the base change with respect to the residue map
Z̄p → F̄p:

X̄ = X ×Z̄p
F̄p.

Again, the model X and the reduction X̄ are not unique, but there is a unique
stable reduction. This follows from the famous work of Deligne-Mumford, see [7],
Sect. 3C for an introduction. It is well known that the analytic and the algebraic
stable reduction of a nonsingular curve agree, see e. g. [2].

If X is a plane curve given as the zero set of a homogeneous polynomial F ∈
Qp[X,Y, Z], we may assume that the coefficients of F are in Zp, but not all in pZp.
Then the reduction F̄ ∈ Fp[X,Y, Z] of F mod p determines a projective curve over
Fp which is a reduction of X (in most cases not the stable one).

7. p-adic origamis

In this section we combine the notion of an origami from Section 2 with the
concept of Mumford curves. Recall that an origami over the field Cp is a finite
morphism p : X → E of projective nonsingular curves over Cp such that E is of
genus 1 and p is ramified over (at most) one point.

Definition 7.1. An origami p : X → E over Cp is called a p-adic origami if
X and E are Mumford curves.

As usual, a covering p : Y → X is called normal (or Galois) if the group
Deck(Y/X) of deck transformations acts transitively on the fibre p−1(x) for each
x ∈ X. In this case, X is the quotient of Y by the subgroup Deck(Y/X) of the
automorphism group Aut(Y ) of Y . In his thesis [12], the main results of which are
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published in [13], K. Kremer gave a complete classification and description of all
normal p-adic origamis. This section gives a brief account of his work.

7.1. Normal p-adic origamis. The starting point is the following observa-
tion:

Proposition 7.2. Let p : X → E be a normal p-adic origami, where X is
a Mumford curve of genus g > 1. Then there is a discontinuous subgroup G of
PGL2(Cp) and a normal subgroup Γ of G of finite index which is a Schottky group
of rank g, such that Ω/G ∼= E and Ω/Γ ∼= X, where Ω ⊂ P1(Cp) is the region of
discontinuity of G (and hence also of Γ).

Proof. SinceX is a Mumford curve of genus g, by Thm. 4.6 there is a Schottky
group Γ ⊂ PGL2(Cp) of rank g with Ω(Γ)/Γ ∼= X. By assumption, E is the quotient
of X by a subgroup Ḡ of its automorphism group Aut(X). It is well known that
Aut(X) ∼= N(Γ)/Γ where N(Γ) is the normalizer of Γ in PGL2(Cp) (cf. [5], VII.2).
Then the inverse image G of Ḡ in N(Γ) satisfies all the required properties. �

The group G in the proposition cannot be a Schottky group: since E is of genus
1, G would have to be a free group of rank 1, i. e. isomorphic to Z, and thus could
not have a free subgroup of rank > 1. This observation corresponds to the fact that
p has to be ramified since any unramified covering of an elliptic curve is again an
elliptic curve (by the Riemann-Hurwitz formula).
Ramification of the covering Ω/Γ → Ω/G occurs precisely in the fixed points of
elements of G \ Γ that lie in Ω. Since fixed points of hyperbolic elements are limit
points, G must contain elliptic elements of finite order. The condition that p is
ramified over only one point requires that all fixed points in Ω of elliptic elements
of G lie in the same G-orbit. This is a serious restriction on G and Γ, as we shall
see. But first we give an example that satisfies all conditions:

7.2. An Example. In this subsection we construct a normal p-adic origami
whose Galois group is a dihedral group Dn.
Let n ≥ 3 be an odd integer and ζ ∈ Cp a primitive n-th root of unity. Consider
the Möbius transformation z 7→ ζ ·z as an element of PGL2(Cp), represented by the

matrix

(
ζ 0
0 1

)
. Furthermore let α ∈ PGL2(Cp) be represented by

(
0 1
1 0

)
, i. e.

α(z) = 1
z . Then δ and α generate a dihedral group of order 2n, and α exchanges

the two fixed points 0 and ∞ of δ.
Next let γ ∈ PGL2(Cp) be a hyperbolic element with fixed points 1 and −1, i. e.
with the same fixed points as α. Let G be the subgroup of PGL2(Cp) generated
by γ, δ and α. There is an obvious homomorphism τ : G → Dn, where Dn is the
dihedral group < t, s| tn = s2 = (ts)2 = 1 >: τ is given by τ(δ) = t, τ(α) = s and
τ(γ) = 1. The kernel Γ of τ is the normal subgroup of G generated by γ. Since
γ commutes with α, Γ is generated as a group by the n elements γi = δi−1γδ1−i,
i = 1, . . . , n.
Let d = min{|ζi − 1|, |ζi + 1| | i = 1, . . . , n− 1}. As n is odd, ζi 6= −1 for all i and
hence d > 0; on the other hand d ≤ 1 since |ζ| = 1.
Being a hyperbolic element, γ is conjugate to z 7→ λz for some λ ∈ Cp with
|λ| < 1. Choose γ in such a way that |λ| < d, and assume for simplicity p 6= 2.
The generators γi of Γ are all conjugate to z 7→ λz, therefore on the tree T (Γ),
γi acts on its axis A(γi) by translation by logp|λ

−1|. Recall that the endpoints of
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A(γi) correspond to the fixed points of γi in P1(Cp), which are δi−1(1) = ζi−1 and
δi−1(−1) = −ζi−1. By our choice of λ (and p), the intersection of A(γi) and A(γj)
for i 6= j, which is of length at most −logp(d), is shorter than the translation length
of γi (and γj).
Let T0 ⊂ T (Γ) be the union of all intersections A(γi) ∩ A(γj) for i 6= j. Since
|ζi−1 − (−ζi−1)| = |2ζi−1| = 1 for all i (here we use p 6= 2), the vertex v0 of T (K)
corresponding to the disk B1(ζ

i−1) = B1(0) lies on each A(γi) and hence T0 is
connected.
Since |λ| < d we can find a vertex vi on A(γi) \ T0 such that the segment from
vi to γ(vi) has nonempty intersection with T0 (thus in particular contains v0) and
γ(vi) 6∈ T0. Let Di and D′

i be the closed disks in Cp corresponding to the vertices vi
and γ(vi). By construction the 2n disks Di, D

′
i, i = 1, . . . , n, are mutually disjoint.

They thus satisfy the properties of Definition 4.3, which shows that Γ is a Schottky
group. As a consequence, G is also discontinuous.
Denote, as usual, by Ω the set of discontinuity of G and Γ. So far we have seen
that X = Ω/Γ is a Mumford curve of genus g. Moreover we know (because G is
discontinuous) that E = Ω/G is a Mumford curve, too, and that p : X → E is a
normal covering of degree 2n with deck transformation group Dn.
Next we determine the ramification of the covering p. Clearly p is ramified precisely
in the fixed points in X of the elements of the deck transformation group. These
in turn are the images in X of the fixed points in Ω of the elements of the group
generated by δ and α. Since the fixed points of α, and also those of the other
involutions in this dihedral group, are limit points of Γ (they are fixed points of the
hyperbolic elements δi−1γδ1−i), only the orbits of the two fixed points of δ give rise
to ramification points of p. They are both of order n = ord(δ). Thus we can read
off the genus gE of E from the Riemann-Hurwitz formula:

2n− 2 = 2n(2gE − 2) + 2 · (n− 1).

This shows gE = 1. Moreover we know that the two fixed points of δ are in the
same G-orbit since they are exchanged by α. This means that p maps them both
to the same point in E. We have proved:

Proposition 7.3. With notations as above, p : X = Ω/Γ → E = Ω/G is a
normal p-adic origami with Galois group Dn.

We can also easily find the quotient graphs T (Γ)/Γ and T (Γ)/G = T (G)/G:
up to contraction of some edges in the case |1− ζ| < 1, T (Γ)/Γ consists of a single
vertex v̄0 (the image of v0), and one loop for each of the n free generators of Γ. Dn

acts in the following way on this graph: δ fixes the vertex and cyclically rotates
the n loops, whereas α fixes one of the loops (the one corresponding to the axis of
γ) and exchanges the remaining n − 1 loops in pairs (remember that n is odd!).
Therefore the quotient graph T (Γ)/G, which is also the quotient graph of T (Γ)/Γ
by the action of Dn, consists of a single vertex v and a single edge e. As a graph of
groups, the vertex group is Dn and the edge group is cyclic of order 2 (generated
by α, say); it is embedded into Dn both ways (i. e. via e and via ē) as the same
element, which reflects the fact that γαγ−1 = α.

7.3. Kremer’s results. By similar reasoning as in Section 7.2, Kremer found
the following example: Let δ and α be elements of PGL2(Cp) of order 3 and 2, resp.,
that generate a tetrahedral group A4, and let γ be a hyperbolic element commuting
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with δ. The group G generated by δ, α and γ can be mapped homomorphically
onto A4 in such a way that the kernel Γ is generated by γ and its conjugates. Γ
is a Schottky group of rank 4, and p : X = Ω/Γ → E = Ω/G is a normal p-adic
origami of degree 12. That p is ramified over only one point is due to the fact that
A4 acts transitively on the 6 fixed points of the elements of order 2 in A4 (in the
same way as A4 acts transitively on the six edges of a tetrahedron). The quotient
graph T (G)/G in this case has, as above, one vertex and one edge, the vertex group
being A4 and the edge group being cyclic of order 3 generated by δ.

The main result of Kremer’s paper is that essentially all normal p-adic origamis can
be obtained from these two examples:

Theorem 7.4 (Thm. 5.1 in [13]). Let p : X = Ω/Γ → E = Ω/G be a normal
p-adic origami with genus (X) > 1. Then T (G)/G can be contracted to a graph with
one vertex and one edge, in other words, G is the fundamental group of a graph of
groups with a graph of this type.
If p > 5, the vertex group is isomorphic to either Dn for some n ≥ 3 or to A4. The
edge group is cyclic of order 2 in the first case and of order 3 if the vertex group is
A4.
For p = 2, 3 and 5 there exist additional possibilities for the vertex group.
The group Γ can be any normal subgroup of G that has trivial intersection with the
vertex group.

The proof of this theorem relies on precise knowledge of the possible discon-
tinuous subgroups of PGL2(Cp) and on a careful analysis of the properties of the
quotient graphs.

The theorem tells us, which finite groups occur as Galois groups of normal p-adic
origamis: such a group has to be a homomorphic image of one of the groups G in
the theorem, and it must contain a copy of the corresponding vertex group (i. e.
of Dn or A4 if p > 5). This still allows for a wide range of interesting groups, see
[12], Ex. 4.17 for a few examples. On the other hand the characterization excludes
many groups that occur as Galois groups of complex origamis since this is the case
for every finite group that can be generated by two elements.

A very interseting question, which is also addressed in Kremer’s paper, concerns
the relation between complex and p-adic origamis. The question can be formulated
in at least two ways:

1. Given a complex origami O, does there exist a p-adic origami on the
Teichmüller curve determined by O?

2. Given a p-adic origami, is it possible to recover the combinatorial descrip-
tion by squares of the corresponding complex origami?

More precisely the first question should be formulated as follows: A complex origami
O = (p : X → E) of genus g defines a Teichmüller curve C(O) in the moduli space
Mg of compact Riemann surfaces of genus g. Since Mg is an algebraic variety which
can be defined over Q̄ (and even over Q), and since C(O) is defined over a number
field, C(O) also determines an algebraic curve in Mg(Q̄) and hence, by extension
of coefficients, also in Mg(Cp). The question now is, whether this algebraic curve
in Mg(Cp) contains a point that represents a p-adic origami.

There is no general method to decide this question for a given normal complex
origami. Negative results can be obtained by showing that the Galois group of the
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origami is not a homomorphic image of one of the groups G in Thm. 7.4. Positive
results are possible in the rare cases where explicit equations are known for the
points on the Teichmüller curve C(O): In [13], Example 7.1, Kremer uses a result
of A. Kappes (see [10]) that describes the Teichmüller curve to a specific origami
with 6 squares by hyperelliptic equations; for a hyperelliptic curve over a p-adic
field, it depends only on the relative position of the branch points whether it is a
Mumford curve or not. With this criterion, Kremer shows that there are p-adic
origamis on this special Teichmüller curve.

For the second question, there are also only very partial results available: Given a
p-adic origami in the form of Thm. 6.4, i. e. in terms of the uniformizing groups,
we may assume that the corresponding Mumford curves are defined over a number
field and thus determine a complex origami (because also p-adic origamis come
in 1-parameter families which necessarily contain Q̄-points). One would like to
describe this complex origami e. g. as a translation surface by gluing squares. Since
we consider only normal origamis, there is sometimes an indirect way to fix the
complex origami, namely if there is only one normal origami with the given Galois
group. In [12] Kremer shows that this is the case for all but 30 out of the 2386
groups of order up to 250 which can be generated by two elements. But of course,
for larger order there are more groups which occur as Galois groups of different
origamis. Kremer also shows that each group in the infinite series Dn × Z/mZ

and A4 × Z/mZ uniquely determies a normal origami and thus provides a way to
associate a complex origami to the corresponding p-adic origami.
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10. F. Herrlich, A. Kappes and G. Schmithüsen, A origami of genus 2 with a translation, Preprint
2008, arXiv:0805.1865.
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