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1 Motivation

An origami is in the first place a combinatorial object. We shall give in Sec-
tion 2 four different characterizations, not all of them combinatorial.
Step by step we shall discover more and more structure on these objects:

• An origami determines a Riemann surface and even a surface with a
translation structure.
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• The translation structure can be varied in a natural way; this yields a
complex one-parameter family of Riemann surfaces.

• The parameter space can be identified with the upper half plane, and
the Riemann surfaces come along with a natural marking.

• Thus from an origami, we obtain a map from the upper half plane into a
Teichmüller space; this map turns out to be an isometric and holomor-
phic embedding.

• The stabilizer in the mapping class group of this embedded upper half
plane is a Fuchsian group, more precisely a lattice in PSL2(R). It is
called the Veech group of the origami and can also be characterized by
affine diffeomorphisms.

• The image of the embedded upper half plane in the moduli space of
Riemann surfaces is an affine algebraic curve, possibly with singularities;
it is called the origami curve to the given origami.

• Every origami is defined over a number field. Thus the (absolute) Ga-
lois group Gal(Q/Q) acts on origami curves, and hence ultimately on
origamis.

Because of the last property, P. Lochak considered these objects as one-
dimensional analogs of dessins d’enfants; in [13], he proposed the name “origami”
for them. A dessin d’enfants also is a combinatorial object, namely a graph
with certain properties on a surface. It determines a Riemann surface which is
defined over a number field, and thus a zero-dimensional arithmetic subvariety
of the moduli space.
For dessins d’enfants as well as for origamis, the dream would be to under-
stand the Galois action on the combinatorial objects well enough to obtain new
structural insights of the Galois group. In particular, one would like to under-
stand how close the Galois group is to the so called Grothendieck-Teichmüller
group. So far, this is but a dream, but at least there are several interesting
relations between origamis and dessins d’enfants. Some of them are described
in [11].

Although not under this name, origamis have been known since the pio-
neering work of Thurston and the seminal paper of Veech [19] in the late 1980s.
They were – and still are – often studied in the context of Teichmüller disks
and Teichmüller curves. In Veech’s work, they provide examples of polygonal
billiard tables where the dynamical behaviour is “optimal”, i. e. the same as
on the classical rectangle.
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2 Definition and characterization of origamis

2.1 Combinatorial definition

Take finitely many euclidean unit squares and glue them in such a way that

• each left edge is glued to a right edge;

• each upper edge is glued to lower edge;

• the resulting closed surface X is connected.

Example 1. Torus E with marked point.

−→

Example 2. Quaternion origami.
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Note that the genus g of X can be calculated with Euler’s formula: for this
we need the number of squares, edges and vertices on the surface obtained by
the gluing. If d denotes the number of squares, we have 2d edges on X since
each square has 4 edges, and each edge belongs to exactly 2 squares. The
number of vertices is 4d before gluing, but their number on X depends on the
way the squares are glued: we call it n and obtain

2 − 2g = d − 2d + n = n − d or g =
d − n

2
+ 1.

In Example 2 we find g = 3.

2.2 Coverings of the punctured torus

An origami as above comes with a map p : X → E from the surface X to a torus
E: p maps each square to the torus as in Example 1. The identifications that
were made to construct the origami X are compatible with the identifications
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made to construct the torus E. Indeed a right edge is glued to a left edge and
an upper edge is glued to a lower edge.
The map p is unramified outside the vertices of the squares, hence ramified
over at most one point on E which we call ∞.
Conversely, given a covering p : X → E unramified outside ∞, we get an
origami as follows: every connected component of p−1(E − (a∪ b)) is an open
square, and the gluing of the squares is given by taking the closure of the
components in X . We take this characterization as our official definition:

Definition 2.1. a) An origami O of genus g and degree d is a covering p :
X → E from a connected closed oriented surface X of genus g to the torus E
which is ramified at most over one point ∞ in E.

b) Origamis O1 = p1 : X1 → E and O2 = p2 : X2 → E are called equivalent if
there is a homeomorphism ϕ : X1 → X2 such that p1 = p2 ◦ ϕ.

2.3 Monodromy

Recall that the fundamental group of the punctured torus is a free group on
two generators. To be more precise, let E⋆ = E − {∞}. Then with notation
as in the following picture, we have π1(E

⋆, M) = F2(x, y). Note that the
commutator xyx−1y−1 is a loop around ∞.

•
M

→
x

y↑ −→
y

x

M

P

For an origami O = (p : X → E) of degree d, let p−1(M) = {M1, . . . , Md}.
We get a monodromy map m : π1(E

⋆, M) → Sd = Sym{M1, . . . , Md} as
follows: for γ ∈ π1(E

⋆, M) we set m(γ)(i) = j if the lift of γ, that starts in
Mi, ends in Mj.
In this way, the origami O induces a homomorphism m = mO : F2 → Sd. Let

σa = m(x), σb = m(y).

The fact that X is connected implies that the subgroup of Sd generated by σa

and σb acts transitively on the set {1, . . . , d}. If we number the elements of
p−1(M) in a different way, σa and σb are replaced by their conjugates by the
permutation that describes the renumbering.
If O is given by squares, each square contains exactly one of the Mi. The lift
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of x that starts in Mi joins this point to the corresponding point in the next
square to the right. Thus σa (resp. σb) is the permutation of the labels given
by passing to the right (resp. upper) neighbouring square. Conversely, given
σa and σb in Sd, generating a transitive subgroup, we obtain an origami of
degree d by labeling d squares with the numbers 1, . . . , d and gluing the right
edge of square i to the left edge of square σa(i), and its upper edge to the
lower edge of square σb(i). Summing up we have shown

Proposition 2.2. There is a bijection between equivalence classes of origamis
of degree d and conjugacy classes of pairs (σa, σb) in Sd that generate a tran-
sitive subgroup.

Example. Taking up the second example in Section 2.1 and labelling the
squares as follows

5 7

1 2 3 4

6 8

// /

\\ \

/ //

\ \\

== – = =–

– = =– ==

we find σa = (1 2 3 4) (5 6 7 8) and σb = (1 7 3 5) (2 6 4 8).

Exercise. Determine the subgroup of S8 generated by σa and σb.

We shall clarify the meaning of this group in general at the end of the next
subsection.

2.4 Subgroups of F2

An origami O = (p : X → E) restricts to an unramified covering p : X⋆ → E⋆

where E⋆ = E − {∞} as above and X⋆ = X − p−1(∞). By the universal
property of the universal covering u : Ẽ → E⋆, there is a unique unramified
covering q : Ẽ → X⋆ such that u = p ◦ q.
The group of deck transformations of the universal covering is in a natural way
identified with the fundamental group, thus we have Deck(Ẽ/E⋆) ∼= π1(E

⋆) ∼=
F2. Under this identification, U = Deck(Ẽ/X⋆) ∼= π1(X

⋆) is a subgroup of
Deck(Ẽ/E⋆) of index d = degree(p).

Conversely, any subgroup U of finite index d of F2 determines an unramified
covering p : X⋆ → E⋆ of degree d. This map can be extended in a unique way
to a ramified covering p : X → E), where X is a closed surface. We have
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Proposition 2.3. There is a bijection between equivalence classes of origamis
of degree d and conjugacy classes of subgroups of F2 of index d.

By the rank-index formula for subgroups of a free group, any subgroup of
F2 of index d is free of rank d + 1. On the other hand, the fundamental group
of X⋆ is free of rank 2g+n−1, where g is the genus of X and n the number of
punctures, i. e. n = |p−1(∞)|. Thus we have d+1 = 2g+n−1, which confirms
the Euler characteristic count of Section 2.1: g = d−n

2 + 1.

An explicit set of free generators for π1(X
⋆) as a subgroup of π1(E

⋆) = F2(x, y)
can be found as follows: represent the origami by a simply connected rectan-
gular polygon P (which need not be planar); this can be achieved by beginning
with an arbitrary square and then inductively gluing new squares to one of
the free edges of the polygon obtained so far (according to the gluing of the
origami). The final polygon P has 2(d+1) free edges e1, . . . , ed+1, e

′
1, . . . , e

′
d+1,

and the origami is obtained by gluing each ei to e′i.
Now fix a base point M inside P , e. g. the midpoint of a square. For each i,
there is a unique path γi in P from M to the midpoint of ei which is composed
of horizontal and vertical connections of midpoints of squares, and a unique
path γ′

i of the same type from the midpoint of e′i to M . Together they represent
a closed path on X⋆, i. e. an element ui in π1(X

⋆, M). Clearly u1, . . . , ud+1

generate π1(X
⋆, M). As a word in x and y, ui is obtained by replacing each

horizontal piece of γi and γ′
i by x or x−1, depending on the orientation of the

piece, and vertical pieces by y or y−1. In the following example, the element
ui is given by the word xyxyx−2:

•M

ei

e′

i

>

>

γi

γ′

i

The relation to the description in Section 2.3 is as follows: Let m = mO

be the monodromy homomorphism to O and let γ be an element of π1(E
⋆).

Then m(γ)(1) = 1 if and only if γ lifts to a closed path in X⋆, i. e. if and only
if γ ∈ π1(X

⋆) = U . It follows that the squares of the origamis correspond
bijectively to the cosets of U in F2. Under this correspondence, σa is the right
multiplication by x on the cosets, and σb the right multiplication by y.

Definition 2.4. An origami O is called normal (or Galois) if U is a normal
subgroup of F2.
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Eqivalently, an origami O = (p : X → E) is normal if and only if p is a
normal covering.

Remark 2.5. For a normal origami,

Gal (X/E) = Deck (X⋆/E⋆) ∼= F2/U ∼= < σa, σb > ⊆ Sd.

Example. The origami W is normal. The Galois group is the quaternion
group of order 8. This can be checked e. g. by solving the exercise at the end
of Section 2.3. A careful analysis of this example can be found in [8].

3 Teichmüller disks

3.1 Translation structures

Let O = (p : X → E) be an origami. We can use the squares that constitute
O as chart maps in the following way:

• for every x ∈ X which is in the interior of a square, we take this (open)
square as a chart around x

• for every x ∈ X that lies on an edge e of a square, but is not a vertex,
we take as chart an open disk in the union of the two squares adjacent
to e that contains x but no vertex.

For the charts defined so far, the transition maps between different charts are
translations in the plane. Considering the plane as the complex plane C, they
are (very special!) holomorphic functions. Thus we have defined a structure
of Riemann surface on X⋆. It is known from the general theory of Riemann
surfaces that it can be extended in a unique way to a structure of Riemann
surface on the whole of X .

In our situation, this construction is very explicit: Let v ∈ X be a vertex of
a square, i. e. v ∈ p−1(∞). Consider a small loop around v on X starting in
horizontal direction, say. Since it also ends in horizontal direction, the number
of squares that the loop crosses must be a multiple of 4, hence of the form 4k
for some k ≥ 1. This number k is also the ramification index ep(v) of the
covering p in the point v. Thus in suitable local coordinates, p is given by
z 7→ zk in a neighbourhood of v.
Summing up we have:

Proposition 3.1. An origami O = (p : X → E) determines a structure of
Riemann surface on X, and a translation structure on X⋆.

Definition 3.2. We call a surface S together with an atlas a translation
surface if outside a finite subset Σ ⊂ S, the transition maps are translations,
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and for each v ∈ Σ, the chart maps are of the form z 7→ zkv for some positive
integer kv.

Note that a translation structure on a surface X∗ can be lifted in a unique
way to any unramified covering Y ∗ → X∗. Thus in particular, the universal
covering Ẽ of E⋆ is endowed with a translation structure.
More generally, let p : S → S′ be a ramified covering, where S is a transla-
tion surface. Then S′ inherits a structure of translation surface: Let ΣS′ =
p−1(ΣS) ∪ {ramification points of p}. Then the restriction p : S′ − ΣS′ →
S −ΣS is unramified, and for every v ∈ ΣS′ the exponent kv in Definition 3.2
can be taken to be kv = ep(v) · kp(v).

3.2 Variation of the translation structure

We have seen in the last section how to define, for an origami O = (p : X → E),
a structure of translation surface on X , and that this structure is completely
determined by (p and) the translation structure on E. For the latter, we
considered E as a square with opposite sides glued. We get a similar, but in
general different translation structure on E, if we replace the square by an
arbitrary parallelogram (say of area 1, to keep the volume of E fixed).

Such parallelograms correspond bijectively to the points in the upper half plane
H. Thus any τ ∈ H induces a structure of Riemann surface on X . Moreover
there is a natural marking coming from the identity map on X : Recall that a
marked Riemann surface is an equivalence class of pairs (X, f) where X is a
Riemann surface and f : X0 → X is a diffeomorphism from a fixed reference
surface X0 of the same topological type as X ; two pairs (X, f) and (Y, g) are
considered equivalent, if g ◦ f−1 : X → Y is homotopic to a biholomorphic
map. The set of all marked Riemann surfaces of a fixed genus g and a fixed
number n ≥ 0 of distinguished points on it is the Teichmüller space Tg,n.

From the above considerations we obtain

Remark 3.3. Every origami O = (p : X → E) induces a map ιO : H → Tg,n,
where g is the genus of X and n = |p−1(∞)|.

A proof of the following theorem can be found e.g. in [11], Sect. 3.2. The
arguments given there were essentially known already to Teichmüller himself:

Theorem 3.4. For an origami O, the map ιO : H → Tg,n is

a) injective,

b) isometric (w.r.t. the hyperbolic metric on H and the Teichmüller metric on
Tg,n),

c) holomorphic (w.r.t the natural complex structure on Tg,n).
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Definition 3.5. A map with the properties of Theorem 3.4 is called a Teich-
müller embedding. The image

∆O = ιO(H)

is called a Teichmüller disk (or complex geodesic) in Tg,n.

Proof. a) follows from b).
For b), we interpret ιO as follows: Any parallelogram of area 1 in the upper
half plane with 0 as bottom left corner is the image of the unit square under
an R-linear map of determinant 1, i. e. given by a matrix A ∈ SL2(R). Two
matrices A and B give the same complex structure if and only if they differ
by a conformal map, i. e. a rotation, in other words if AB−1 ∈ SO2(R). Thus
we can consider ιO equivalently as a map SO2(R)\SL2(R) → Tg,n. The iden-
tification of SO2(R)\SL2(R) with H is given by A 7→ −Ā−1(i), where a matrix
(

a b
c d

)

∈ SL2(R) acts on H in the usual way as fractional linear transforma-

tion: z 7→ az+b
cz+d

.

Now recall that the Teichmüller distance between two marked Riemann sur-
faces (X, f) and (Y, g) in Tg,n is defined as log K, where K is the minimal
dilatation of a quasiconformal map h : X → Y which is isotopic to g ◦ f−1. It
is a well known exercise in quasiconformal maps that an affine map has min-
imal dilatation within its isotopy class. Therefore the Teichmüller distance
between ιO(A) and ιO(B) is equal to log K for the dilatation K of h = AB−1.
Explicitly, K = 1+κ

1−κ
, where κ = fz̄

fz
.

If e. g. AB−1 is the matrix M =

(√
K 0
0 1√

K

)

for some K > 1, a short calcu-

lation shows κ = K−1
K+1 , and the dilatation is

1+ K−1

K+1

1−K−1

K+1

= K. On the other hand,

−M−1(i) = Ki, and the hyperbolic distance between i and Ki also equals
log K.

For c), we use the property of Tg,n of being a moduli space: The construction
at the beginning of this section provides us, for eyery τ ∈ H, with a marked
Riemann surface Xτ . The union of all the Xτ is in a natural way a complex
manifold XO such that the projection XO → H, which sends all points of Xτ

to τ , is a proper holomorphic map. The universal property of a moduli space
is that in such a situation, where we are given a holomorphic family of marked
Riemann surfaces, the map from the base H of the family to the moduli space
Tg,n, which maps the point τ ∈ H to the point in Tg,n which represents the
isomorphy class of the fibre Xτ , is holomorphic.
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3.3 Teichmüller disks

The definition of the Teichmüller embedding ιO for an origami O is a special
case of a more general construction:

Let X be a compact Riemann surface of genus g and ω a holomorphic quadratic
differential on X . This means that ω is a global section of the square of the
canonical bundle on X , i. e. ω ∈ H0(X, Ω⊗2

X ). Equivalently, we can consider
ω as an element of the Riemann-Roch vector space L(2KX), where KX is
a canonical divisor on X . In a local coordinate z, ω can be described as
ω = f dz2 with a holomorphic function f ; the transition functions between
local coordinates z and z′ are given by f dz2 = g dz′2 with g = f · (dz′

dz
)2.

Note that for g = 0, i. e. for X = P1(C), there are no nonzero holomorphic
quadratic differentials. If g = 1, ΩX is isomorphic to the structure sheaf OX ,
hence also Ω⊗2

X
∼= OX , and there is, up to multiplication by a scalar, only one

holomorphic quadratic differential. Explicitly, if X is the elliptic curve with
equation y2 = x(x−1)(x−λ) for some λ 6= 0, 1, the 1-form dx

y
is holomorphic,

and therefore ω can be taken to be dx2

y2 .

For g ≥ 2, it follows from the Riemann-Roch theorem that H0(X, Ω⊗2
X ) is a

3g − 3 dimensional complex vector space.

Now let Σ be the (finite!) set of zeroes of ω in X . For P ∈ X∗ = X − Σ
choose a simply connected neighbourhood UP contained in X∗. The map

ϕ : UP → C, Q 7→
∫ Q

P

√
ω =

∫ Q

P

√
fdz is a chart; here the integration is along

an arbitrary path from P to Q in UP . Since UP is simply connected and does
not contain any zero of ω,

√
ω is well defined in UP up to sign. The transition

map between UP and UP ′ is obtained by adding c =
∫ P ′

P

√
ω for a fixed path

from P to P ′, and possibly a change of sign. Thus the transition maps are of
the form ϕ′ = ±ϕ + c. Such an atlas is called a flat structure on X∗, and X
endowed with this structure is called a flat surface.

Remark 3.6. If ω = η2 is the square of a holomorphic 1-form, the associated
flat structure on X is a translation structure.

Example 3.7. 1. If X = E−1 is the elliptic curve with equation y2 = x(x −
1)(x + 1), we find back the translation structure induced on the torus by
the Euclidean unit square. This can be seen using the universal covering
E−1 = C/Λ with the standard lattice Λ = Z+Zi: the holomorphic differential
dz is invariant under Λ and hence descends to dx

y
on E−1. Therefore the

translation structure is induced by the fundamental domain for Λ, which is
the unit square.

2. On an origami O = (p : X → E), the translation structure is pulled
back from E via p. Hence it corresponds to the differential (p∗(ηE))2, where
ηE = dx

y
.
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The flat structure induced by a holomorphic quadratic differential on a
Riemann surface X can be varied in essentially the same way as for an origami:
For a matrix A ∈ SL2(R), we obtain a new flat structure on the surface
underlying X . The same argument as above gives

Theorem 3.8. Let ω be a holomorphic quadratic differential on a compact
Riemann surface of genus g ≥ 1. The construction just described gives a map

ιω : H = SO2(R)\SL2R → Tg,n,

where n is the number of zeroes of ω.
The map ιω is a Teichmüller embedding.

4 Veech groups

4.1 Teichmüller and moduli space

Recall that an origami O = (p : X → E) defines a Teichmüller embedding
ιO : H → Tg,n and a Teichmüller disk ∆O = ιO(H) ⊂ Tg,n. We want to
study the image C(O) of ∆O in Mg,n. Recall from Section 3.2 that a point in
Tg,n represents a pair (X, f), where X is a Riemann surface of genus g with n
distinguished points on it, and f is a diffeomorphism from the reference surface
X0 to X . The mapping class group

Γg,n = Diffeo+(X0)/Diffeo+
0 (X0)

acts on Tg,n by α(X, f) = (X, f ◦α). Note that this is well defined: if α and β
represent the same element in Γg,n, α ◦ β−1 is homotopic to the identity, and
thus (X, f ◦α) and (X, f ◦β) are equivalent pairs, hence define the same point
in Tg,n.

It is a crucial fact that the action of Γg,n on Tg,n is properly discontinuous.
The orbit space is the moduli space Mg,n of Riemann surfaces of genus g with
n distinguished points. The points of Mg,n correspond bijectively to the classes
under biholomorphic maps of such Riemann surfaces.

Fact. Mg,n is a quasiprojective variety.

This means that there is a projective variety of which Mg,n is an open
subvariety (for the Zariski topology). The Deligne-Mumford moduli space
Mg,n of stable curves is such a compactification of Mg,n, and Knudsen and
Mumford proved that Mg,n is in fact projective; see [6] for an introduction to
these results.

A well-known example of this fact is M1,1 which is isomorphic to the (complex)
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affine line A1 ∼= C. The isomorphism is given by the famous j-invariant: every
(complex) elliptic curve can be represented by a Weierstrass equation y2 =
x3 + Ax + B with complex numbers A and B satisfying ∆ = 4A3 + 27B2 6= 0;
the parameters A and B define isomorphic elliptic curves if and only if their

j-invariants j(A, B) = 1728 4A3

∆ agree.

The map from ∆O to its image C(O) in Mg,n clearly factors through the
quotient by its stabilizer

Stab(O) = StabΓg,n
(∆O)

in the mapping class group. The following proposition tells us that C(O) is
almost determined by Stab(O):

Proposition 4.1. For an origami O, the map qO : ∆O/Stab(O) → C(O) is
birational.

In fact, this result holds for arbitrary Teichmüller disks. It is due to the
fact that Γg,n acts properly discontinuously on Tg,n.

For origamis, this result has recently been strengthened by G. Schmithüsen
[17]. To explain her result, note that the covering p : X → E, which defines
the origami O, can be considered as a family of coverings of elliptic curves
(through the variation of the translation structure). It can be shown that this
family induces a holomorphic map pO : C(O) → M1,1; pO maps the Riemann
surface defined by a particular translation structure µ to the elliptic curve
with the translation structure p∗(µ). On M1,1 there are two special points E0

and E1728 corresponding to the elliptic curves y2 = x3 − 1 (for j = 0) and
y2 = x3 − x (for j = 1728). They are the only elliptic curves with nontrivial
automorphisms. Now the result is

Theorem 4.2 (Schmithüsen [17]). The map qO is an isomorphism outside
p−1
0 (E0) and p−1

0 (E1728).

4.2 The affine group

Recall that an origami O = p : X → E defines a translation structure on X∗.

Definition 4.3. Let X and Y be translation surfaces. A diffeomorphism
f : X → Y is called affine if there are coverings of X by charts (Ui, zi) and of
Y by charts (Vi, wi) such that f(Ui) ⊆ Vi and on Ui, f is given by an affine
map zi 7→ Aizi + bi, where Ai ∈ GL2(R) and bi ∈ R2.

Remark 4.4. If f : X → Y is an affine diffeomorphism of translation surfaces,
the matrix Ai is independent of i.
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Definition 4.5. Let X be a translation surface.

a) Aff+(X) is defined to be the set of orientation preserving affine diffeo-
morphisms f : X → X

b) D : Aff+(X) → GL+
2 (R), f 7→ A, is a well defined group homomorphism

c) Trans(X) = ker(D) is called the group of translations of X

d) Γ(X) = D(Aff+(X)) ⊆ GL+
2 (R) is called the Veech group of X .

For an origami O, we define the Veech group Γ(O) to be the Veech group
Γ(X∗) of the translation surface X∗ = X − p−1(∞). Note that every affine
diffeomorphism of X∗ has a unique extension to a diffeomorphism of X that
maps the set p−1(∞) of marked points to itself.
The compact surface X and therefore also X∗ has finite area. Since the area
has to be preserved by the affine diffeomorphisms, the Veech group Γ(O) =
Γ(X∗) is contained in SL2(R).

Example 4.6. For the “baby” (or trivial) origami E = id : E → E, the Veech
group is Γ(E) = SL2(Z) = Aff+(E∗).

To see this, consider the universal covering R2 of E: The translation structure
on R2 coming from the “square” one on E is the usual euclidean structure.
The affine maps for this translation structure are the familiar euclidean affine
maps. Such an affine map descends to E if and only if it preserves the lattice
Z + iZ, i. e. if and only if the matrix part is in SL2(Z).

Proposition 4.7 (Earle/Gardiner [3]). For an origami O = p : X → E we
have

Aff+(X∗) ∼= Stab(O).

For the proof recall that every f ∈ Aff+(X∗) uniquely extends to a diffeo-
morphism of X . Thus we obtain a homomorphism ρ : Aff+(X∗) → Γg,n. It
is clear that its image is contained in Stab(O) and not very difficult to show
that ρ is injective. The hardest part of the proof is to show that ρ is surjective
onto the stabilizer Stab(O).

Under the isomorphism of the proposition, the translations correspond to the
pointwise stabilizer Stabpw(O) of ∆O.

Remark 4.8. For an origami O, Trans(O) = Trans(X∗) ∼= Stabpw(O) is a
finite group. For every point (Y, h) ∈ ∆O, it is contained in the automorphism
group of the Riemann surface Y .

Corollary 4.9.

Γ(O) ∼= Stab(O)/Stabpw(O).
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In view of Proposition 4.1 this corollary states that the Riemann surface
H/Γ(O) is birationally equivalent to the algebraic curve C(O) in Mg,n. Again,
this statement holds in greater generality, namely for all Teichmüller disks ∆
whose image C(∆) in Mg,n is closed. By a theorem of Smillie (cf. [18] §5 for
a proof), this happens if and only if the Veech group of ∆ is a lattice.

4.3 Veech groups of origamis

Using the definition of an origami by gluing squares, and also Example 4.6,
one finds that the Veech group of an origami is a subgroup of SL2(Z). Less
obvious is the fact that this subgroup is ”large”:

Proposition 4.10 (Veech, Gutkin/Judge [5]). For an origami O, the Veech
group Γ(O) is a subgroup of SL2(Z) of finite index.

The following is a more precise result, which is the basis for an explicit
calculation of Veech groups of origamis, since it allows for an algorithmic
approach.

Theorem 4.11 (Schmithüsen [14]). For an origami O, let U ∼= π1(X
∗) be the

subgroup of F2
∼= π1(E

∗) induced by the covering p : X → E. Then

Γ(O) = β (StabAut+
(F2)

(U)),

where β : Aut+(F2) → Out+(F2) ∼= SL2(Z) is the canonical homomorphism.

Sketch of proof. Consider H as the universal covering of E∗ (and hence of X∗,
too), and endow it with the translation structure induced by the square(s).
Clearly Γ(O) ⊆ Γ(H).
A crucial step now is to show that Γ(H) = SL2(Z) (and not larger!). The idea
for this is as follows: Let C → E be the universal covering. Its restriction to
E∗ is an unramified covering w : C − Λ → E∗, where Λ = Z + i Z. Hence the
universal covering H → E∗ factors through an unramified covering h : H →
C−Λ. Schmithüsen shows that h is the “developing map” for the translation
structure on H. As a consequence, Γ(O) consists of all matrices A ∈ SL2(Z)

which are of the form A = D(f̂) for some f̂ ∈ Aff+(H) that descends to X∗.
To characterize those A, identify F2 = π1(E

∗) with the group Gal(H/E∗) of
deck transformations of the universal covering. Then Aff+(H) can be identified

with Aut+(F2) by sending f̂ to the automorphism σ 7→ f̂∗(σ) = f̂ ◦ σ ◦ f̂−1.

The other crucial step in the proof is to show that f̂ descends to X∗ if and
only if f̂∗(U) = U .

Note that Proposition 4.10 is a corollary of this theorem.
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4.4 Characteristic origamis

Recall that a subgroup U of a group G is called characteristic if it is fixed by
all automorphisms of G, i. e. ϕ(U) = U for all ϕ ∈ Aut(G). Note that free
groups have many characteristic subgroups in the following sense:

Remark 4.12. Let U be a subgroup of Fn of finite index (for some n ≥ 1).
Then U contains a characteristic subgroup of finite index.

Proof. Clearly the intersection of all ϕ(U), where ϕ runs through all auto-
morphisms of Fn, is characteristic. Since AutFn is finitely generated, this
intersection is finite, and a finite intersection of finite index subgroups of a
finitely generated group has finite index itself.

We call an origami O characteristic if the corresponding subgroup U(O) =
π1(X

∗) of F2 is characteristic. As a consequence of Theorem 4.11, the Veech
group of a characteristic origami is SL2(Z). Together with Remark 4.12 we
obtain the following surprising fact:

Corollary 4.13. There are infinitely many origamis of genus g ≥ 2 whose
Veech group is equal to SL2(Z).

Perhaps even more surprising, there are also examples of non-normal origamis
with Veech group SL2(Z).

One of the first characteristic origamis discovered, and the smallest non-
trivial one, is the quaternion origami W . That W is characteristic can be seen
using the following remark.

Remark 4.14. Let U ⊆ F2 be a normal subgroup of finite index, and let
G = F2/U . Then U is characteristic if, for any two pairs (a, b) and (a′, b′) of
generators of G, there is an automorphism σ ∈ Aut(G) such that σ(a) = a′

and σ(b) = b′.

Proof. Giving a pair (a, b) of generators is equivalent to giving a surjective
homomorphism h : F2 → G, namely h(x) = a, h(y) = b. Then for any
ϕ ∈ Aut(F2), hϕ = h ◦ ϕ : F2 → G is also surjective. Hence by assumption,
there exists σ ∈ Aut(G) such that hϕ = σ ◦ h. It follows that

U = ker(h) = ker(σ ◦ h) = ker(hϕ) = ker(h ◦ ϕ) = ϕ−1(U).

In the case of the quaternion origami W , the quotient group G is the
classical quaternion group Q8 = {±1,±i,±j,±k}. Except for 1 and −1, all
elements of Q8 have order 4, and any two of them, that are not inverse to
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each other, generate Q8. Clearly every such pair can be mapped to (i, j) by an
automorphism of Q8.

In [7] we give an explicit construction of a characteristic subgroup contained
in a given (normal) finite index subgroup. Applied to the smallest origami of
genus > 1, the L2,2, this construction first yields the stairlike origami of degree
6 as normal origami; the corresponding characteristic origami has degree 108
and was studied in detail in [1].

4.5 Congruence groups

It is a very natural question to ask which subgroups of SL2(Z) of finite index
are Veech groups of origamis.

The complete answer to this question is still open, but there are substantial
partial results. Most of them have to do with congruence groups:

Definition 4.15. A subgroup Γ ⊆ SL2(Z) is called a congruence group if Γ
contains Γ(n) for some n ≥ 1, where

Γ(n) = {
(

a b
c d

)

≡
(

1 0
0 1

)

mod n} ⊆ SL2(Z)

is the kernel of the projection pn : SL2(Z) → SL2(Z/nZ).
The smallest n such that Γ(n) ⊆ Γ is called the level of the congruence group.

In her thesis [15], G. Schmithüsen proved that most congruence subgroups
of SL2(Z) arise as Veech groups of origamis. The precise result is

Theorem 4.16. Let n ≥ 1 and B = B1

·
∪ . . .

·
∪Bk any partition of (Z/nZ)2

satisfying B1 = {(0, 0)}. Denote by ΓB ⊆ SL2(Z/nZ) the stabilizer of B, and
let ΓB = p−1

n (ΓB).
Then there exists an origami OB with Γ(OB) = ΓB.

The proof uses cleverly chosen coverings of the “trivial” n × n origami.
From this theorem, Schmithüsen deduces

Corollary 4.17. For any prime p > 11, any congruence group of level p is
the Veech group of an origami. For each of the primes 2, 3, 5, 7, 11, the same
holds with one possible exception.

For subgroups of Γ(2), Ellenberg and McReynolds showed in [4]:

Theorem 4.18. Every subgroup of Γ(2) of finite index that contains

(

−1 0
0 −1

)

is the Veech group of an origami.
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There are also results for noncongruence groups:

Proposition 4.19 (Schmithüsen; Hubert/Lelièvre [12]). The group Γ(L2,n)
is a noncongruence group for n ≥ 3.

For the first example n = 3 in this series, the Veech group Γ(L2,3) has
index 9 in SL2(Z).
There are also other origamis whose Veech group is known to be noncongru-
ence. see [16].

On the other hand, there is not a single subgroup of SL2(Z) of finite index,
for which it would be known that it cannot be the Veech group of an origami.

5 An example: The origami W

In this section, we take up the discussion of the quaternion origami W that
was first introduced in Section 2.1 and later mentioned at several places. For
more details we refer to [8].

1 i −1 −i

−k −j k j
=

−j j

1 i −1 −i

k −k

/ \ /// /// \ /

//// \\\ // \\

\\\ //// \\ //

– –

// /

\\ \

/ //

\ \\

== – = =–

– = =– ==

Recall that the corresponding (Riemann) surface XW has genus 3 and that
the Galois group of the covering p : XW → E is the quaternion group Q8. Since
{±1} is a (normal) subgroup of Q8, p factors through q : XW → XW /{±1}.

Remark 5.1. a) XW /{±1} ∼= E.

b) p = [2] ◦ q, where [2] is the multiplication by 2 on the elliptic curve E.

This remark follows from the fact that the left half of the above figure is a
fundamental domain for the action of {±1} on XW :

which is

equivalent to

= –

– =

//

//

/

/

◦ ◦
=

– –

=

//

//

/

/
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The next observation is

Remark 5.2. The elliptic involution [−1] on E lifts to an automorphism σ
on XW of order 2.

This remark is equivalent to saying that

(

−1 0
0 −1

)

is contained in the

Veech group Γ(W ).

Note that σ is obtained by rotating each square by π, and then regluing the
squares. It has 4 fixed points on XW , namely the centers of the squares labelled
1, -1, k and -k. Thus σ can also be described as rotation by an angle of π
around one (in fact, any) of these points.

Proposition 5.3. The automorphism group Aut(W ) is a group of order 16,
generated by Q8 and σ.
The center of Aut(W ) is cyclic of order 4, generated by c = k · σ.
Geometrically, c is the rotation by an angle of π around the vertices. In par-
ticular, c has 4 fixed points.

The quaternion origami W is one of the rare examples of a Teichmüller
curve for which the equation is explicitly known:

Proposition 5.4. The origami curve C(W ) is the image in M3 of the family

Wλ : y4 = x(x − 1)(x − λ), λ ∈ P1(C) − {0, 1,∞}.
The map pW : C(W ) → M1,1 is induced from the fibrewise morphism pλ :
Wλ → Eλ, (x, y) 7→ [2] · (x, y2), where Eλ is the elliptic curve with equation
y2 = x(x − 1)(x − λ).

Idea of proof. Since C has 4 fixed points, the genus g of the quotient surface
XW / < c > can be calculated by the Riemann-Hurwitz formula: We have

2 · 3 − 2 = 4 · (2g − 2) + 4 · (4 − 1), hence 4 = 8 · (g − 1) + 12.

Thus g = 0, and XW is a cyclic cover of P1 of degree 4 with 4 ramification
points, each of order 4. Applying an automorphism of P1, we may assume that
the branch points of this covering are 0, 1,∞ and some λ ∈ P1(C)−{0, 1,∞}.
Thus Wλ has an equation of the form

Wλ : y4 = xε0 (x − 1)ε1(x − λ)ελ ,

where each of the εi is either 1 or 3. Looking at the combinatorial descripition
of W in terms of squares one sees that the monodromy is the same around
each of the 4 branch points. In other words, the εi are all equal (and thus can
be chosen to be 1).
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Besides σ, Aut(W ) also contains the involutions τ = iσ and ρ = jσ.

Proposition 5.5. For each of the six involutions α ∈ {±σ,±τ,±ρ}, the quo-
tient surface Wλ/ < α > is isomorphic to the elliptic curve

E−1 : y2 = x(x − 1)(x + 1) = x3 − x.

In particular, the quotient surface is independent of λ.

Proof. Since c commutes with α for each choice of α, it descends to an au-
tomorphism of order 4 with 2 fixed points on Wλ/ < α >. The only elliptic
curve having such an automorphism is E−1.

From this proposition, one can deduce the following

Corollary 5.6. The Jacobian of Wλ is isogenous to Eλ × E−1 × E−1, i. e.
there is a homomorphism with finite kernel and finite cokernel between the two
abelian varieties.

This is a prominent case of a “fixed part” in a family of Jacobians. On the
one hand, there is only a very limited list of 1-parameter families of Jacobians
with a fixed part of codimension one. On the other hand, there are not so many
origamis known which have a nontrivial fixed part; see [2] for more examples,
and also for counter-examples.

Proposition 5.7. a) C(W ) ∼= H/Γ(W ) = H/SL2(Z) ∼= A1.
b) The closure C(W ) in M3 is isomorphic to P1.
c) The unique point in C(W )−C(W ) corresponds to the stable curve with two
irreducible components, both isomorphic to E−1, that intersect (transversally)
in two points.

Proof of b) and c). As explained in detail in [10], going to the boundary in
Mg can be achieved by replacing the square by rectangles that become thinner
and thinner. This is equivalent to contracting the center lines of the squares
in the original origami:

- - - - - - - - - - - -

- - - - - - - - - - - -
/ \ /// /// \ /

//// \\\ // \\

\\\ //// \\ //

The contraction results in two irreducible components, both nonsingular
of genus 1. The two dotted lines yield two points of intersection of these
components. The automorphism c has two fixed points on each component,
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and acts as an automorphism on both of them. Once again, we now use the
fact that the only elliptic curve admitting such an automorphism is E−1.

Because of its extraordinary properties we called W in german “Eierlegende
Wollmilchsau”. Perhaps the most important property is the following:

Theorem 5.8. C(W ) intersects infinitely many other origami curves.

W was the first origami for which this result was discovered. To my knowl-
edge, it is still the only one for which it has been proved.

Sketch of proof. The projection κλ : Wλ → Wλ/<α> (cf. Proposition 5.5) is
ramified over 4 points, namely the fixed points of α. If we can find an isogeny
ϕ : E−1 → E−1 that maps these 4 points all to the same point, ϕ ◦ κ is an
origami.
Any isogeny on E−1 is multiplication by a suitable n. Thus it suffices to show
that for infinitely many different values of λ, all 4 critical points are torsion
points. In fact, the 4 critical points of κ on E−1 form an orbit under the
automorphism c̄ induced by c. Choose one of the two fixed points of c̄ as the
origin of the group structure on E−1. Then c̄ preserves the n-torsion points
for each n, and it suffices to find one critical point that is a torsion point.
Explicit calculation shows that for each n ≥ 3 and each n-torsion point P on
E−1, there is λ ∈ P1 − {0, 1,∞} such that P is a critical point of κλ.

Corollary 5.9. For each torsion point P ∈ E−1 (of order n ≥ 3) there is an
origami DP of degree 2n and genus 3 such that C(DP ) intersects C(W ).

It is a nice challenge to describe the origami DP in terms of squares. By
its construction, DP is a double covering of a “trivial” n × n-origami. more
precisely, DP consists of two copies of the trivial n× n-origami, glued in such
a way that we have 4 ramification points that form an orbit under rotation by
90.

Example 5.10. For n = 3, there are two different possibilities for the ramifi-
cation points:
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Here the leaf is changed at the highlighted edges.

In [8] we also determined explicitly the Veech group of DP : it is a congru-
ence group of level 2n if n is odd, and of level n if n is even.

Finally, in [9] we studied the configuration of all the origami curves C(DP ) in
M3:

Theorem 5.11. The closure in M3 of the set of all origami curves C(DP ),
where as above, P is an n-torsion point on E−1 and DP is the associated
origami, is a three-dimensional algebraic subvariety H.
More precisely, let H̃ be the Hurwitz space of coverings X → E of degree 2,
where X has genus 3 and E is an elliptic curve, which are ramified over four
points that are, for a suitable choice of the origin on E, of the form P , −P ,
Q, −Q. Then H̃ has four irreducible components, three of which consist of
hyperelliptic Riemann surfaces X.
Then H is the image in M3 of the non-hyperelliptic component of H̃.

References

[1] O. Bauer, Das 108er Origami, Diploma thesis, Karlsruhe 2005.

[2] O. Bauer, Familien von Jacobischen von Origamikurven, PhD thesis, Universität
Karlsruhe, 2009.

[3] C. Earle and F. Gardiner, Teichmüller disks and Veech’s F-structures, Contemp.
Math. 201 (1997), 165–189.

[4] J. Ellenberg and D. McReynolds, Every curve is a Teichmüller curve, arXiv
0909.1831.



22 Frank Herrlich

[5] E. Gutkin and C. Judge, Affine mappings of translation surfaces, Duke Math.
J. 103 (2000), 191–212.

[6] J. Harris and I. Morrison, Moduli if Curves, Grad. Texts in Math. 187, Springer
1998.

[7] F. Herrlich, Teichmüller curves defined by characteristic origamis, Contemp.
Math. 397 (2006), 133–144.
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[11] F. Herrlich and G. Schmithüsen, Dessins d’enfants and origami curves, in
A. Papadopoulos (ed.) Handbook of Teichmüller theory, Volume II, Chapter 18.
European Mathematical Society (2009).
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