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If �group actions� means that an interesting group acts in an interesting way on an
interesting space, the action of the mapping class group on Teichmüller space is one of
the most prominent examples: In addition to the space and the group, also the orbit
space, which is the moduli space of Riemann surfaces, is highly interesting. Perhaps the
most important intermediate space between Teichmüller and moduli space is Schottky
space.

To be a little more speci�c, �x a genus g ≥ 2 and let X0 be a �xed closed Riemann
surface of genus g. As usual, we denote by Mg the moduli space of all isomorphy
classes of closed Riemann surfaces of genus g, by Tg the Teichmüller space of all marked
Riemann surfaces, i. e. equivalence classes of pairs (X, f), where X is Riemann surface
of genus g and f : X0 → X a di�eomorphism, and by Modg the mapping class group
Modg = Di�+(X0)/Di�0(X0). We use the following well known facts:

• Tg is a contractible real manifold of dimension 6g − 6

• Modg acts properly discontinuously on Tg

• Tg/Modg = Mg

• Modg acts by isometries for the Teichmüller distance on Tg

• Tg carries a natural complex structure, and Modg acts by holomorphic automor-
phisms

• The stabilizer in Modg of a point (X, f) ∈ Tg is isomorphic to the group Aut(X)
of holomorphic automorphisms of X

The Schottky space Sg is the quotient of Tg by a subgroup Modg(α) of Modg, (depending
on a certain group homomorphism α which will be explained in Section 3). A basic
result is

• Modg(α) is torsion free (see Prop. 8)

This immediately implies

• Sg is a complex manifold of dimension 3g − 3

• Tg → Sg is a universal covering
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Moreover, Modg(α) is an in�nite subgroup of in�nite index, but not a normal subgroup.
As a consequence, the induced covering Sg → Mg is in�nite, but not normal.

In fact the group of biholomorphic automorphisms of Sg is isomorphic to Out(Fg), the
group of outer automorphisms of the free group Fg of rank g, see [E]. This group is also
isomorphic to Hg(α)/Modg(α), where Hg(α) is the normalizer of Modg(α) in Modg. For
di�erent α, the groups Modg(α) are conjugated; the same holds for the groups Hg(α),
which moreover are isomorphic to the mapping class group of a handlebody of genus
g.

The covering Sg → Mg factors through S̃g = Sg/Out(Fg), and the induced map S̃g →
Mg still has in�nite �bres. Sometimes Sg is called the marked Schottky space and S̃g

the unmarked Schottky space.

Of particular interest in this survey is the behaviour of Teichmüller disks under the
covering map Tg → Sg. A Teichmüller disk is an isometrically and holomorphically
embedded complex unit disk (or upper half plane) in Teichmüller space. They naturally
arise from quadratic di�erentials on Riemann surfaces and are closely related to �at
structures on surfaces. In general, the stabilizer in Modg of a Teichmüller disk is trivial
(or cyclic of order 2), but sometimes it is a lattice in PSL2(R). In this case the image in
Mg of the Teichmüller disk is a Riemann surface of �nite type, i. e. an (a�ne) algebraic
curve. These curves in moduli space are called Teichmüller curves; they have attracted
a lot of attentionin the last 10 or 15 years. In Section 8 we show, following [DF], that
the stabilizer in Modg(α) of a Teichmüller disk that is induced by a translation surface
is either trivial or in�nite cyclic (in which case the image of the Teichmüller disk in Sg is
a once punctured disk). Moreover, if the so called Veech group of the Teichmüller disk
contains a parabolic element, we can always �nd α such that the stabilizer is in�nite
cyclic.

1 Schottky coverings

The original de�nition of a Schottky group is as follows [Sy]: Let D1, D
′
1, . . . , Dg, D

′
g

be 2g mutually disjoint closed disks in the complex plane C (or the Riemann sphere
Ĉ) and choose Möbius transformations γi ∈ PSL2(C) such that γi(∂Di) = ∂D′

i and
γi(Di) = Ĉ − D̊′

i, i = 1, . . . , g (g ≥ 1). The subgroup Γ of PSL2(C) that is generated
by γ1, . . . , γg is called a Schottky group; it has the following properties:

Proposition 1. a) Γ is a free group freely generated by γ1, . . . , γg.
b) Let F = Ĉ−

⋃g
i=1(D̊i ∪ D̊′

i) and Ω =
⋃

γ∈Γ γ(F ). Then Γ acts properly discontinu-
ously (and freely) on Ω, and F is a fundamental domain for this action.
c) Ω/Γ is a compact Riemann surface of genus g.

Proof. a) This is the original situation of the well-known �ping-pong lemma�: let w =
γεn

in
· · · · · γε1

i1
be a reduced word in γ1, . . . , γg and γ the corresponding element in Γ.

Then if z ∈ F is any point we see by induction on n that γ(z) ∈ D̊′
i if εn = 1 and

γ(z) ∈ D̊i if ε = −1. In both cases γ(z) 6= z, thus γ 6= id.
This argument also proves b).
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For c) observe that X = Ω/Γ is a Riemann surface by b) and that topologically it is
obtained from F by identifying ∂Di with ∂D′

i for i = 1, . . . , g. This clearly gives a
sphere with g handles.

Note that the same proof holds if we replace the disks Di and D′
i by simply connected

closed domains that are bounded by Jordan curves. Of course, now we must require
that there exists a Möbius transformation γi mapping ∂Di to ∂D′

i and D̊i to Ĉ −D′
i.

We shall use this more general de�nition of a Schottky group throughout this paper.

If Γ ⊂ PSL2(C) is a Schottky group and Ω = Ω(Γ) its domain of discontinuity as in
the proposition, we call the quotient map π : Ω → Ω/Γ =: X a Schottky covering of
the Riemann surface X. A variant of the uniformization theorem states that this is
possible for every Riemann surface:

Proposition 2. Every compact Riemann surface X of genus g ≥ 1 admits a Schottky
covering with a Schottky group Γ of rank g.

Idea of proof. Let c1, . . . , cg be a �cut system� on X, i. e. simple closed loops such that
F = X − ∪g

i=1ci is connected; equivalently [c1], . . . , [cg] are linearly independent in
H1(X, C). Then F is biholomorphically equivalent to a plane region with 2g boundary
components C1, C

′
1, . . . , Cg, C

′
g, where Ci and C ′

i are the two components corresponding
to ci. This implies that there is a Möbius transformation γi mapping Ci to C ′

i and such
that F ∩γi(F ) = C ′

i. The subgroup Γ of PSL2(C) generated by γ1, . . . , γg is a Schottky
group and F is a fundamental domain for Γ. Then clearly X = F/Γ = (

⋃
γ∈Γ γ(F ))/Γ.

The technical details skipped in this sketch can be found e. g. in [AS].

The situation is particularly simple and explicit in genus 1: Here we can choose D1 and
D′

1 to be disks around 0 and ∞, resp. Then F is an annulus of the form {z ∈ C : r1 ≤
|z| ≤ r2} for some positive real numbers r1 < r2, and γ := γ1 is the transformation
γ(z) = λ · z for some complex number λ satisfying |λ| = r2

r1
. The group Γ = < γ >

is in�nite cyclic, and its region of discontinuity is Ω =
⋃

n∈Z γn(F ) = Ĉ − {0,∞}.
Finally E = Ω/Γ is the complex torus obtained from F by identifying its two boundary
components via γ.

Conversely, a cut system on a Riemann surface E of genus 1 consists of a single simple
loop c. Realizing E = C/Λ as the quotient of the complex plane by a lattice Λ, we can
represent c by one side of a fundamental parallelogram Π for Λ. Thus we may assume
that c is the straight line from 0 to some ω1 ∈ C− {0} and that there is ω2 ∈ C− {0}
such that Λ = Z · ω1 ⊕ Z · ω2. Cutting E along c yields a cylinder C which is also
obtained by gluing the two sides of Π that are parallel to ω2 by a translation by ω1. The
quotient of the complex plane by the translation z 7→ z+ω1 is Ω = Ĉ−{0,∞}, and the
quotient map is z 7→ q = exp( z

ω1
) where exp(z) = e2πiz. The image of the parallelogram

Π under this map is the annulus A = {z ∈ C : |λ| ≤ |z| ≤ 1} with λ = exp(ω2

ω1
), hence

|λ| = e
−Im(

ω2
ω1

)
(which we may assume to be < 1 by choosing ω2 suitably). The annulus

A is conformally equivalent to the cylinder C, and the translation z 7→ z + ω2 induces
on Ω the Möbius transformation γ(q) = λ · q from above.

In higher genus an analogous idea leads to a less explicit, but still very conceptual way
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to �nd a Schottky covering of a given Riemann surface X: Let a1, b1, . . . , ag, bg be a
standard set of generators of the fundamental group π1(X), i. e.

∏g
i=1 aibia

−1
i b−1

i = 1
and the intersection form is given by < ai, aj > = < bi, bj > = 0 and < ai, bj > = − <
bi, aj > = δij for all i, j. Let X̃ be a universal covering of X and identify π1(X) with
the group of deck transformations Deck(X̃/X). Since g ≥ 2, by the uniformization
theorem X̃ can be taken to be the upper half plane H. Then Deck(X̃/X) is a Fuchsian
group contained in PSL2(R). Now let N ≤ π1(X) be the normal subgroup generated
by a1, . . . , ag. By the Galois theory of coverings, N corresponds to an intermediate
covering Ω := H/N → X, which is normal with Galois group π1(X)/N ; the latter group
is isomorphic to the free group generated by b1, . . . , bg. It is not obvious, but true (see
e. g. [AS]) that H/N is a plane domain. Once this is shown it follows immediately that
every compact Riemann surface admits not only one, but many Schottky coverings, as
there are plenty of standard sets of generators for π1(X).

2 Schottky space

Each element γ 6= id in a Schottky group Γ is hyperbolic, i. e. has two di�erent �xed
points, one of which is repelling, the other attracting; we denote them by r(γ) and a(γ)
respectively. Moreover γ is conjugate to z 7→ λ · z for a unique complex number λ with
|λ| > 1; this λ is called the multiplier of γ. Conversely, a hyperbolic γ ∈ PSL2(C) is
determined by its multiplier λ(γ) and its two �xed points (r(γ), a(γ)) (as an ordered
pair). Note that we do not distinguish between hyperbolic and loxodromic elements
and only use the word �hyperbolic�, no matter whether λ is real or not.

De�nition 3. a) A marked Schottky group of rank g is a g-tupel (γ1, . . . , γg) of hyper-
bolic Möbius transformations in PSL2(C) that freely generate a Schottky group.
b) Two marked Schottky groups (γ1, . . . , γg) and (γ′1, . . . , γ

′
g) are called equivalent if

there exists δ ∈ PSL2(C) such that δγiδ
−1 = γ′i, i = 1, . . . , g.

c) The set Sg of equivalence classes of marked Schottky groups of rank g is called
Schottky space.

If g = 1, a marked Schottky group consists of a single hyperbolic element γ ∈ PSL2(C).
As mentioned above, γ is conjugate to z 7→ λ · z for a unique λ ∈ C with |λ| > 1.
Mapping λ to 1/λ we see that S1 is the punctured disk {z ∈ C : 0 < |z| < 1} as a
one-dimensional complex manifold.

Let now g ≥ 2. With a marked Schottky group (γ1, . . . , γg) we can associate the

3g-tupel (r(γ1), a(γ1), λ(γ1), . . . , r(γg), a(γg), λ(γg)) ∈ Ĉ3g. As noted above it uniquely
determines the marked Schottky group. Since the �xed points of the γi are pairwise
distinct, we �nd a unique δ ∈ PSL2(C) such that r(δγ1δ

−1) = 0, a(δγ1δ
−1) = ∞ and

r(δγ2δ
−1) = 1. Thus each equivalence class of marked Schottky groups contains a

unique elelment of the form (0,∞, λ1, 1, a2, λ2, . . . , rg, ag, λg). In this way an element
of Sg determines a (3g − 3)-tupel (λ1, a2, λ2, . . . , rg, ag, λg) ∈ C3g−3. We have proved
most of

Proposition 4. For g ≥ 2, Sg can be embedded as an open subset into C3g−3.
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Proof. It remains to show that the points in C3g−3 parametrizing equivalence classes
of marked Schottky groups form an open subset. For this we may assume that a given
point in Sg is repesented by a basis as in Proposition 1, i. e. we have mutually disjoint

closed subsets Di and D′
i of Ĉ that are mapped by the γi in the speci�ed way. Hence

it su�ces to show that the Di and D′
i depend continuously on the parameters ri, ai

and λi. If they are disks this can be seen directly, e. g. from the formulas for Ford's
isometric circles (cf. [M] I.C. and II.H.). The general case is a continuous deformation
of this situation.

There is a natural action of the automorphism group Aut(Fg) of the free group of rank
g on the set of marked Schottky groups. To describe it we slightly reformulate the
de�nition of marked Schottky groups:

De�nition 5. Let Fg be the free group of rank g on generators x1, . . . , xg.
a) A marked Schottky group of rank g is an injective group homomorphism σ : Fg →
PSL2(C) such that Γ := σ(Fg) is a Schottky group of rank g.
Clearly the γi = σ(xi) satisfy the original de�nition, and vice versa.
b) σ and σ′ are equivalent if there is δ ∈ PSL2(C) such that σ′ = cδ ◦ σ, where cδ is
conjugation with δ.

We shall identify Sg with the set of equivalence classes of homomorphisms σ as in
part a) of the de�nition. Note that any such σ determines a Schottky covering of a
Riemann surface of genus g: Let Ωσ be the region of discontinuity of the Schottky
group Γ = σ(Fg); then Xσ = Ωσ/Γ is a compact Riemann surface and π : Ωσ → Xσ

is a Schottky covering. Usually we shall retain the Riemann surface in the notation of
points in Schottky space, i. e. a point in Sg will be denoted by (X, σ) with a compact
Riemann surface X of genus g and a homomorphism σ : Fg → PSL2(C) as in Def. 5 a)
such that Xσ

∼= X.

The automorphism group Aut(Fg) of Fg now acts on Sg by composition: For ϕ ∈
Aut(Fg) and (X, σ) ∈ Sg we de�ne

ϕ · (X, σ) = (X, σ ◦ ϕ−1)

Note �rst that (σ ◦ ϕ−1)(Fg) = σ(Fg), thus Ωσ◦ϕ−1 = Ωσ and Xσ◦ϕ−1 = Xσ.
Note further that the action of Aut(Fg) (from the right) commutes with the conjugation
by elements of PSL2(C), which is an action from the left. Hence the action of Aut(Fg)
on marked Schottky groups respects the equivalence classes and thus really de�nes an
action on Sg.
Finally note that an inner automorphism of Fg maps each equivalence class of marked
Schottky groups to itself, i. e. it acts trivially on Sg and we obtain an action of the
outer automorphism group

Out(Fg) = Aut(Fg)/Inn(Fg)

of Fg on Sg.

Proposition 6. Out(Fg) acts on Sg by biholomorphic automorphisms.
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Proof. Aut(Fg) can be generated by the permutations and inversions of x1, . . . , xg and
the automorphism x1 7→ x2x1, xi 7→ xi for i ≥ 2. For these automorphisms the action
on the parameters λi, ai and ri can be calculated explicitly. This is carried out in [E]
Sect. 8.
We shall give an indirect proof of the proposition in Section 4, where we show that
there is a family of curves over Sg. This implies that the forgetful map (X, σ) 7→ X
from Sg to the moduli space of Riemann surfaces is holomorphic. This map factors
through the quotient space S̃g := Sg/Out(Fg), and therefore the quotient map and thus
also the action of Out(Fg) is holomorphic.

In [E], C. Earle proves the stronger result that Out(Fg) is the full group of biholomor-
phic self-mappings of Sg; we shall not need this result in the sequel.

Note that the action of Out(Fg) identi�es all possible markings of a given Schottky
group. Thus the points of S̃g can be seen as the conjugacy classes of Schottky groups
of rank g in PSL2(C). This is the reason that some authors prefer to call S̃g the Schot-
tky space und use �marked Schottky space� for Sg.

The action of Out(Fg) on Sg is properly discontinuous but not free. Therfore S̃g is still
a complex space of dimension 3g − 3, but no longer a complex manifold.

3 Schottky and Teichmüller space

In this section we study natural maps from Teichmüller space to Schottky space that
decompose the forgetful map from Teichmüller to moduli space. What �natural� means
in this context will be explained in the next section.

As is well known, the Teichmüller space Tg classi�es marked Riemann surfaces of genus
g. There are several equivalent ways of describing markings: Choose a �xed Riemann
surface X0 of genus g as reference surface and denote by πg its fundamental group.
Usually, a marking of a Riemann surface X of genus g is de�ned as an orientation
preserving di�eomorphism f : X0 → X, and two marked Riemann surfaces (X, f) and
(Y, g) are considered equivalent if g ◦ f−1 : X → Y is homotopic to a biholomorphic
map.

Any such marking induces an isomorphism f∗ : πg → π1(X) of the fundamental
groups. Conversely the Dehn-Nielsen theorem implies that every group isomorphism
τ : πg → π1(X) is induced by some di�eomorphism f : X0 → X, i. e. τ = f∗. Thus we
may as well de�ne a marking on X as an isomorphism τ : πg → π1(X). In these terms,
(X, τ) and (Y, τ ′) are equivalent if there is a biholomorphic map h : X → Y such that
(τ ′)−1 ◦ h∗ ◦ τ is an inner automorphism of πg.

Another consequence of the Dehn-Nielsen theorem is that the mapping class group
Mod±g is isomorphic to the outer automorphism group Out(πg) of πg. Under this iso-
morphism, the subgroup Modg of isotopy classes of orientation preserving homeomor-
phisms corresponds to a subgroup Out+(πg) of index 2. This group acts on Teichmüller
space and identi�es all possible markings of a given Riemann surface:

Tg/Modg = Mg.
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It is well known that Teichmüller space carries a natural structure as real manifold of
dimension 6g−6 and that this manifold is contractible. Modg acts properly discontinu-
ously on Tg. Moreover, Tg also has the structure of a complex manifold, and the action
of Modg is holomorphic. The induced analytic structure on Mg is that of a complex
algebraic variety.

To de�ne maps from Teichmüller to Schottky space we use the construction of a Schott-
ky covering at the end of Section 1: Fix standard generators a1, b1, . . . , ag, bg of πg; then
for any marked Riemann surface (X, τ) ∈ Tg, τ(a1), τ(b1), . . . , τ(ag), τ(bg) are standard
generators for π1(X), and τ(b1), . . . , τ(bg) is a cut system for X. In Section 1 we saw
how this cut system determines a Schottky covering Ω → Ω/Γ ∼= X and an isomor-
phism between the factor group π1(X)/N and the Schottky group Γ ∈ PSL2(C), where
N = Nτ is the normal subgroup generated by τ(a1), . . . , τ(ag). Thus τ induces an
isomorphism σ : Fg → π1(X)/Nτ where the Fg is the free group πg/N ; here N = Nid

is the normal subgroup generated by a1, . . . , ag.

Denote by α : πg → Fg the quotient map, i. e. the homomorphism de�ned by α(ai) = 1,
α(bi) = γi, i = 1, . . . , g. Then we can summarize the preceding discussion in the fol-
lowing commutative diagram:

πg

α

��

τ // π1(X)

ατ

��

∼ // Deck(X̃/X)

��

� � // PSL2(R)

Fg σ
// π1(X)/Nτ

∼ // Γ
� � // PSL2(C)

The diagram gives us a map

sα : Tg → Sg, (X, τ) 7→ (X, σ)

since the equivalence relations are compatible: conjugation by c in πg corresponds to
conjugation by α(c) in Fg.

De�nition 7. A homomorphism α : πg → Fg is called symplectic if there are standard
generators a1, b1, . . . , ag, bg of πg such that α(ai) = 1 and α(bi) = γi, i = 1, . . . , g.

Given a symplectic homomorphism α, two points (X, τ) and (X, τ ′) have the same
image in Sg under sα if and only if α ◦ τ = α ◦ τ ′ up to an inner auotmorphism (on
either side). In other words sα(X, τ) = sα(X, τ ′) if and only if the automorphism
ϕ = τ−1 ◦ τ ′ of πg satis�es α ◦ ϕ ≡ α mod inner automorphisms. This proves the �rst
part of

Proposition 8. For any symplectic homomorphism α : πg → Fg we have:
a) sα is the quotient map for the subgroup

Modg(α) := {ϕ ∈ Modg = Out+(πg) : α ◦ ϕ = α up to inner automorphisms}

of Modg.

b) sα : Tg → Sg is a universal covering.
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Proof. Part b) can be seen as a special case of [M71], Cor. 7 which is a more general
statement about deformation spaces of Kleinian groups. A more direct proof using
mainly topological arguments is given in [Hj], Lemma 5.11. A group theoretic proof
is sketched in [DF], Satz 3.10: Since Tg is simply connected and Modg acts properly
discontinuously, it su�ces to show that Modg(α) is torsion free. An elementary argu-
ment shows that a torsion element ϕ ∈ Modg(α) would act trivially on the homology
([DF], Lemma 3.1). Thus ϕ would be an element of the Torelli group, but this group
is known to be torsion free.

Example. Let us illustrate the preceding in genus 1: Here X0 is a torus, π1 is the free
abelian group on two generators a and b, α is the homomorphism π1 → Z that maps
a to 0 and b to 1. Mod1 = Aut+(Z2) is equal to SL2(Z) and

Mod1(α) = {M ∈ SL2(Z) : α ◦M = α}.

Note that the condition is really α ◦M = α since Z2 is abelian. It implies that M · a is
a multiple of a; as M is invertible it can only be a or −a. For b the condition implies
M · b = b + k · a for some k ∈ Z. Finally, since det(M) = 1, M · a cannot be −a, thus

Mod1(α) = {
(

1 k
0 1

)
: k ∈ Z}

is the subgroup of SL2(Z) generated by the parabolic matrix
(

1 1
0 1

)
.

Note that Modg(α) can also be considered as a subgroup of the handlebody group: Let
α : πg → Fg be the symplectic homomorphism corresponding to standard generators
a1, b1, . . . , ag, bg of πg, and let Hg be the handlebody with boundary ∂Hg = X0 such
that the ai are nullhomotopic in Hg and the bi freely generate the fundamental group
π1(Hg). Denoting the mapping class group of Hg by Mod(Hg) we can identify Modg(α)
with the normal subgroup of Mod(Hg) of self-homeomorphisms that induce the identity
on the fundamental group π1(Hg). Moreover we have:

Proposition 9.
Mod(Hg)/Modg(α) ∼= Out(Fg).

Restriction to the boundary ∂Hg = X0 gives a homomorphism Mod(Hg) → Modg

which is injective. Thus Mod(Hg) can be considered as a subgroup of Modg, contained
in the normalizer of Modg(α).

4 Schottky space as a moduli space

In this section we sketch the construction of a family of Riemann surfaces Cg over the
Schottky space Sg. Each individual Riemann surface in this family comes along with
a Schottky covering, and they all �t together to a �Schottky structure�. It turns out
that Cg → Sg is the universal family of Riemann surfaces with Schottky structure.

The family Cg is constructed as follows: Let s = (X, σ) be a point in Sg. We have seen

in Section 2 that σ uniquely de�nes a Schottky group Γs and generators γ
(s)
1 , . . . , γ

(s)
g of
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Γs that satisfy the normalization conditions for the �xed points. Let Ωs be the region
of discontinuity of Γs; it depends holomorphically on s in the sense that

Ωg = {(s, z) ∈ Sg × Ĉ : z ∈ Ωs}

is a complex manifold.

The free group Fg acts on Ωg via the action of Γs on Ωs: Let γ ∈ Fg, (s, z) ∈ Ωg with
s = (X, σ); for simplicity of notation we denote the isomorphism Fg → Γs also by σ.
Then

γ(s, z) = (s, σ(γ)(z)).

The action of Fg is holomorphic and free since in each �bre Ωs over a point s ∈ Sg, Fg

acts via Γs. Hence the quotient space Cg = Ωg/Fg is again a complex manifold with a
projection p : Cg → Sg, and the �bre of Cg over s = (X, σ) ∈ Sg is the Riemann surface
Ωs/Γs = X. We have shown

Proposition 10. p : Cg → Sg is a family of compact Riemann surfaces, and p−1(s) ∼=
X for every s = (X, σ) ∈ Sg.

That p is a �family� means, besides the statement about the �bres, that p is a proper
holomorphic map.

Corollary 11. The forgetful map µ : Sg → Mg, (X, σ) 7→ X, is holomorphic.

Proof. This follows from the property of Mg of being a coarse moduli space for compact
Riemann surfaces of genus g.

In [GH] the notion of a Schottky structure on a family of Riemann surfaces was intro-
duced, and it was shown that p : Cg → Sg is a universal family of Riemann surfaces
with Schottky structure.

A similar construction as above is possible for the Teichmüller space to obtain a family
C̃g → Tg of Riemann surfaces over Tg, which again is universal for the appropriate no-
tion of Teichmüller structure. These families are compatible with the action of Modg(α)
and the quotient map to Mg, see [HS] Section 5.3.

With some extra e�orts the preceding construction can be extended to suitable bound-
aries of Tg, Sg and Mg, namely the �augmented� Teichmüller space, the �extended�
Schottky space, and the Deligne-Mumford compacti�cation M g of Mg. Details can be
found in [HS] Section 5.

5 Teichmüller disks

Teichmüller disks have been studied a lot over the last 15 or more years. There are
several introductions from di�erent points of view in the literature, see e. g. [EG], [HS],
[Mö]. Therefore we con�ne ourselves to a short statement of de�nitions and main
properties.

Fix a genus g ≥ 1 and endow Tg with its natural complex structure (see Section 4)
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and with the Teichmüller metric. Recall that for marked Riemann surfaces (X, f) and
(Y, g) (with homeomorphisms f : X0 → X, g : X0 → Y ) the Teichmüller distance is
the logarithm of the smallest complex dilatation of a quasiconformal homeomorphism
in the isotopy class of g ◦ f−1. Furthermore endow the complex upper half plane H
with its usual complex structure and with the hyperbolic metric.

De�nition 12. Let ι : H → Tg be a holomorphic and isometric embedding. Then ι is
called a Teichmüller embedding and ∆ := ι(H) ⊆ Tg is called a Teichmüller disk in Tg.

There is a well known construction of Teichmüller disks which in fact turns out to be
universal in the sense that every Teichmüller disk can be obtained this way:

Let (X, τ) be an arbitrary point in Tg (with an isomorphism τ : π1(X0) → π1(X)), and
let q ∈ H0(X, Ω⊗2

X ) \ {0} be a nonzero holomorphic quadratic di�erential on X. On
X∗ := X \ {zeroes of q} we obtain charts as follows: Cover X∗ by simply connected
open subsets Ui and in each Ui choose a point Pi. Then

µi : Ui → C, P 7→
∫ P

Pi

√
q

is a well de�ned homeomorphism onto some open Vi ⊆ C (with the convention that
the integral is taken along a path in Ui). The transition maps µj ◦µ−1

i : Vi → Vj are of
the form

z 7→ ±z + cij

for some constants cij ∈ C. The surface X∗ (and also X) together with the atlas
de�ned by the µi is called a �at surface.

If q = ω2 is the square of a holomorphic di�erential, there is a consistent choice of the
square root

√
q (namely ω) and thus all transition maps are of the form

z 7→ z + cij.

A surface with such an atlas is called a translation surface.

For A ∈ SL2(R) we obtain new chart maps on the open sets Ui by composing µi with
the R-linear map A : R2 → R2 (here we identify C with R2). The A ◦ µi de�ne a
new �at surface XA, or more precisely a new �at structure on the same surface X.
Since the topological surface has not changed, we can consider the marking τ also as
an isomorphism π1(X0) → π1(XA) and thus obtain a new point (XA, τ) in Teichmüller
space. Note that XA = X as Riemann surfaces if and only if A is C-linear, i. e.
orthogonal.

Proposition 13. a) Given (x, τ) ∈ Tg and q ∈ H0(X, Ω⊗2
X ) \ {0} as above, the map

ιX,q : H = SO2(R)\SL2(R) → Tg, SO2(R) · A 7→ (XA, τ)

is a Teichmüller embedding.
Denote by ∆(X, q) := ιX,q(H) the corresponding Teichmüller disk and by C(X, q) the
image of ∆(X, q) in the moduli space Mg.
b) Every Teichmüller embedding ι : H → Tg can be obtained by the above construction.
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Proof. A proof of part a) can be found e. g. in [H], Thm. 3.4.
For part b) note that a Teichmüller embedding ι : H → Tg is uniquely determined by
ι(i) and the complex tangent vector to ∆ = ι(H) ⊆ Tg in ι(i). As is well known, the
tangent space to Tg in a point (X, τ) can in a natural way be identi�ed with the space
H0(X, Ω⊗2

X ) of holomorphic quadratic di�erentials on X.

From the point of view of SL2(R)-actions on translation surfaces it is very natural to
study the above construction of Teichmüller disks not in Teichmüller space but rather
in the bundle ΩTg over Tg, cf. [McM], Sect. 3. ΩTg is the complement of the zero section
in the rank g vector bundle of holomorphic 1-forms over Tg and thus consists of the
triples (X, τ, ω) where (X, τ) is a point in Tg and ω a nonzero holomorphic di�erential
on X.

In the local charts on X de�ned by ω we can decompose ω into real and imaginary

part: ω = Reω + i Imω. For a matrix

(
a b
c d

)
∈ SL2(R) we can thus de�ne the real

di�erential
ωA := (aReω + b Imω) + i (cReω + d Imω).

Clearly ωA is holomorphic for the complex structure on X de�ned by the translation
structure µA, i. e. on the Riemann surface XA. We thus obtain an action of SL2(R) on
ΩTg by

A · (X, τ, ω) = (XA, τ, ωA).

This action obviously commutes with the action of the mapping class group (which
only changes the marking τ), hence it descends to an action of SL2(R) on the bundle
ΩMg over the moduli space Mg. Since the action of SL2(R) preserves the norm of the
di�erential it is natural to restrict it to the subspaces Ω1Tg and Ω1Mg of di�erentials
of norm 1. The study of the orbits of this action is an active �eld of research, see
e. g. [Mö]. Of particular interest are closed orbits in ΩMg, as we shall see in the next
section.

6 Veech groups

Let (X, µ) be a translation surface. A homeomorphism f : X → X is called a�ne if on
any open set U ⊆ Ui with f(U) ⊆ Uj, in the local charts µi and µj f can be expressed
by

µj(f(x)) = Aij · µi(x) + bij

with a matrix Aij ∈ GL2(R) and a constant bij ∈ R2. Since the transition maps are
translations, the matrices Aij are equal for all i and j.

If (X, µ) is only a �at surface the matrix part of an a�ne homeomorphism may change
its sign from one chart to another; hence the matrix is only well de�ned in PGL2(R).

De�nition 14. Let (X, µ) be a translation surface.

a) A�+(X, µ) denotes the set of all orientation preserving homeomorphisms f : X → X
that are a�ne with respect to µ. Moreover we require that the matrix part Af of f

11



has determinant 1; note that this condition is always satis�ed if X has �nite area.

b) Γ(X, µ) := {Af : f ∈ A�+(X, µ)} ⊆ SL2(R) is called the Veech group of (X, µ).

For a �at surface we obtain in the same way a Veech group in PSL2(R).

Note that the map f 7→ Af is a group homomorphism der: A�+(X, µ) → SL2(R),
called the derivative map. Its kernel consists of the translations.

Now let (X, µ) be the translation surface associated to a holomorphic di�erential ω on a
Riemann surface X. Then we denote the Veech group by Γ(X, ω) and the Teichmüller
disk obtained by the construction in Section 5 by ∆(X, ω). Similarly we use the
notations ∆(X, q) and Γ(X, q) for the Teichmüller disk and the Veech group obtained
from a holomorphic quadratic di�erential q on X.

Observe that every a�ne homeomorphism f ∈ A�+(X, ω) can be considered as an
element ϕf of the mapping class group Modg (or Modg,n where n = |X∗ \X|). Clearly
ϕf stabilizes ∆(X, ω). More precisely we have the following result, see [EG]:

Proposition 15. For the Teichmüller disk associated with a holomorphic 1-form ω on
a Riemann surface X we have
a) A�+(X, ω) = StabModg(∆(X, ω)).

b) Under the identi�cation in a), the translations in A�+(X, ω) correspond to the
pointwise stabilizer of ∆(X, ω) in Modg.

c) Γ(X, ω) ∼= Stab(∆(X, ω))/Stabpw(∆(X, ω)).

The question which subgroups of SL2(R) arise as Veech groups of Teichmüller disks (or
equivalently precompact translation surfaces) is still largely open. The most general
restrictions were already found by Veech himself in his seminal paper [V]:

Proposition 16. Let Γ = Γ(X, q) be the Veech group of a Teichmüller disk ∆(X, q).
Then

a) Γ is a discrete subgroup of SL2(R) resp. PSL2(R).

b) Γ is not cocompact, i. e. the Riemann surface H/Γ is not compact.

For a general Teichmüller disk the Veech group is either trivial or cyclic of order 2.
At the other extreme there are examples of Teichmüller disks ∆(X, q) whose Veech
group is a lattice in SL2(R), i. e. H/Γ(X, q) is a Riemann surface of �nite area, hence
compact minus �nitely many points. Since by Proposition 15 the map from ∆(X, q)
to the moduli space Mg factors through H/Γ(X, q), the image C(X, q) in Mg is a
Riemann surface of �nite type, or equivalently an algebraic curve (necessarily a�ne by
Prop. 16 b)). There can be only little di�erence between H/Γ(X, q) and C(X, q):

Proposition 17. For any Teichmüller disk ∆(X, q) the induced map H/Γ(X, q) →
C(X, q) is birational.

Proof. This follows from the fact that Modg acts properly discontinuously on Tg.

If Γ(X, q) is a lattice in SL2(R) (or PSL2(R)) the algebraic curve C(X, q) in Mg is called
a Teichmüller curve. In this case the image of ∆(X, q) in Mg is closed. A theorem
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of Smillie assures that the converse also holds: C(X, q) is closed in Mg if and only if
Γ(X, q) is a lattice in SL2(R) (resp. PSL2(R)).

An interesting class of examples for Teichmüller curves can be obtained from origamis:
An origami (or square-tiled surface) is a translation surface that can be obtained by
gluing �nitely many plane unit squares by translations. Thus the left edge of each
square is glued to the right edge of one of the squares, its upper edge is glued to a
lower edge, and the resulting compact surface has to be connected. Here is an example,
where edges with the same label are glued:

// /

\\ \

/ //

\ \\

== � = =�

� = =� ==

◦ ◦

Wollmilchsau

An origami comes along with a natural map p : X → E to the torus E which is ob-
tained by gluing the opposite edges of a single unit square: p maps each square of X
to the unique square of E and is unrami�ed outside the vertices of the squares. In
particular, p is rami�ed (if at all) only over the point∞ ∈ E which results from gluing
the four vertices of the square. Conversely every �nite covering p : X → E which
is rami�ed over at most one point de�nes an origami by pulling back the translation
structure on E via p.

The Teichmüller disk ∆(O) corresponding to an origami O = (p : X → E) is ob-
tained via the construction in Section 5 by considering X with its translation atlas as a
Riemann surface and using the holomorphic 1-form p∗ωE, where ωE is a nonzero holo-
morphic di�erential on E (which is unique up to multiplication by a nonzero complex
number).

The Veech group of the �basic� origami E is easily seen to be SL2(Z). In general, the
Veech group Γ(O) of an origami O turns out to be a �nite index subgroup of SL2(Z).
By a result of Gutkin and Judge [GJ] the converse also holds. Thus we have:

Proposition 18. The Veech group Γ(∆) of a Teichmüller disk ∆ ⊂ Tg is a �nite index
subgroup of SL2(Z) if and only if ∆ = ∆(O) for an origami O.

There is an e�cient algorithm to determine the Veech group of an origami [Sch1]. For
many subgroups of SL2(Z) of �nite index it is known that they arise as the Veech
group of an origami: most of the congruence groups [Sch2], and all subgroups of the
principal congruence group Γ(2) that contain −I [EM]. Nevertheless there remain
many subgroups of SL2(Z) for which it is open whether they are Veech groups or not.
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7 Horizontal cut systems

In this section we show that on a �at surface with a horizontal cylinder decomposition
there exist cut systems that consist entirely of �horizontal� curves. This will be crucial
for the analysis of the image of Teichmüller disks in Schottky space that will be carried
out in the next section. The concept of horizontal cut systems and the proof of their
existence are due to Diego De Filippi in his PhD thesis [DF].

Let (X, q) be a �at surface de�ned by a holomorphic quadratic di�erential on a Riemann
surface X, and let µi : Ui → R2 be the chart maps de�ned by q as in Section 5. A
maximal (real) curve in X that is mapped by the µi to a straight line segment in R2, is
called a trajectory of q. The direction of a trajectory is the direction vector v ∈ R2 of
the line segment. By postcomposing the µi with a rotation (which does not change the
complex structure), we can always achieve that a given direction v becomes horizontal.
A direction v ∈ R2 is called a Strebel direction if all trajectories in direction v are closed
or hit a zero of q.

If v is a Strebel direction for q, X is decomposed into �nitely many cylinders in direction
v; more precisely, the complement of the �critical� trajectories, i. e. those containing a
zero of q, is a �nite union of annuli that are swept out by closed trajectories in direction
v. This follows from work of Strebel and Masur, cf. [HS], Sect. 4.1.

We shall always assume that the horizontal direction is a Strebel direction on the �at
surface X, in other words that X is decomposed into horizontal cylinders C1, . . . , Cp.
Such a decomposition is e. g. guaranteed if the Veech group of X contains a parabolic
element A ∈ PSL2(R): Veech showed in [V] Prop. 2.4 that in this case an eigenvector
v ∈ R2 of A determines a Strebel direction on X. This result is a converse to the
following observation:

Remark 19. Let (X, q) be a �at surface on which the horizontal direction is Strebel.
Assume moreover that the lengths of the horizontal cylinders are commensurable. Then
there exists an a�ne homeomorphism ϕ in A�+(X, q) which on each cylinder Ci acts
as horizontal shearing by the l.c.m. of the cylinder lengths. The derivative of ϕ is a
parabolic element A in the Veech group Γ(X, q).

In each horizontal cylinder Ci of X we can choose an interior horizontal trajectory mi

as core line. Then the homeomorphism ϕ in the previous remark acts on Ci as a power
of the Dehn twist along mi. Following [DF] we call a path in X∗ horizontal if it does
not intersect any of the core lines.

De�nition 20. Let X be a �at surface of genus g ≥ 1 with a horizontal cylinder de-
composition. Disjoint simple closed curves c1, . . . , cg are called a horizontal cut system
if

(i) all ci are horizontal

(ii) X − ∪g
i=1ci is connected.

Proposition 21. On each �at surface with a horizontal cylinder decomposition, there
exist horizontal cut systems.
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Proof. An explicit construction, starting from a maximal non-separating set of hori-
zontal trajectories, is given in [DF] Ch. 6. We illustrate the result with an example,
which shows a horizontal cut system on the origami we have already seen in Section 6:

K1

K2

K3

o o

//

/

\ \\

\

/

//

\\

||||

|||||

|

||||

|||||

|

8 Teichmüller disks in Schottky space

The image of a Teichmüller disk ∆ ⊂ Tg in the Schottky space Sg �rst of all depends
on the choice of the covering map sα, i. e. on the choice of a symplectic homomorphism
α : πg → Fg. For given α, the image sα(∆) is isomorphic to the quotient of ∆ by
the intersection Γ(∆, α) of Modg(α) with the stabilizer Stab(∆) of ∆ in Modg. Recall
that if ∆ is a Teichmüller disk corresponding to the �at surface (X, q), Stab(∆) is
isomorphic to A�+(X, q) and Stab(∆)/Stabpw(∆) is isomorphic to the Veech group
Γ(X, q). Hence if Γ(∆, α) is trivial, sα(∆) is again biholomorphic to a disk. Thus
the interesting question is whether there can be nontrivial elements in the intersection
Modg(α) ∩ Stab(∆). A satisfactory answer is given by the �rst main result of [DF]:

Theorem 1. Let (X, q) be a �at surface which admits a decomposition into horizontal
cylinders of commensurable lengths. Then there exists a symplectic homomorphism
α : πg → Fg such that Modg(α) ∩ Stab(∆(X, q)) contains an element of in�nite order.

Proof. The assumption on the cylinder decomposition implies that the horizontal di-
rection is a Strebel direction and therefore by Remark 19 that there is an a�ne auto-
morphism ϕ ∈ A�+(X, q) that preserves the horizontal cylinders, and on each of them
acts as a power of the Dehn twist along the core line.
By Prop. 21 there exists a horizontal cut system c1, . . . , cg on (X, q). Fix a base point
x0 ∈ X for the fundamental group and denote by αi the class of ci in π1(X, x0).
Complete α1, . . . , αg to a standard set of generators α1, β1, . . . , αg, βg of π1(X, x0) by
choosing appropriate paths in X. Then considering ϕ as an element of Out(πg) we �nd
ϕ(αi) = αi and ϕ(βi) = βi up to multiplication by a product of the αj and conjugation.
Fix a marking τ : πg → π1(X, x0) of X and let ∆(X, q) be the Teichmüller disk through
(X, τ) de�ned by q. Let ai := τ−1(αi), bi := τ−1(βi), i = 1, . . . , g, and α : πg → Fg the
symplectic homomorphism de�ned by α(ai) = 1, α(bi) = γi, i = 1, . . . , g. As we have
seen, the class of ϕ in Modg is an element of both Modg(α) and Stab(∆(X, q)).
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Now that we have seen that Modg(α)∩ Stab(∆(X, q)) can contain parabolic elements,
the next natural question to ask is how big this intersection can be. For translation
surfaces the answer is given by the second main theorem of [DF]:

Theorem 2. Let (X, ω) be a translation surface of genus g ≥ 2. Then for any sym-
plectic homomorphism α : πg → Fg, Modg(α) ∩ Stab(∆(X, ω)) is cyclic.

In fact the statement can be made a little more precise: the intersection is either trivial
or in�nite cyclic generated by a parabolic element.

A corresponding statement for �at surfaces that are not translation surfaces is not
known. The main argument in the proof of Theorem 2 does not hold in this case,
but nevertheless there is no example so far of a noncyclic intersection Modg(α) ∩
Stab(∆(X, q)).

Proof of Theorem 2. First note that Γ(∆, α) := Modg(α)∩Stab(∆(X, ω)) cannot con-
tain an element of �nite order since Modg(α) is torsion free. Next suppose that Γ(∆, α)
contains two parabolic elements with di�erent �xed points on ∂H: their commutator
would be hyperbolic. Thus to prove the theorem it su�ces to show that Γ(∆, α) cannot
contain a hyperbolic element. This is done in two steps:

Proposition 22 ([DF] Satz 5.7). Let (X, ω) be a translation surface of genus g ≥ 2
and ϕ ∈ A�+(X, ω). Denote by A = der (ϕ) ∈ SL2(R) the matrix part of ϕ and by
Mϕ ∈ GL2g(C) the automorphism of H1(X, C) induced by ϕ.
Then the eigenvalues of A are also eigenvalues of Mϕ.

Proof of Proposition 22. Identify H1(X, C) with H1
DR(X) ⊗ C and consider the 2-

dimensional subspace U generated by Reω and Imω. By the de�nition of an a�ne
automorphism, U is ϕ-invariant, and by Section 5, ϕ acts on U via the matrix A.

In the second step one shows that Mϕ can only have the eigenvalue 1. Then A has
the eigenvalue 1 with multiplicity 2 and hence is parabolic. This �nishes the proof of
Theorem 2.

In fact, the second step in the above proof follows from the following explicit result:

Proposition 23 ([DF] Lemma 3.1). Let α : πg → Fg be a symplectic homomorphism,
ϕ ∈ Modg(α) and Mϕ ∈ GL2g(Z) the matrix describing the automorphism of πabg

∼= Z2

induced by ϕ with respect to the basis a1, b1, . . . , ag, bg of πabg . Then

Mϕ =

(
Ig B
0 Ig

)
with the g×g unit matrix Ig and some B ∈ Zg×g.

Proof. Consider ϕ ∈ Modg
∼= Out(πg) as an (outer) automorphism of πg. Then the

(i, j)-th entry in the �rst g×g block of Mϕ is the number of occurrences of ai in ϕ(aj)
written as word in a1, b1, . . . , ag, bg and counted with sign, and similarly for the other
three blocks. Then the result follows from the de�ning properties of ϕ being an element
of Modg(α).
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Finally we want to describe the image of a Teichmüller disk ∆ = ∆(X, ω) (for a
translation surface (X, ω) of genus g ≥ 2) in Schottky space Sg: We pick a symplectic
homomorphism α : πg → Fg, and we know that sα(∆) is isomorphic to ∆/Γ(∆, α).
From Theorem 2 we know that Γ(∆, α) is either trivial or in�nite cyclic generated by a

parabolic element. Since every parabolic element in SL2(R) is conjugated to

(
1 1
0 1

)
,

the quotient in the second case is isomorphic to H/ <

(
1 1
0 1

)
>. This is the punctured

disk {z ∈ C : 0 < |z| < 1}, the quotient map being the exponential map z 7→ e2πiz.
Thus we can summarize our observations in

Corollary 24. Let (X, ω) be a translation surface of genus g ≥ 2 and ∆ = ∆(X, ω) a
corresponding Teichmüller disk in Tg. For any symplectic homomorphism α : πg → Fg,
the image sα(∆) of ∆ in Sg is either a disk or a once punctured disk. The latter happens
if and only if the Veech group Γ(X, ω) contains a parabolic element, and α is suitably
chosen.
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