
A omb of origami urves in M3Frank HerrlihIn this note we present some results of our joint work with Gabriela Shmithüsenon a very partiular and, as we think, highly fasinating on�guration of origamiurves in the moduli spae M3. For most of the results, more details and proofsan be found in [2℄ and [4℄.1 Origami urvesIn this setion we brie�y reall the notions of origamis, Teihmüller embeddings,Veeh groups, and Teihmüller urves. More details and bakground informationan be found e. g. in G. Shmithüsen's artile [9℄ in this volume.1.1 OrigamisAn origami is a speial kind of a translation surfae. It an be obtained by thefollowing ombinatorial onstrution:Take a �nite number of (eulidean unit) squares and glue eah left edge to a rightedge and eah top edge to a bottom edge, and vie versa.If the resulting ompat surfae X is onneted, we all it an origami. X isendowed with a translation struture whih is obtained by using the squares asharts and translations for the gluing.Our favourite example, whih plays a ruial role in this note, is
// /\\ \
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If the edges are glued as indiated, i. e. edges with the same label are glued,we obtain a losed surfae W with 4 marked points. The genus of W an beseen by ounting squares (8), edges (16), and verties (4): Euler's formula gives
8 − 16 + 4 = 2 − 2g, thus g = 3.Mapping eah square of an origami onto the torus E de�nes a overing X → E1



of degree d (= the number of squares) whih is unrami�ed outside the vertiesof the squares. Conversely, let p : X → E be a (rami�ed) overing and endow Ewith the (standard) translation struture ηI inherited from the one on R
2 = C bythe universal overing E = R2/Z2 = C/(Z + iZ). Then ηI lifts to a translationstruture µI = p∗(ηI) on X∗ = X − {rami�ation points of p}. In the speialsituation that p is rami�ed over (at most) one point ∞ ∈ E, µI deomposes X∗into squares. This motivatesDe�nition 1. An origami is a �nite overing O = (p : X → E) of the torus Ewhih is rami�ed over at most one point ∞ ∈ E.For an origami O = (p : X → E), we denote by X∗ the inverse image of E∗ =

E − {∞} under p; thus p : X∗ → E∗ is an unrami�ed overing.1.2 Teihmüller embeddingsA matrix A =

(

a b
c d

)

∈ SL2(R) de�nes a lattie ΛA = (a+ ci)Z⊕ (b+di)Z ⊂ C.Identifying the torus E with C/ΛA gives a translation struture ηA on E whihan also be obtained from ηI by omposing the hart maps with the a�ne map
A : R2 → R2.An origami O = (p : X → E) thus de�nes a family µA = p∗(ηA) of translationstrutures on X∗, indexed by the matries A ∈ SL2(R).Note that, sine translations are holomorphi maps in C, eah of our translationstrutures µA de�nes a struture of Riemann surfae on X∗, and also on X(sine it an be extended in a unique way to the isolated points p−1(∞). Wetake (X, µI) as referene Riemann surfae of the Teihmüller spae Tg of markedRiemann surfaes of genus g = genus(X); for eah A ∈ SL2(R), we onsider theidentity map id : X → X as a marking of the Riemann surfae (X, µA). Thisgives us a map

f̃O : SL2(R) → Tg.If A ∈ SO2(R), the assoiated a�ne map is onformal, hene holomorphi. Thisshows that f̃O indues a map
fO : SO2(R)\SL2(R) → Tg.We identify SO2(R)\SL2(R) with the omplex upper half plane H: SL2(R) atson H by Möbius transformations, and SO2(R) is the stabilizer of i. We then mapthe oset SO2(R) · A to −A−1(i).There is the following basiFat 2. An origami O = (p : X → E) indues an injetive map

fO : H → Tg, g the genus of X,2



whih is holomorphi and isometri (with respet to the hyperboli metri on Hand the Teihmüller metri on Tg).De�nition 3. A holomorphi isometri embedding ι : H → Tg is alled a Teih-müller embedding. In this ase, ∆ι := ι(H) is alled a Teihmüller disk.If O is an origami, we write ∆O instead of ∆fO
.1.3 Veeh groupsFor an origami O = (p : X → E) denote by A�+(O) the group of orientationpreserving di�eomorphisms of X∗ whih are a�ne with respet to the translationstruture µI . For an element f ∈ A�+(O), the linear part is a matrix A ∈ SL2(R)whih is independent of the harts and thus de�nes a homomorphism

D : A�+(O) → SL2(R).The kernel of D is the (�nite!) group of translations of (X∗, µI).De�nition 4. The image Γ(O) = A�+(O)/ker(D) ⊂ SL2(R) is alled the Veehgroup of O.For a di�erent desription of the Veeh group reall that the mapping lass groupModg ats on the Teihmüller spae Tg by holomorphi isometries. The ation isproperly disontinuous, and the orbit spae
Mg = Tg/Modgis the moduli spae of Riemann surfaes of genus g, a quasi-projetive algebraivariety of (omplex) dimension 3g − 3.With an origami O we assoiate the subgroup

S(O) = {ϕ ∈ Modg : ϕ(∆O) = ∆O}of elements of Modg that stabilize the Teihmüller disk ∆O. Working arefullythrough the de�nitions and using results proved in [1℄ (see also [3, Setion 2.4.3℄),one �nds the following importantFat 5. For an origami O we haveA�+(O) ∼= S(O) and
Γ(O) ∼= S(O)/S0(O),where S0(O) = {ϕ ∈ Modg : ϕ|∆O = id∆O

}.In [8℄ G. Shmithüsen found a very nie and useful alternate haraterizationof the Veeh group of an origami. It is based on the following observation: If3



O = (p : X → E) is an origami, the unrami�ed overing p : X∗ → E∗ indues anembedding
U := π1(X

∗) ⊂ π1(E
∗) = F2of the fundamental groups, where F2 is the free group on two generators. ThenShmithüsen proved the followingFat 6.

Γ(O) = proj(Stab(U)),where Stab(U) = {γ ∈ Aut+(F2) : γ(U) = U} is the stabilizer of U , andproj : Aut+(F2) → Out+(F2) = SL2(Z)is the natural projetion.An immediate orollary is that Γ(O) is always a subgroup of SL2(Z) of �niteindex (a fat that was known previously by di�erent arguments).1.4 Origami urvesFor an origami O, denote by C(O) the image of ∆O in the moduli spae Mg =
Tg/Modg. By Fat 2, the projetion ∆O → C(O) fators through the Riemannsurfae C̃(O) := H/Γ(O) (to be preise, we have to de�ne C̃(O) as the mirrorimage of H/Γ(O), see [6℄). Sine Γ(O) has �nite index in SL2(Z) and thus is alattie in SL2(R), C̃(O) is of �nite type. On the other hand, it is not ompat,sine Γ(O) neessarily ontains paraboli elements.Another important result is (f. [6, Cor. 3.3℄)Fat 7. For an origami O, the map C̃(O) → C(O) is birational.It follows that C(O) is an algebrai urve (embedded into Mg); we all it theorigami urve assoiated with O.We have seen that C(O) is never projetive (thus always has usps), and that
C̃(O) is its normalization. There are a few more general results on origami urves(but not too many):

• C(O) is de�ned over a number �eld.In fat, the inlusion Γ(O) ⊂ SL2(Z) indues a �nite overing C̃(O) → A1 =
H/SL2(Z) whih is rami�ed at most over two points (namely 0 and 1728). Theresult therefore follows from Belyi's theorem.Remark: For any Teihmüller disk ∆ι ⊂ Tg, one an onsider its image in Mg.If it is an algebrai urve (whih is a rather rare ase) this urve is alled aTeihmüller urve. Möller proved in [7℄ that all Teihmüller urves are de�nedover number �elds. 4



• There are origami urves of arbitrarily large genus.Examples were given by G. Shmithüsen in [8℄ where she showed for the in�-nite sequene Ok ( k odd) of �ross shaped� origamis, that their Veeh group isonjugated to the ongruene group Γ1(2k).
• Even in M2 there are origami urves of arbitrarily large genus.This was shown by Hubert and Lelièvre [5℄ using L-shaped origamis.2 The quaternion origamiIn this setion we present some results on the origami W whih was investigatedin detail in [2℄. As an origami, W was already shown in Setion 1.1. Here we �rstobserve thatW is losely related to the lassial quaternion group Q with the eightelements ±1,±i,±j,±k whih are subjet to the relations i2 = j2 = k2 = −1,

ij = −ji = k. In fat, if we label the squares of W with the elements of Q as inthe following piture,
−j j

1 i −1 −i

k −k// /\\ \

/ //\ \\== � = =�� = =� ==
◦ ◦we reognize the Cayley graph of Q: the right neighbour of the square labeled

g is labeled g · i, and the top neighbour is g · j; for a desription of origamis byCayley graphs in the general situation see the last paragraph of Setion 1 in [9℄.
Q ats on W by multiplying the labels from the left. This gives not only automor-phisms of the Cayley graph, but also translations of the origami. In partiular,the origami map p : W → E is a normal overing with Galois group Q.The origami W has a lot of remarkable properties, some of whih are listed inthe following (see [2℄ for omplete proofs):

• The Veeh group of W is equal to SL2(Z).Using Fat 6 it su�es to show that the subgroup U of F2 assoiated to W is aharateristi subgroup. Sine p : W ∗ → E∗ is normal with dek transformationgroup Q, U is the kernel of the homomorphism F2 → Q that maps the generators
x and y to i and j, respetively. One then shows that this kernel is stable underall automorphisms of F2.

• The quotient of W by the subgroup {±1} of Q is E, and
p = [2] ◦ q,5



where q : W → W/{±1} is the quotient map, and [2] is the multipliation by 2on the ellipti urve E. Here we hoose the origin ∞ for the group law on E tobe one of the verties of the squares; then the other three verties are the pointsof order 2.
• The origami urve C(W ) ⊂ M3 is isomorphi to the a�ne line A1.It follows from Fat 7 that there is a birational map

f : A
1 = H/SL2(Z) = H/Γ(W ) → C(W ).That in this speial ase, f an be shown to be an isomorphism, is essentiallydue to the following expliit desription of C(W ):

• C(W ) is the image in M3 of the family
Wλ : y4 = x(x − 1)(x − λ), λ ∈ C − {0, 1}.The proof of this result is based on the existene of an automorphism c of W oforder 4 with 4 �xed points: Then W/ < c > has genus 0, and an analysis of themonodromy leads to the equation.The automorphism c �xes all verties of W , and ats by rotation by π around theverties (note that the total angle at a vertex is 4π sine all 8 squares are gluedto eah vertex). c2 is the translation −1 ∈ Q; c ommutes with i and j, and thesix automorphisms ±σ, ±ρ, and ±τ all have order 2, where σ = −ck, ρ = −ciand τ = −cj.Thus the automorphism group of W onsists of the 8 translations in Q and the 8elements ±c, ±σ, ±ρ, and ±τ , all of whih have derivative −I. We have found:

• There is an exat sequene of groups
1 → Q → Aut(W ) → Z/2Z → 1.The automorphism σ �xes the enters of the squares 1,−1, k and −k; similarlyeah of the other �ve involutions in Aut(W ) − Q has 4 �xed points on W . Thisimplies that W/ < σ > has genus 1. In fat, we have the muh stronger result

• For eah λ ∈ C − {0, 1}, Wλ/ < σ>∼= E−1where E−1 is the ellipti urve with equation y2 = x(x − 1)(x + 1) = x3 − x.Sine c ommutes with σ, it desends to an automorphism c̄ of Wλ/ < σ>. But
E−1 is the only ellipti urve with an automorphism of order 4 whih has a �xedpoint.The main result of [2℄ is based on the following6



Observation. The quotient map κλ : Wλ → Wλ/ < σ > = E−1 is rami�edover 4 points P, Q, R, S on E−1 that form an orbit under the automorphism c̄. If
P, Q, R, S all are n-torsion points for some n ≥ 2, then [n] ◦ κλ : Wλ → E−1 isrami�ed only over ∞ and hene an origami.Sine c̄ preserves the kernel E−1[n] of multipliation by n, it even su�es for
[n] ◦ κλ to be an origami that P is an n-torsion point.Theorem 8. For every n ≥ 3 and every n-torsion point P ∈ E−1[n] on E−1,there is λ ∈ C − {0, 1} suh that P is a branh point of κλ.Then DP := [n] ◦ κλ is an origami.Corollary 9. C(W ) intersets in�nitely many other origami urves.We all this on�guration in the moduli spae � one algebrai urve intersetedtransversally by ountably many others � a omb, although it will turn out inthe next setion that in our ase, the piture of a omb should not be taken tooliterally.3 The omb embedded into a Hurwitz spae3.1 The origamis DPThe origamis DP that de�ne the teeth of our omb are obtained from 2-sheetedoverings of the ellipti urve E−1 that are rami�ed over 4 points P, Q, R, S, all ofwhih are n-torsion points for some n ≥ 3. Moreover, P, Q, R and S are an orbitunder the automorphism c̄, thus Q = c̄(P ), R = c̄2(P ) and S = c̄3(P ) = c̄2(Q).As a Riemann surfae, E−1 is isomorphi to C/(Z + iZ), i. e. the ellpiti urvewith the translation struture that we alled ηI in Setion 1.1 Sine c̄ has order4, it lifts to rotation by π

2
around the origin on the universal overing C. c̄ has 2�xed poitns on E−1, namely ∞ (the image of the origin in C) and M , the imageof the midpoint 1

2
+ 1

2
i of the unit square. Note that M is a point of order 2 on

E−1.A typial piture (with n = 5) of the on�guration of the rami�ation points
P, Q, R, S de�ning suh an origami DP is therefore

qc qc
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Note that c̄2 is rotation by π around ∞, whih is the same as multipliation by
−1. In partiular R = −P and S = −Q.If we go to a di�erent point on the origami urve C(DP ), we replae the squaresby parallelograms de�ned by a matrix A ∈ SL2(R); on the torus E we then havethe translation struture ηA. Thereby the automorphism c̄ is transformed to adi�eomorphism c̄A on EA = (E, ηA) whih still has order 4, but in general is nolonger onformal: c̄ has derivative D(c̄) =

(

0 1
−1 0

)

∈ SO2(R), but D(c̄A) =

A

(

0 1
−1 0

)

A−1 whih is in general not orthogonal.On the other hand, c̄2 has derivative−I =

(

−1 0
0 −1

), whih is entral in SL2(R).Thus c̄2
A is multipliation by −1 on the ellipti urve EA for every A ∈ SL2(R).The point on C(DP ) orresponding to A therefore determines a 2-fold overing

XA → EA whih is rami�ed over 4 points PA, QA, RA, SA satisfying RA = −PAand SA = −QA. In ontrast to this, the ondition �QA = c̄(PA)� annot beexpressed as an algebrai relation between PA and QA.3.2 The Hurwitz spae HIn this setion we study all overings of the type just desribed in the previoussetion. More preisely we onsider pairs (X, p) where
X is a ompat Riemann surfae of genus 3
p : X → E is a morphism of degree 2
E is an ellipti urve
p is rami�ed over 4 points P, Q,−P,−Q.Note that the phrase �E is an ellipti urve� means that a point ∞ on E has beenhosen as origin for the group law, so that multipliation by −1 is well de�ned.Two suh pairs (X, p) and (X ′, p′) are onsidered equivalent, if there are iso-morphisms ϕ : X → X ′ and ϕ̄ : E → E ′ satisfying ϕ̄ ◦ p = p′ ◦ ϕ. In thisase ϕ neessarily maps the rami�ation points of p to those of p′, and ϕ̄ maps

{P, Q,−P,−Q} onto {P ′, Q′,−P ′,−Q′}.Denote by H̃ the set of equivalene lasses of pairs (X, p) as above. H̃ arries anatural struture of an algebrai variety. This is true muh more generally for theset of equivalene lasses of overings p : X → Y of urves, where the genus of Xand Y and the degree of p are �xed, and possibly also some additional data likerami�ation orders or the monodromy of p. These algebrai varieties are knownas Hurwitz spaes. A general feature of these Hurwitz spaes is that the forgetfulmap [p : X → Y ] 7→ [X] gives a �nite morphism to the moduli spae Mg, where
g is the genus of X. 8



In our partiular situation, the algebrai struture on H̃ an be desribed veryexpliitly, as we shall see in the next setion.Note that H̃ is three dimensional, as an be seen by a naïve dimension ount:one parameter to determine the ellipti urve, one for P , and one for Q.We begin our investigation of H̃ with the following basi observation (see [4,Prop. 8℄Proposition 10. Let (X, p) be a point in H̃. Then Aut(X) ontains a subgroupisomorphi to the Klein four group V4.Sine p is of degree 2, it is the quotient for an involution σ on X. The key pointin the proof of the proposition is to show that the automorphism [−1] on E liftsto a seond involution τ on X.By the de�nition of H̃ , σ has 4 �xed points on X (namely the inverse images of
P, Q,−P and −Q). The only possible �xed points of τ (and also of στ) are theinverse images of the 4 �xed points of [−1] on E (i. e. p−1(E[2])). Eah of these8 points is �xed by either τ or στ (but not by both!). If one of τ or στ �xes all8 points, the quotient by this automorphism has genus 0, whih implies that Xis hyperellipti. If τ and στ �x 4 points eah, all quotients have genus 1, and Xis not hyperellipti.If the overing p : X → E is indued by an origami DP as in Setion 3.1, τ or
στ oinides with c2 (sine they all desend to [−1] on E). Sine c2 has 4 �xedpoints (the inverse images of ∞ and M), the above reasoning shows that X isnot hyperellipti. We therefore restrit our attention to the subset

H := {(X, p) ∈ H̃ : X is not hyperellipti}of H̃ (in fat, H is a onneted omponent of H̃).So far we have seen in this setion that the omb C, whih is the union of theorigami urves C(W ) and C(DP ) for all P ∈ E−1[n] for some n ≥ 3, is ontainedin µ(H), where we denote by
µ : H → M3the forgetful map [(X, p)] 7→ [X]. The surprising result now is, see [4, Thm. 1℄:Theorem 11. C is dense in µ(H).Sine µ is a �nite morphism of algebrai varieties, the inverse image CP :=

µ−1(C(DP )) ⊂ H is also an algebrai urve (for eah P ∈ E−1[n], n ≥ 3). Anequivalent formulation of Theorem 11 is thereforeTheorem 11′. The union of the CP , P an n-torsion point on E−1 for some
n ≥ 3, is dense in H . 9



The idea of the proof is to approximate, for given (X, p) ∈ H , the points P and
Q on the ellipti urve E = p(X) by torsion points Pn, Qn. This gives points in
H that approximate (X, p) and lie on some origami urve. The tehnial heartof the proof is then to �nd A ∈ SL2(R) suh that E = EA and Qn = c̄A(Pn) (i. e.
Pn, Qn,−Pn,−Qn is an orbit under the a�ne deformation c̄A of c̄).3.3 A�ne oordinates for HIn this �nal setion we sketh the expliit desription of the Hurwitz spae Hintrodued in the last setion.For this purpose we onsider the family

Cabc : x4 + y4 + z4 + 2ax2y2 + 2bx2z2 + 2cy2z2of plane projetive omplex urves. A straightforward alulation shows that
Cabc is singular if one of a, b or c is +1 or −1, or if a2 + b2 + c2 − 2abc = 1, andnonsingular otherwise. Therefore we introdue the open subset

U := {(a, b, c) ∈ C
3 : (a2 − 1)(b2 − 1)(c2 − 1)(a2 + b2 + c2 − 2abc − 1) 6= 0}of C3. For (a, b, c) ∈ U , the nonsingular urve Cabc is not hyperellipti (nohyperellipti urve an be smoothly embedded into the projetive plane).

Cabc admits the automorphisms
α : (x : y : z) 7→ (−x : y : z) and
β : (x : y : z) 7→ (x : −y : z),whih generate a group isomorphi to V4. α has 4 �xed points (namely the points

(0 : y : 1) with y4 + 2c2 + 1 = 0); they are symmetri with respet to β. Thisshows that the quotient map
pα : Cabc → Cabc/ <α>de�nes a point in H . Conversely, eah (X, p) ∈ H an be represented by some

Cabc (see [4, Prop. 11℄), so we haveProposition 12. The map
h : U → H, (a, b, c) 7→ (Cabc, pα)is a �nite surjetive morphism of algebrai varieties.It follows that the natural map
m : U → M3, (a, b, c) 7→ [Cabc]10



fators through H .On the other hand, m also fators through the quotient U/L by the group L oflinear automorphisms of U . Clearly L ontains all permutations of a, b and c, andalso the map v with v(a, b, c) = (−a,−b, c). It is easy to see that L is generatedby these automorphisms, and that L is isomorphi to S4.Thus we have the following ommutative diagram of �nite morphisms of algebraivarieties:
U

h
//

q̃

��
m

""D

D

D

D

D

D

D

D

D

D

D

H

µ

��

U/L q
// M3Theorem 13. a) U/L is nonsingular.b) q is birational.Proof. b) is shown in [4, Prop. 16℄. One �rst observes that µ has degree 3 (beausefor a general point (X, p) in H , Aut(X) = V4, thus X has exatly 3 involutions).By diret omputation one then shows that the degree of h is 8. Sine the degreeof q̃ is |L| = 24, it follows from the ommutativity of the diagram that the degreeof q is 1.a) We prove the stronger result that C3/L is nonsingular, more preisely:

C
3/L ∼= C

3Thus we have to show that the subalgebra A := C[a, b, c]L of L-invariant polyno-mials in a, b and c is isomorphi to the polynomial ring in three variables. Forthis it su�es to show that A an be generated by 3 elements, sine the tran-sendene degree of A is the same as that of C[a, b, c].Obviously we have x, y and z in A, where
x = a2 + b2 + c2

y = abc

z = a2b2 + a2c2 + b2c2Now let f be any homogeneous L-invariant polynomial.We laim that for any monomial aibjck, that ours in f with nonzero oe�ient,the three exponents i, j and k all have the same parity.If not, we may assume that j ≡ k mod 2, but i 6≡ j mod 2. But then v(aibjck) =
−aibjck, ontraditing the invariane of f .Now assume that f ontains a monomial aibjck with a, b and c odd. Then

f̃ :=
∑

g∈L

g(aibjck)11



is L-invariant and divisible by y:
f̃ = abc

∑

g∈L

g(ai−1bj−1ck−1)where now all exponents of all monomials in the sum are even.For suitable λ ∈ C×, f − λf̃ does not ontain the monomial aibjck (and is stillinvariant).We are therefore redued to the ase that for all monomials ouring in f , allthree exponents are even. But then f is a symmetri polynomial in a2, b2 and
c2 and thus an be expressed by the elementary symmetri polynomials in a2, b2and c2, whih are x, z, and y2.Referenes[1℄ C. Earle and F. Gardiner: Teihmüller disks and Veeh's F -strutures. Amer-ian Mathematial Soiety. Contemporary Mathematis 201 (1997), 165�189.[2℄ F. Herrlih and G. Shmithüsen: An extraordinary origami urve. To appearin Math. Nahrihten.[3℄ F. Herrlih and G. Shmithüsen: On the boundary of Teihmüller disks inTeihmüller and in Shottky spae. To appear in: Handbook of Teihmüllertheory (ed. A. Papadopoulos).[4℄ F. Herrlih and G. Shmithüsen: A omb of origami urves in the modulispae M3 with three dimensional losure. To appear in Geom. dediata.[5℄ P. Hubert and S. Lelièvre: Prime arithmeti Teihmüller diss in H(2). IsraelJournal of Math. 151 (2006), 281�321.[6℄ C. MMullen: Billiards and Teihmüller urves on Hilbert surfaes. J. Am.Math. So. 16, No.4 (2003), 857�885.[7℄ M. Möller: Variations of Hodge struture of Teihmüller urves. Journal ofthe AMS 19 (2006), 327�344.[8℄ G. Shmithüsen: An algorithm for �nding the Veeh group of an origami.Experim. Math. 13 (2004), 459�472.[9℄ G. Shmithüsen: Origamis with non ongruene Veeh groups. This volume.Institut für Algebra und Geometrie, Universität Karlsruhe, 76128Karlsruhe, GermanyEmail: herrlih�math.uni-karlsruhe.de12


