A comb of origami curves in M3

Frank Herrlich

In this note we present some results of our joint work with Gabriela Schmithiisen
on a very particular and, as we think, highly fascinating configuration of origami
curves in the moduli space M3. For most of the results, more details and proofs
can be found in [2] and [4].

1 Origami curves

In this section we briefly recall the notions of origamis, Teichmiiller embeddings,
Veech groups, and Teichmiiller curves. More details and background information
can be found e.g. in G. Schmithiisen’s article |9] in this volume.

1.1 Origamis

An origami is a special kind of a translation surface. It can be obtained by the
following combinatorial construction:

Take a finite number of (euclidean unit) squares and glue each left edge to a right
edge and each top edge to a bottom edge, and vice versa.

If the resulting compact surface X is connected, we call it an origami. X is
endowed with a translation structure which is obtained by using the squares as
charts and translations for the gluing.

Our favourite example, which plays a crucial role in this note, is
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If the edges are glued as indicated, i.e. edges with the same label are glued,
we obtain a closed surface W with 4 marked points. The genus of W can be
seen by counting squares (8), edges (16), and vertices (4): Euler’s formula gives
8§ —16+4 =2 —2g, thus g = 3.

Mapping each square of an origami onto the torus E defines a covering X — F



of degree d (- the number of squares) which is unramified outside the vertices
of the squares. Conversely, let p : X — F be a (ramified) covering and endow F
with the (standard) translation structure 7y inherited from the one on R? = C by
the universal covering F = R?/Z? = C/(Z + iZ). Then ny lifts to a translation
structure pu; = p*(nr) on X* = X — {ramification points of p}. In the special
situation that p is ramified over (at most) one point co € F, u; decomposes X*
into squares. This motivates

Definition 1. An origami is a finite covering O = (p : X — E) of the torus E
which 1s ramified over at most one point oo € E.

For an origami O = (p : X — E), we denote by X* the inverse image of E* =
E —{oo} under p; thus p : X* — E* is an unramified covering.

1.2 Teichmiiller embeddings

A matrix A = (a b
c d

Identifying the torus E with C/A4 gives a translation structure n4 on E which

can also be obtained from 7; by composing the chart maps with the affine map

A:R? — R2

An origami O = (p : X — F) thus defines a family ps = p*(n4) of translation

structures on X*, indexed by the matrices A € SLy(R).

€ SLo(R) defines a lattice Ay = (a+ci)Z & (b+di)Z C C.

Note that, since translations are holomorphic maps in C, each of our translation
structures gy defines a structure of Riemann surface on X*, and also on X
(since it can be extended in a unique way to the isolated points p~!(co). We
take (X, p17) as reference Riemann surface of the Teichmiiller space T, of marked
Riemann surfaces of genus g = genus(X); for each A € SLy(R), we consider the
identity map id : X — X as a marking of the Riemann surface (X, p4). This
gives us a map

fo 1 SLy(R) — T,
If A € SO,(R), the associated affine map is conformal, hence holomorphic. This

shows that fo induces a map
fo : SO2(R)\SLy(R) — 1.

We identify SO5(R)\SLy(R) with the complex upper half plane H: SLy(R) acts
on H by Mébius transformations, and SOy(R) is the stabilizer of i. We then map
the coset SOo(R) - A to —A~1(3).

There is the following basic

Fact 2. An origami O = (p: X — E) induces an injective map

fo H—1T,, g the genus of X,
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which is holomorphic and isometric (with respect to the hyperbolic metric on H
and the Teichmiller metric on T,).

Definition 3. A holomorphic isometric embedding ¢ : H — T, is called a Teich-
miiller embedding. In this case, A, := ((H) is called a Teichmiiller disk.
If O is an origami, we write Ao instead of Ay, .

1.3 Veech groups

For an origami O = (p : X — E) denote by Aff"(O) the group of orientation
preserving diffeomorphisms of X* which are affine with respect to the translation
structure p;. For an element f € AffT(0), the linear part is a matrix A € SLy(R)
which is independent of the charts and thus defines a homomorphism

D : AffH(O) — SLa(R).
The kernel of D is the (finite!) group of translations of (X*, pp).

Definition 4. The image I'(O) = Aff*(O)/ker(D) C SLy(R) is called the Veech
group of O.

For a different description of the Veech group recall that the mapping class group
Mod, acts on the Teichmiiller space Tj; by holomorphic isometries. The action is
properly discontinuous, and the orbit space

M, =T,/Mod,

is the moduli space of Riemann surfaces of genus ¢, a quasi-projective algebraic
variety of (complex) dimension 3g — 3.

With an origami O we associate the subgroup
S(0) = {y € Mod, : p(Ao) = Ao}

of elements of Mod, that stabilize the Teichmiiller disk Ap. Working carefully
through the definitions and using results proved in [1] (see also |3, Section 2.4.3|),
one finds the following important

Fact 5. For an origami O we have
AffF(0) S(0) and

ro) = 5(0)/5(0),
where Sp(0O) = {p € Mod, : ¢p|Ap =ida, }.
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In [8] G. Schmithiisen found a very nice and useful alternate characterization
of the Veech group of an origami. It is based on the following observation: If



O = (p: X — E) is an origami, the unramified covering p : X* — E* induces an
embedding
U .= 7T1(X*) C 7T1(E*) = Fg

of the fundamental groups, where Fj is the free group on two generators. Then
Schmithiisen proved the following

Fact 6.
I'(O) = proj(Stab(U)),

where Stab(U) = {y € Aut™(Fy) : v(U) = U} is the stabilizer of U, and
proj : Autt(Fy) — Out™(F,) = SLy(Z)
18 the natural projection.

An immediate corollary is that I'(O) is always a subgroup of SLy(Z) of finite
index (a fact that was known previously by different arguments).

1.4 Origami curves

For an origami O, denote by C'(O) the image of A in the moduli space M, =
T,/Mod,. By Fact 2, the projection Ap — C(O) factors through the Riemann
surface C'(O) := H/T'(O) (to be precise, we have to define C'(O) as the mirror
image of H/T'(O), see [6]). Since I'(O) has finite index in SLy(Z) and thus is a
lattice in SLy(R), C(O) is of finite type. On the other hand, it is not compact,
since I'(O) necessarily contains parabolic elements.

Another important result is (cf. |6, Cor. 3.3|)
Fact 7. For an origami O, the map C(O) — C(O) is birational.

It follows that C'(O) is an algebraic curve (embedded into M,); we call it the
origami curve associated with O.

We have seen that C(O) is never projective (thus always has cusps), and that
C(O) is its normalization. There are a few more general results on origami curves
(but not too many):

e (C(O) is defined over a number field.

In fact, the inclusion I'(O) C SLy(Z) induces a finite covering C'(0) — Al =
H/SLo(Z) which is ramified at most over two points (namely 0 and 1728). The
result therefore follows from Belyi’s theorem.

Remark: For any Teichmiiller disk A, C T, one can consider its image in M,.
If it is an algebraic curve (which is a rather rare case) this curve is called a
Teichmiiller curve. Moller proved in [7] that all Teichmiiller curves are defined
over number fields.



e There are origami curves of arbitrarily large genus.

Examples were given by G. Schmithiisen in [8] where she showed for the infi-
nite sequence Oy ( k odd) of “cross shaped” origamis, that their Veech group is
conjugated to the congruence group I';(2k).

e Even in M, there are origami curves of arbitrarily large genus.

This was shown by Hubert and Leliévre [5] using L-shaped origamis.

2 The quaternion origami

In this section we present some results on the origami W which was investigated
in detail in |2]|. As an origami, W was already shown in Section 1.1. Here we first
observe that W is closely related to the classical quaternion group ) with the eight
elements +1, 4, =5, =k which are subject to the relations i = j2 = k? = —1,
17 = —ji = k. In fact, if we label the squares of W with the elements of () as in
the following picture,
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we recognize the Cayley graph of @): the right neighbour of the square labeled
g is labeled ¢ - i, and the top neighbour is g - j; for a description of origamis by
Cayley graphs in the general situation see the last paragraph of Section 1 in [9].

@ acts on W by multiplying the labels from the left. This gives not only automor-
phisms of the Cayley graph, but also translations of the origami. In particular,
the origami map p: W — E is a normal covering with Galois group Q.

The origami W has a lot of remarkable properties, some of which are listed in
the following (see |2] for complete proofs):

e The Veech group of W is equal to SLy(Z).

Using Fact 6 it suffices to show that the subgroup U of F; associated to W is a
characteristic subgroup. Since p : W* — E* is normal with deck transformation
group @), U is the kernel of the homomorphism F;, — @ that maps the generators
x and y to ¢ and j, respectively. One then shows that this kernel is stable under
all automorphisms of F5.

e The quotient of W by the subgroup {£1} of @ is E, and

p=1[2]oq,



where ¢ : W — W/{+£1} is the quotient map, and [2] is the multiplication by 2
on the elliptic curve E. Here we choose the origin oo for the group law on £ to

be one of the vertices of the squares; then the other three vertices are the points
of order 2.

e The origami curve C(W) C Mj is isomorphic to the affine line Al.

It follows from Fact 7 that there is a birational map
f:A' =H/SLy(Z) = H/T (W) — C(W).

That in this special case, f can be shown to be an isomorphism, is essentially
due to the following explicit description of C'(W):

e C(W) is the image in M3 of the family

Wy: yt=a(r—1)(z—N), AeC—{0,1}.

The proof of this result is based on the existence of an automorphism c of W of
order 4 with 4 fixed points: Then W/ < ¢ > has genus 0, and an analysis of the
monodromy leads to the equation.

The automorphism c fixes all vertices of W, and acts by rotation by 7 around the
vertices (note that the total angle at a vertex is 47 since all 8 squares are glued
to each vertex). ¢? is the translation —1 € Q; ¢ commutes with ¢ and j, and the
six automorphisms +o, 4+p, and 47 all have order 2, where ¢ = —ck, p = —ci
and 7 = —cj.

Thus the automorphism group of W consists of the 8 translations in ) and the 8
elements +c, +0, £p, and 7, all of which have derivative —1. We have found:

e There is an exact sequence of groups

1—-Q—Aut(W) — Z/27Z — 1.

The automorphism o fixes the centers of the squares 1, —1, k and —k; similarly
each of the other five involutions in Aut(W) — @ has 4 fixed points on W. This
implies that W/ < ¢ > has genus 1. In fact, we have the much stronger result

e Foreach A\ e C—{0,1}, W)/ <o>=E_,4

where E_; is the elliptic curve with equation y? = z(z — 1)(x + 1) = 23 — x.

Since ¢ commutes with o, it descends to an automorphism ¢ of W,/ < o>. But

FE_4 is the only elliptic curve with an automorphism of order 4 which has a fixed
point.

The main result of |2| is based on the following



Observation. The quotient map k) : W\, — W)/ <o > = E_; is ramified
over 4 points P, (), R, S on E_; that form an orbit under the automorphism ¢. If
P,Q, R, S all are n-torsion points for some n > 2, then [n]ory : Wy — E_; is
ramified only over co and hence an origami.

Since ¢ preserves the kernel E_j[n] of multiplication by n, it even suffices for
[n] o k) to be an origami that P is an n-torsion point.

Theorem 8. For every n > 3 and every n-torsion point P € E_i[n] on E_q,
there is A\ € C — {0, 1} such that P is a branch point of k.
Then Dp = [n| o ky is an origami.

Corollary 9. C(W) intersects infinitely many other origami curves.

We call this configuration in the moduli space — one algebraic curve intersected
transversally by countably many others — a comb, although it will turn out in
the next section that in our case, the picture of a comb should not be taken too
literally.

3 The comb embedded into a Hurwitz space
3.1 The origamis Dp

The origamis Dp that define the teeth of our comb are obtained from 2-sheeted
coverings of the elliptic curve E_; that are ramified over 4 points P, Q, R, S, all of
which are n-torsion points for some n > 3. Moreover, P,(Q), R and S are an orbit
under the automorphism ¢, thus Q = &(P), R = ¢*(P) and S = &(P) = &(Q).
As a Riemann surface, E_; is isomorphic to C/(Z + iZ), i.e. the ellpitic curve
with the translation structure that we called n; in Section 1.1 Since ¢ has order
4, it lifts to rotation by 7 around the origin on the universal covering C. ¢ has 2
fixed poitns on E_;, namely co (the image of the origin in C) and M, the image
of the midpoint % + %Z of the unit square. Note that M is a point of order 2 on
E_.

A typical picture (with n = 5) of the configuration of the ramification points
P, Q, R, S defining such an origami Dp is therefore




Note that & is rotation by 7 around oo, which is the same as multiplication by
—1. In particular R = —P and S = —Q.

If we go to a different point on the origami curve C'(Dp), we replace the squares
by parallelograms defined by a matrix A € SLy(R); on the torus E we then have
the translation structure 4. Thereby the automorphism ¢ is transformed to a
diffeomorphism ¢4 on E4 = (E,n4) which still has order 4, but in general is no

longer conformal: ¢ has derivative D(¢) = (_01 (1)) € SO, (R), but D(c4) =

A (_01 (1]) A~! which is in general not orthogonal.

On the other hand, ¢ has derivative —I = <_1 0 ) , which is central in SLo(R).

0 -1
Thus ¢ is multiplication by —1 on the elliptic curve E4 for every A € SLy(R).

The point on C(Dp) corresponding to A therefore determines a 2-fold covering
X4 — E 4 which is ramified over 4 points Ps,Qa, R4, S satisfying Ry = —Py
and Sy = —Qa. In contrast to this, the condition “Q4 = ¢(Pa)” cannot be
expressed as an algebraic relation between P4 and Q) 4.

3.2 The Hurwitz space H

In this section we study all coverings of the type just described in the previous
section. More precisely we consider pairs (X, p) where

X is a compact Riemann surface of genus 3
p: X — FE is a morphism of degree 2

FE is an elliptic curve

p is ramified over 4 points P,Q, —P, —(Q).

Note that the phrase “E' is an elliptic curve” means that a point oo on E has been
chosen as origin for the group law, so that multiplication by —1 is well defined.

Two such pairs (X,p) and (X', p) are considered equivalent, if there are iso-
morphisms ¢ : X — X’ and ¢ : E — E' satisfying pop = p' o p. In this
case @ necessarily maps the ramification points of p to those of p’, and @ maps
{P,Q,—P,—Q} onto {P',Q,—P',—Q'}.

Denote by H the set of equivalence classes of pairs (X, p) as above. H carries a
natural structure of an algebraic variety. This is true much more generally for the
set of equivalence classes of coverings p : X — Y of curves, where the genus of X
and Y and the degree of p are fixed, and possibly also some additional data like
ramification orders or the monodromy of p. These algebraic varieties are known
as Hurwitz spaces. A general feature of these Hurwitz spaces is that the forgetful
map [p: X — Y] — [X] gives a finite morphism to the moduli space M, where
g is the genus of X.



In our particular situation, the algebraic structure on H can be described very
explicitly, as we shall see in the next section.

Note that H is three dimensional, as can be seen by a naive dimension count:
one parameter to determine the elliptic curve, one for P, and one for Q).

We begin our investigation of H with the following basic observation (see [4,
Prop. 8]

Proposition 10. Let (X, p) be a point in H. Then Aut(X) contains a subgroup
1somorphic to the Klein four group V.

Since p is of degree 2, it is the quotient for an involution o on X. The key point
in the proof of the proposition is to show that the automorphism [—1] on E lifts
to a second involution 7 on X.

By the definition of H, o has 4 fixed points on X (namely the inverse images of
P,Q,—P and —(@Q). The only possible fixed points of 7 (and also of o7) are the
inverse images of the 4 fixed points of [~1] on E (i.e. p~'(E[2])). Each of these
8 points is fixed by either 7 or o7 (but not by both!). If one of 7 or o7 fixes all
8 points, the quotient by this automorphism has genus 0, which implies that X
is hyperelliptic. If 7 and o7 fix 4 points each, all quotients have genus 1, and X
is not hyperelliptic.

If the covering p : X — FE is induced by an origami Dp as in Section 3.1, 7 or
o1 coincides with ¢ (since they all descend to [—1] on E). Since ¢? has 4 fixed
points (the inverse images of oo and M), the above reasoning shows that X is
not hyperelliptic. We therefore restrict our attention to the subset

H :={(X,p) € H : X is not hyperelliptic}

of H (in fact, H is a connected component of H).

So far we have seen in this section that the comb C, which is the union of the
origami curves C(W) and C(Dp) for all P € E_;[n] for some n > 3, is contained

in ;(H), where we denote by
w: H — Ms

the forgetful map [(X,p)] — [X]. The surprising result now is, see [4, Thm. 1|:
Theorem 11. C is dense in u(H).

Since p is a finite morphism of algebraic varieties, the inverse image Cp :=
p ' (C(Dp)) C H is also an algebraic curve (for each P € E_;[n], n > 3). An
equivalent formulation of Theorem 11 is therefore

Theorem 11'. The union of the Cp, P an n-torsion point on E_i for some
n > 3, 1s dense in H.



The idea of the proof is to approximate, for given (X, p) € H, the points P and
@ on the elliptic curve E = p(X) by torsion points P,, @,. This gives points in
H that approximate (X, p) and lie on some origami curve. The technical heart
of the proof is then to find A € SLy(R) such that £ = E4 and Q,, = ¢a(P,) (i.e.
P, Qn, —P,,—Q, is an orbit under the affine deformation ¢4 of ¢).

3.3 Affine coordinates for H

In this final section we sketch the explicit description of the Hurwitz space H
introduced in the last section.

For this purpose we consider the family
Cope 1 o' +yt 4 2 + 2a2%y* + 2022 2% + 2cy? 2>

of plane projective complex curves. A straightforward calculation shows that
Cupe is singular if one of a, b or c is +1 or —1, or if a® + b* 4 ¢ — 2abc = 1, and
nonsingular otherwise. Therefore we introduce the open subset

U :={(a,b,c) € C*: (a* = 1)(b* — 1)(c* — 1)(a* + b* + * — 2abc — 1) # 0}

of C3. For (a,b,c) € U, the nonsingular curve Cj,. is not hyperelliptic (no
hyperelliptic curve can be smoothly embedded into the projective plane).

Cape admits the automorphisms

a:(z:iy:2z) — (—x:y:2) and
B:(r:y:2) — (x:—y:2),

which generate a group isomorphic to Vy. « has 4 fixed points (namely the points
(0:y: 1) with y* +2¢® + 1 = 0); they are symmetric with respect to 3. This
shows that the quotient map

Pa - C1abc - abc/ <a>

defines a point in H. Conversely, each (X,p) € H can be represented by some
Cape (see [4, Prop. 11]), so we have

Proposition 12. The map
h:U— Ha (CI,, ba C) = (Cabcapa)
1s a finite surjective morphism of algebraic varieties.

It follows that the natural map

m:U — ]\437 (CL, b, C) — [Cabc]
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factors through H.

On the other hand, m also factors through the quotient U/L by the group L of
linear automorphisms of U. Clearly L contains all permutations of a, b and ¢, and
also the map v with v(a, b, c) = (—a, —b,c). It is easy to see that L is generated
by these automorphisms, and that L is isomorphic to Sj.

Thus we have the following commutative diagram of finite morphisms of algebraic
varieties:

Theorem 13. a) U/L is nonsingular.
b) q is birational.

Proof. b) is shown in [4, Prop. 16]. One first observes that p has degree 3 (because
for a general point (X, p) in H, Aut(X) =V}, thus X has exactly 3 involutions).
By direct computation one then shows that the degree of h is 8. Since the degree
of ¢ is |L| = 24, it follows from the commutativity of the diagram that the degree
of g is 1.

a) We prove the stronger result that C3/L is nonsingular, more precisely:
C*/L=C?

Thus we have to show that the subalgebra A := Cla, b, c]% of L-invariant polyno-
mials in a, b and ¢ is isomorphic to the polynomial ring in three variables. For
this it suffices to show that A can be generated by 3 elements, since the tran-
scendence degree of A is the same as that of Cla, b, ¢].

Obviously we have x, y and z in A, where

= >+ v+
= abc
z = a’b® +a*c® + b’
Now let f be any homogeneous L-invariant polynomial.

We claim that for any monomial a’d’c*, that occurs in f with nonzero coefficient,
the three exponents i, 7 and k all have the same parity.

If not, we may assume that j = k mod 2, but i #Z j mod 2. But then v(at’ct) =
—a'bck, contradicting the invariance of f.

Now assume that f contains a monomial a’b’c® with a, b and ¢ odd. Then

F=) gla'c)

geL
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is L-invariant and divisible by y:

f= achg(ai_lbj_lck_l)
g€eL
where now all exponents of all monomials in the sum are even.

For suitable A € C*, f — Af does not contain the monomial a’b’c* (and is still
invariant).

We are therefore reduced to the case that for all monomials occuring in f, all
three exponents are even. But then f is a symmetric polynomial in a?, b* and
c? and thus can be expressed by the elementary symmetric polynomials in a?, b?
and c2, which are z, z, and y2. ]
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