
A 
omb of origami 
urves in M3Frank Herrli
hIn this note we present some results of our joint work with Gabriela S
hmithüsenon a very parti
ular and, as we think, highly fas
inating 
on�guration of origami
urves in the moduli spa
e M3. For most of the results, more details and proofs
an be found in [2℄ and [4℄.1 Origami 
urvesIn this se
tion we brie�y re
all the notions of origamis, Tei
hmüller embeddings,Vee
h groups, and Tei
hmüller 
urves. More details and ba
kground information
an be found e. g. in G. S
hmithüsen's arti
le [9℄ in this volume.1.1 OrigamisAn origami is a spe
ial kind of a translation surfa
e. It 
an be obtained by thefollowing 
ombinatorial 
onstru
tion:Take a �nite number of (eu
lidean unit) squares and glue ea
h left edge to a rightedge and ea
h top edge to a bottom edge, and vi
e versa.If the resulting 
ompa
t surfa
e X is 
onne
ted, we 
all it an origami. X isendowed with a translation stru
ture whi
h is obtained by using the squares as
harts and translations for the gluing.Our favourite example, whi
h plays a 
ru
ial role in this note, is
// /\\ \

/ //\ \\

== � = =�� = =� ==
◦ ◦

If the edges are glued as indi
ated, i. e. edges with the same label are glued,we obtain a 
losed surfa
e W with 4 marked points. The genus of W 
an beseen by 
ounting squares (8), edges (16), and verti
es (4): Euler's formula gives
8 − 16 + 4 = 2 − 2g, thus g = 3.Mapping ea
h square of an origami onto the torus E de�nes a 
overing X → E1



of degree d (= the number of squares) whi
h is unrami�ed outside the verti
esof the squares. Conversely, let p : X → E be a (rami�ed) 
overing and endow Ewith the (standard) translation stru
ture ηI inherited from the one on R
2 = C bythe universal 
overing E = R2/Z2 = C/(Z + iZ). Then ηI lifts to a translationstru
ture µI = p∗(ηI) on X∗ = X − {rami�
ation points of p}. In the spe
ialsituation that p is rami�ed over (at most) one point ∞ ∈ E, µI de
omposes X∗into squares. This motivatesDe�nition 1. An origami is a �nite 
overing O = (p : X → E) of the torus Ewhi
h is rami�ed over at most one point ∞ ∈ E.For an origami O = (p : X → E), we denote by X∗ the inverse image of E∗ =

E − {∞} under p; thus p : X∗ → E∗ is an unrami�ed 
overing.1.2 Tei
hmüller embeddingsA matrix A =

(

a b
c d

)

∈ SL2(R) de�nes a latti
e ΛA = (a+ ci)Z⊕ (b+di)Z ⊂ C.Identifying the torus E with C/ΛA gives a translation stru
ture ηA on E whi
h
an also be obtained from ηI by 
omposing the 
hart maps with the a�ne map
A : R2 → R2.An origami O = (p : X → E) thus de�nes a family µA = p∗(ηA) of translationstru
tures on X∗, indexed by the matri
es A ∈ SL2(R).Note that, sin
e translations are holomorphi
 maps in C, ea
h of our translationstru
tures µA de�nes a stru
ture of Riemann surfa
e on X∗, and also on X(sin
e it 
an be extended in a unique way to the isolated points p−1(∞). Wetake (X, µI) as referen
e Riemann surfa
e of the Tei
hmüller spa
e Tg of markedRiemann surfa
es of genus g = genus(X); for ea
h A ∈ SL2(R), we 
onsider theidentity map id : X → X as a marking of the Riemann surfa
e (X, µA). Thisgives us a map

f̃O : SL2(R) → Tg.If A ∈ SO2(R), the asso
iated a�ne map is 
onformal, hen
e holomorphi
. Thisshows that f̃O indu
es a map
fO : SO2(R)\SL2(R) → Tg.We identify SO2(R)\SL2(R) with the 
omplex upper half plane H: SL2(R) a
tson H by Möbius transformations, and SO2(R) is the stabilizer of i. We then mapthe 
oset SO2(R) · A to −A−1(i).There is the following basi
Fa
t 2. An origami O = (p : X → E) indu
es an inje
tive map

fO : H → Tg, g the genus of X,2



whi
h is holomorphi
 and isometri
 (with respe
t to the hyperboli
 metri
 on Hand the Tei
hmüller metri
 on Tg).De�nition 3. A holomorphi
 isometri
 embedding ι : H → Tg is 
alled a Tei
h-müller embedding. In this 
ase, ∆ι := ι(H) is 
alled a Tei
hmüller disk.If O is an origami, we write ∆O instead of ∆fO
.1.3 Vee
h groupsFor an origami O = (p : X → E) denote by A�+(O) the group of orientationpreserving di�eomorphisms of X∗ whi
h are a�ne with respe
t to the translationstru
ture µI . For an element f ∈ A�+(O), the linear part is a matrix A ∈ SL2(R)whi
h is independent of the 
harts and thus de�nes a homomorphism

D : A�+(O) → SL2(R).The kernel of D is the (�nite!) group of translations of (X∗, µI).De�nition 4. The image Γ(O) = A�+(O)/ker(D) ⊂ SL2(R) is 
alled the Vee
hgroup of O.For a di�erent des
ription of the Vee
h group re
all that the mapping 
lass groupModg a
ts on the Tei
hmüller spa
e Tg by holomorphi
 isometries. The a
tion isproperly dis
ontinuous, and the orbit spa
e
Mg = Tg/Modgis the moduli spa
e of Riemann surfa
es of genus g, a quasi-proje
tive algebrai
variety of (
omplex) dimension 3g − 3.With an origami O we asso
iate the subgroup

S(O) = {ϕ ∈ Modg : ϕ(∆O) = ∆O}of elements of Modg that stabilize the Tei
hmüller disk ∆O. Working 
arefullythrough the de�nitions and using results proved in [1℄ (see also [3, Se
tion 2.4.3℄),one �nds the following importantFa
t 5. For an origami O we haveA�+(O) ∼= S(O) and
Γ(O) ∼= S(O)/S0(O),where S0(O) = {ϕ ∈ Modg : ϕ|∆O = id∆O

}.In [8℄ G. S
hmithüsen found a very ni
e and useful alternate 
hara
terizationof the Vee
h group of an origami. It is based on the following observation: If3



O = (p : X → E) is an origami, the unrami�ed 
overing p : X∗ → E∗ indu
es anembedding
U := π1(X

∗) ⊂ π1(E
∗) = F2of the fundamental groups, where F2 is the free group on two generators. ThenS
hmithüsen proved the followingFa
t 6.

Γ(O) = proj(Stab(U)),where Stab(U) = {γ ∈ Aut+(F2) : γ(U) = U} is the stabilizer of U , andproj : Aut+(F2) → Out+(F2) = SL2(Z)is the natural proje
tion.An immediate 
orollary is that Γ(O) is always a subgroup of SL2(Z) of �niteindex (a fa
t that was known previously by di�erent arguments).1.4 Origami 
urvesFor an origami O, denote by C(O) the image of ∆O in the moduli spa
e Mg =
Tg/Modg. By Fa
t 2, the proje
tion ∆O → C(O) fa
tors through the Riemannsurfa
e C̃(O) := H/Γ(O) (to be pre
ise, we have to de�ne C̃(O) as the mirrorimage of H/Γ(O), see [6℄). Sin
e Γ(O) has �nite index in SL2(Z) and thus is alatti
e in SL2(R), C̃(O) is of �nite type. On the other hand, it is not 
ompa
t,sin
e Γ(O) ne
essarily 
ontains paraboli
 elements.Another important result is (
f. [6, Cor. 3.3℄)Fa
t 7. For an origami O, the map C̃(O) → C(O) is birational.It follows that C(O) is an algebrai
 
urve (embedded into Mg); we 
all it theorigami 
urve asso
iated with O.We have seen that C(O) is never proje
tive (thus always has 
usps), and that
C̃(O) is its normalization. There are a few more general results on origami 
urves(but not too many):

• C(O) is de�ned over a number �eld.In fa
t, the in
lusion Γ(O) ⊂ SL2(Z) indu
es a �nite 
overing C̃(O) → A1 =
H/SL2(Z) whi
h is rami�ed at most over two points (namely 0 and 1728). Theresult therefore follows from Belyi's theorem.Remark: For any Tei
hmüller disk ∆ι ⊂ Tg, one 
an 
onsider its image in Mg.If it is an algebrai
 
urve (whi
h is a rather rare 
ase) this 
urve is 
alled aTei
hmüller 
urve. Möller proved in [7℄ that all Tei
hmüller 
urves are de�nedover number �elds. 4



• There are origami 
urves of arbitrarily large genus.Examples were given by G. S
hmithüsen in [8℄ where she showed for the in�-nite sequen
e Ok ( k odd) of �
ross shaped� origamis, that their Vee
h group is
onjugated to the 
ongruen
e group Γ1(2k).
• Even in M2 there are origami 
urves of arbitrarily large genus.This was shown by Hubert and Lelièvre [5℄ using L-shaped origamis.2 The quaternion origamiIn this se
tion we present some results on the origami W whi
h was investigatedin detail in [2℄. As an origami, W was already shown in Se
tion 1.1. Here we �rstobserve thatW is 
losely related to the 
lassi
al quaternion group Q with the eightelements ±1,±i,±j,±k whi
h are subje
t to the relations i2 = j2 = k2 = −1,

ij = −ji = k. In fa
t, if we label the squares of W with the elements of Q as inthe following pi
ture,
−j j

1 i −1 −i

k −k// /\\ \

/ //\ \\== � = =�� = =� ==
◦ ◦we re
ognize the Cayley graph of Q: the right neighbour of the square labeled

g is labeled g · i, and the top neighbour is g · j; for a des
ription of origamis byCayley graphs in the general situation see the last paragraph of Se
tion 1 in [9℄.
Q a
ts on W by multiplying the labels from the left. This gives not only automor-phisms of the Cayley graph, but also translations of the origami. In parti
ular,the origami map p : W → E is a normal 
overing with Galois group Q.The origami W has a lot of remarkable properties, some of whi
h are listed inthe following (see [2℄ for 
omplete proofs):

• The Vee
h group of W is equal to SL2(Z).Using Fa
t 6 it su�
es to show that the subgroup U of F2 asso
iated to W is a
hara
teristi
 subgroup. Sin
e p : W ∗ → E∗ is normal with de
k transformationgroup Q, U is the kernel of the homomorphism F2 → Q that maps the generators
x and y to i and j, respe
tively. One then shows that this kernel is stable underall automorphisms of F2.

• The quotient of W by the subgroup {±1} of Q is E, and
p = [2] ◦ q,5



where q : W → W/{±1} is the quotient map, and [2] is the multipli
ation by 2on the ellipti
 
urve E. Here we 
hoose the origin ∞ for the group law on E tobe one of the verti
es of the squares; then the other three verti
es are the pointsof order 2.
• The origami 
urve C(W ) ⊂ M3 is isomorphi
 to the a�ne line A1.It follows from Fa
t 7 that there is a birational map

f : A
1 = H/SL2(Z) = H/Γ(W ) → C(W ).That in this spe
ial 
ase, f 
an be shown to be an isomorphism, is essentiallydue to the following expli
it des
ription of C(W ):

• C(W ) is the image in M3 of the family
Wλ : y4 = x(x − 1)(x − λ), λ ∈ C − {0, 1}.The proof of this result is based on the existen
e of an automorphism c of W oforder 4 with 4 �xed points: Then W/ < c > has genus 0, and an analysis of themonodromy leads to the equation.The automorphism c �xes all verti
es of W , and a
ts by rotation by π around theverti
es (note that the total angle at a vertex is 4π sin
e all 8 squares are gluedto ea
h vertex). c2 is the translation −1 ∈ Q; c 
ommutes with i and j, and thesix automorphisms ±σ, ±ρ, and ±τ all have order 2, where σ = −ck, ρ = −ciand τ = −cj.Thus the automorphism group of W 
onsists of the 8 translations in Q and the 8elements ±c, ±σ, ±ρ, and ±τ , all of whi
h have derivative −I. We have found:

• There is an exa
t sequen
e of groups
1 → Q → Aut(W ) → Z/2Z → 1.The automorphism σ �xes the 
enters of the squares 1,−1, k and −k; similarlyea
h of the other �ve involutions in Aut(W ) − Q has 4 �xed points on W . Thisimplies that W/ < σ > has genus 1. In fa
t, we have the mu
h stronger result

• For ea
h λ ∈ C − {0, 1}, Wλ/ < σ>∼= E−1where E−1 is the ellipti
 
urve with equation y2 = x(x − 1)(x + 1) = x3 − x.Sin
e c 
ommutes with σ, it des
ends to an automorphism c̄ of Wλ/ < σ>. But
E−1 is the only ellipti
 
urve with an automorphism of order 4 whi
h has a �xedpoint.The main result of [2℄ is based on the following6



Observation. The quotient map κλ : Wλ → Wλ/ < σ > = E−1 is rami�edover 4 points P, Q, R, S on E−1 that form an orbit under the automorphism c̄. If
P, Q, R, S all are n-torsion points for some n ≥ 2, then [n] ◦ κλ : Wλ → E−1 isrami�ed only over ∞ and hen
e an origami.Sin
e c̄ preserves the kernel E−1[n] of multipli
ation by n, it even su�
es for
[n] ◦ κλ to be an origami that P is an n-torsion point.Theorem 8. For every n ≥ 3 and every n-torsion point P ∈ E−1[n] on E−1,there is λ ∈ C − {0, 1} su
h that P is a bran
h point of κλ.Then DP := [n] ◦ κλ is an origami.Corollary 9. C(W ) interse
ts in�nitely many other origami 
urves.We 
all this 
on�guration in the moduli spa
e � one algebrai
 
urve interse
tedtransversally by 
ountably many others � a 
omb, although it will turn out inthe next se
tion that in our 
ase, the pi
ture of a 
omb should not be taken tooliterally.3 The 
omb embedded into a Hurwitz spa
e3.1 The origamis DPThe origamis DP that de�ne the teeth of our 
omb are obtained from 2-sheeted
overings of the ellipti
 
urve E−1 that are rami�ed over 4 points P, Q, R, S, all ofwhi
h are n-torsion points for some n ≥ 3. Moreover, P, Q, R and S are an orbitunder the automorphism c̄, thus Q = c̄(P ), R = c̄2(P ) and S = c̄3(P ) = c̄2(Q).As a Riemann surfa
e, E−1 is isomorphi
 to C/(Z + iZ), i. e. the ellpiti
 
urvewith the translation stru
ture that we 
alled ηI in Se
tion 1.1 Sin
e c̄ has order4, it lifts to rotation by π

2
around the origin on the universal 
overing C. c̄ has 2�xed poitns on E−1, namely ∞ (the image of the origin in C) and M , the imageof the midpoint 1

2
+ 1

2
i of the unit square. Note that M is a point of order 2 on

E−1.A typi
al pi
ture (with n = 5) of the 
on�guration of the rami�
ation points
P, Q, R, S de�ning su
h an origami DP is therefore

qc qc

qcqc

P

Q

R

S M
qc

t

t

t

t

7



Note that c̄2 is rotation by π around ∞, whi
h is the same as multipli
ation by
−1. In parti
ular R = −P and S = −Q.If we go to a di�erent point on the origami 
urve C(DP ), we repla
e the squaresby parallelograms de�ned by a matrix A ∈ SL2(R); on the torus E we then havethe translation stru
ture ηA. Thereby the automorphism c̄ is transformed to adi�eomorphism c̄A on EA = (E, ηA) whi
h still has order 4, but in general is nolonger 
onformal: c̄ has derivative D(c̄) =

(

0 1
−1 0

)

∈ SO2(R), but D(c̄A) =

A

(

0 1
−1 0

)

A−1 whi
h is in general not orthogonal.On the other hand, c̄2 has derivative−I =

(

−1 0
0 −1

), whi
h is 
entral in SL2(R).Thus c̄2
A is multipli
ation by −1 on the ellipti
 
urve EA for every A ∈ SL2(R).The point on C(DP ) 
orresponding to A therefore determines a 2-fold 
overing

XA → EA whi
h is rami�ed over 4 points PA, QA, RA, SA satisfying RA = −PAand SA = −QA. In 
ontrast to this, the 
ondition �QA = c̄(PA)� 
annot beexpressed as an algebrai
 relation between PA and QA.3.2 The Hurwitz spa
e HIn this se
tion we study all 
overings of the type just des
ribed in the previousse
tion. More pre
isely we 
onsider pairs (X, p) where
X is a 
ompa
t Riemann surfa
e of genus 3
p : X → E is a morphism of degree 2
E is an ellipti
 
urve
p is rami�ed over 4 points P, Q,−P,−Q.Note that the phrase �E is an ellipti
 
urve� means that a point ∞ on E has been
hosen as origin for the group law, so that multipli
ation by −1 is well de�ned.Two su
h pairs (X, p) and (X ′, p′) are 
onsidered equivalent, if there are iso-morphisms ϕ : X → X ′ and ϕ̄ : E → E ′ satisfying ϕ̄ ◦ p = p′ ◦ ϕ. In this
ase ϕ ne
essarily maps the rami�
ation points of p to those of p′, and ϕ̄ maps

{P, Q,−P,−Q} onto {P ′, Q′,−P ′,−Q′}.Denote by H̃ the set of equivalen
e 
lasses of pairs (X, p) as above. H̃ 
arries anatural stru
ture of an algebrai
 variety. This is true mu
h more generally for theset of equivalen
e 
lasses of 
overings p : X → Y of 
urves, where the genus of Xand Y and the degree of p are �xed, and possibly also some additional data likerami�
ation orders or the monodromy of p. These algebrai
 varieties are knownas Hurwitz spa
es. A general feature of these Hurwitz spa
es is that the forgetfulmap [p : X → Y ] 7→ [X] gives a �nite morphism to the moduli spa
e Mg, where
g is the genus of X. 8



In our parti
ular situation, the algebrai
 stru
ture on H̃ 
an be des
ribed veryexpli
itly, as we shall see in the next se
tion.Note that H̃ is three dimensional, as 
an be seen by a naïve dimension 
ount:one parameter to determine the ellipti
 
urve, one for P , and one for Q.We begin our investigation of H̃ with the following basi
 observation (see [4,Prop. 8℄Proposition 10. Let (X, p) be a point in H̃. Then Aut(X) 
ontains a subgroupisomorphi
 to the Klein four group V4.Sin
e p is of degree 2, it is the quotient for an involution σ on X. The key pointin the proof of the proposition is to show that the automorphism [−1] on E liftsto a se
ond involution τ on X.By the de�nition of H̃ , σ has 4 �xed points on X (namely the inverse images of
P, Q,−P and −Q). The only possible �xed points of τ (and also of στ) are theinverse images of the 4 �xed points of [−1] on E (i. e. p−1(E[2])). Ea
h of these8 points is �xed by either τ or στ (but not by both!). If one of τ or στ �xes all8 points, the quotient by this automorphism has genus 0, whi
h implies that Xis hyperellipti
. If τ and στ �x 4 points ea
h, all quotients have genus 1, and Xis not hyperellipti
.If the 
overing p : X → E is indu
ed by an origami DP as in Se
tion 3.1, τ or
στ 
oin
ides with c2 (sin
e they all des
end to [−1] on E). Sin
e c2 has 4 �xedpoints (the inverse images of ∞ and M), the above reasoning shows that X isnot hyperellipti
. We therefore restri
t our attention to the subset

H := {(X, p) ∈ H̃ : X is not hyperellipti
}of H̃ (in fa
t, H is a 
onne
ted 
omponent of H̃).So far we have seen in this se
tion that the 
omb C, whi
h is the union of theorigami 
urves C(W ) and C(DP ) for all P ∈ E−1[n] for some n ≥ 3, is 
ontainedin µ(H), where we denote by
µ : H → M3the forgetful map [(X, p)] 7→ [X]. The surprising result now is, see [4, Thm. 1℄:Theorem 11. C is dense in µ(H).Sin
e µ is a �nite morphism of algebrai
 varieties, the inverse image CP :=

µ−1(C(DP )) ⊂ H is also an algebrai
 
urve (for ea
h P ∈ E−1[n], n ≥ 3). Anequivalent formulation of Theorem 11 is thereforeTheorem 11′. The union of the CP , P an n-torsion point on E−1 for some
n ≥ 3, is dense in H . 9



The idea of the proof is to approximate, for given (X, p) ∈ H , the points P and
Q on the ellipti
 
urve E = p(X) by torsion points Pn, Qn. This gives points in
H that approximate (X, p) and lie on some origami 
urve. The te
hni
al heartof the proof is then to �nd A ∈ SL2(R) su
h that E = EA and Qn = c̄A(Pn) (i. e.
Pn, Qn,−Pn,−Qn is an orbit under the a�ne deformation c̄A of c̄).3.3 A�ne 
oordinates for HIn this �nal se
tion we sket
h the expli
it des
ription of the Hurwitz spa
e Hintrodu
ed in the last se
tion.For this purpose we 
onsider the family

Cabc : x4 + y4 + z4 + 2ax2y2 + 2bx2z2 + 2cy2z2of plane proje
tive 
omplex 
urves. A straightforward 
al
ulation shows that
Cabc is singular if one of a, b or c is +1 or −1, or if a2 + b2 + c2 − 2abc = 1, andnonsingular otherwise. Therefore we introdu
e the open subset

U := {(a, b, c) ∈ C
3 : (a2 − 1)(b2 − 1)(c2 − 1)(a2 + b2 + c2 − 2abc − 1) 6= 0}of C3. For (a, b, c) ∈ U , the nonsingular 
urve Cabc is not hyperellipti
 (nohyperellipti
 
urve 
an be smoothly embedded into the proje
tive plane).

Cabc admits the automorphisms
α : (x : y : z) 7→ (−x : y : z) and
β : (x : y : z) 7→ (x : −y : z),whi
h generate a group isomorphi
 to V4. α has 4 �xed points (namely the points

(0 : y : 1) with y4 + 2c2 + 1 = 0); they are symmetri
 with respe
t to β. Thisshows that the quotient map
pα : Cabc → Cabc/ <α>de�nes a point in H . Conversely, ea
h (X, p) ∈ H 
an be represented by some

Cabc (see [4, Prop. 11℄), so we haveProposition 12. The map
h : U → H, (a, b, c) 7→ (Cabc, pα)is a �nite surje
tive morphism of algebrai
 varieties.It follows that the natural map
m : U → M3, (a, b, c) 7→ [Cabc]10



fa
tors through H .On the other hand, m also fa
tors through the quotient U/L by the group L oflinear automorphisms of U . Clearly L 
ontains all permutations of a, b and c, andalso the map v with v(a, b, c) = (−a,−b, c). It is easy to see that L is generatedby these automorphisms, and that L is isomorphi
 to S4.Thus we have the following 
ommutative diagram of �nite morphisms of algebrai
varieties:
U

h
//

q̃

��
m

""D

D

D

D

D

D

D

D

D

D

D

H

µ

��

U/L q
// M3Theorem 13. a) U/L is nonsingular.b) q is birational.Proof. b) is shown in [4, Prop. 16℄. One �rst observes that µ has degree 3 (be
ausefor a general point (X, p) in H , Aut(X) = V4, thus X has exa
tly 3 involutions).By dire
t 
omputation one then shows that the degree of h is 8. Sin
e the degreeof q̃ is |L| = 24, it follows from the 
ommutativity of the diagram that the degreeof q is 1.a) We prove the stronger result that C3/L is nonsingular, more pre
isely:

C
3/L ∼= C

3Thus we have to show that the subalgebra A := C[a, b, c]L of L-invariant polyno-mials in a, b and c is isomorphi
 to the polynomial ring in three variables. Forthis it su�
es to show that A 
an be generated by 3 elements, sin
e the tran-s
enden
e degree of A is the same as that of C[a, b, c].Obviously we have x, y and z in A, where
x = a2 + b2 + c2

y = abc

z = a2b2 + a2c2 + b2c2Now let f be any homogeneous L-invariant polynomial.We 
laim that for any monomial aibjck, that o

urs in f with nonzero 
oe�
ient,the three exponents i, j and k all have the same parity.If not, we may assume that j ≡ k mod 2, but i 6≡ j mod 2. But then v(aibjck) =
−aibjck, 
ontradi
ting the invarian
e of f .Now assume that f 
ontains a monomial aibjck with a, b and c odd. Then

f̃ :=
∑

g∈L

g(aibjck)11



is L-invariant and divisible by y:
f̃ = abc

∑

g∈L

g(ai−1bj−1ck−1)where now all exponents of all monomials in the sum are even.For suitable λ ∈ C×, f − λf̃ does not 
ontain the monomial aibjck (and is stillinvariant).We are therefore redu
ed to the 
ase that for all monomials o

uring in f , allthree exponents are even. But then f is a symmetri
 polynomial in a2, b2 and
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